This file is indexed.

/usr/lib/python2.7/dist-packages/pint/util.py is in python-pint 0.6-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# -*- coding: utf-8 -*-
"""
    pint.util
    ~~~~~~~~~

    Miscellaneous functions for pint.

    :copyright: 2013 by Pint Authors, see AUTHORS for more details.
    :license: BSD, see LICENSE for more details.
"""

from __future__ import division, unicode_literals, print_function, absolute_import

import re
import operator
from numbers import Number
from fractions import Fraction

import logging
from token import STRING, NAME, OP
from tokenize import untokenize

from .compat import string_types, tokenizer, lru_cache, NullHandler, maketrans

logger = logging.getLogger(__name__)
logger.addHandler(NullHandler())


def matrix_to_string(matrix, row_headers=None, col_headers=None, fmtfun=lambda x: str(int(x))):
    """Takes a 2D matrix (as nested list) and returns a string.
    """
    ret = []
    if col_headers:
        ret.append(('\t' if row_headers else '') + '\t'.join(col_headers))
    if row_headers:
        ret += [rh + '\t' + '\t'.join(fmtfun(f) for f in row)
                for rh, row in zip(row_headers, matrix)]
    else:
        ret += ['\t'.join(fmtfun(f) for f in row)
                for row in matrix]

    return '\n'.join(ret)


def transpose(matrix):
    """Takes a 2D matrix (as nested list) and returns the transposed version.
    """
    return [list(val) for val in zip(*matrix)]


def column_echelon_form(matrix, ntype=Fraction, transpose_result=False):
    """Calculates the column echelon form using Gaussian elimination.

    :param matrix: a 2D matrix as nested list.
    :param ntype: the numerical type to use in the calculation.
    :param transpose_result: indicates if the returned matrix should be transposed.
    :return: column echelon form, transformed identity matrix, swapped rows
    """
    lead = 0

    M = transpose(matrix)

    _transpose = transpose if transpose_result else lambda x: x

    rows, cols = len(M), len(M[0])

    new_M = []
    for row in M:
        r = []
        for x in row:
            if isinstance(x, float):
                x = ntype.from_float(x)
            else:
                x = ntype(x)
            r.append(x)
        new_M.append(r)
    M = new_M

#    M = [[ntype(x) for x in row] for row in M]
    I = [[ntype(1) if n == nc else ntype(0) for nc in range(rows)] for n in range(rows)]
    swapped = []

    for r in range(rows):
        if lead >= cols:
            return _transpose(M), _transpose(I), swapped
        i = r
        while M[i][lead] == 0:
            i += 1
            if i != rows:
                continue
            i = r
            lead += 1
            if cols == lead:
                return _transpose(M), _transpose(I), swapped

        M[i], M[r] = M[r], M[i]
        I[i], I[r] = I[r], I[i]

        swapped.append(i)
        lv = M[r][lead]
        M[r] = [mrx / lv for mrx in M[r]]
        I[r] = [mrx / lv for mrx in I[r]]

        for i in range(rows):
            if i == r:
                continue
            lv = M[i][lead]
            M[i] = [iv - lv*rv for rv, iv in zip(M[r], M[i])]
            I[i] = [iv - lv*rv for rv, iv in zip(I[r], I[i])]

        lead += 1

    return _transpose(M), _transpose(I), swapped


def pi_theorem(quantities, registry=None):
    """Builds dimensionless quantities using the Buckingham π theorem

    :param quantities: mapping between variable name and units
    :type quantities: dict
    :return: a list of dimensionless quantities expressed as dicts
    """

    # Preprocess input and build the dimensionality Matrix
    quant = []
    dimensions = set()

    if registry is None:
        getdim = lambda x: x
    else:
        getdim = registry.get_dimensionality

    for name, value in quantities.items():
        if isinstance(value, string_types):
            value = ParserHelper.from_string(value)
        if isinstance(value, dict):
            dims = getdim(value)
        elif not hasattr(value, 'dimensionality'):
            dims = getdim(value)
        else:
            dims = value.dimensionality

        if not registry and any(not key.startswith('[') for key in dims):
            logger.warning('A non dimension was found and a registry was not provided. '
                           'Assuming that it is a dimension name: {0}.'.format(dims))

        quant.append((name, dims))
        dimensions = dimensions.union(dims.keys())

    dimensions = list(dimensions)

    # Calculate dimensionless  quantities
    M = [[dimensionality[dimension] for name, dimensionality in quant]
         for dimension in dimensions]

    M, identity, pivot = column_echelon_form(M, transpose_result=False)

    # Collect results
    # Make all numbers integers and minimize the number of negative exponents.
    # Remove zeros
    results = []
    for rowm, rowi in zip(M, identity):
        if any(el != 0 for el in rowm):
            continue
        max_den = max(f.denominator for f in rowi)
        neg = -1 if sum(f < 0 for f in rowi) > sum(f > 0 for f in rowi) else 1
        results.append(dict((q[0], neg * f.numerator * max_den / f.denominator)
                            for q, f in zip(quant, rowi) if f.numerator != 0))
    return results


def solve_dependencies(dependencies):
    """Solve a dependency graph.

    :param dependencies: dependency dictionary. For each key, the value is
                         an iterable indicating its dependencies.
    :return: list of sets, each containing keys of independents tasks dependent
                           only of the previous tasks in the list.
    """
    d = dict((key, set(dependencies[key])) for key in dependencies)
    r = []
    while d:
        # values not in keys (items without dep)
        t = set(i for v in d.values() for i in v) - set(d.keys())
        # and keys without value (items without dep)
        t.update(k for k, v in d.items() if not v)
        # can be done right away
        r.append(t)
        # and cleaned up
        d = dict(((k, v - t) for k, v in d.items() if v))
    return r


def find_shortest_path(graph, start, end, path=None):
    path = (path or []) + [start]
    if start == end:
        return path
    if not start in graph:
        return None
    shortest = None
    for node in graph[start]:
        if node not in path:
            newpath = find_shortest_path(graph, node, end, path)
            if newpath:
                if not shortest or len(newpath) < len(shortest):
                    shortest = newpath
    return shortest


def find_connected_nodes(graph, start, visited=None):
    if not start in graph:
        return None

    visited = (visited or set())
    visited.add(start)

    for node in graph[start]:
        if node not in visited:
            find_connected_nodes(graph, node, visited)

    return visited


class ParserHelper(dict):
    """The ParserHelper stores in place the product of variables and
    their respective exponent and implements the corresponding operations.
    """

    __slots__ = ('scale', )

    def __init__(self, scale=1, *args, **kwargs):
        self.scale = scale
        dict.__init__(self, *args, **kwargs)

    @classmethod
    def from_word(cls, input_word):
        """Creates a ParserHelper object with a single variable with exponent one.

        Equivalent to: ParserHelper({'word': 1})

        """
        ret = cls()
        ret.add(input_word, 1)
        return ret

    @classmethod
    def from_string(cls, input_string):
        return cls._from_string(input_string).copy()

    @classmethod
    @lru_cache()
    def _from_string(cls, input_string):
        """Parse linear expression mathematical units and return a quantity object.
        """

        if not input_string:
            return cls()

        input_string = string_preprocessor(input_string)

        if '[' in input_string:
            input_string = input_string.replace('[', '__obra__').replace(']', '__cbra__')
            reps = True
        else:
            reps = False

        gen = tokenizer(input_string)
        result = []
        for toknum, tokval, _, _, _ in gen:
            if toknum == NAME:
                if not tokval:
                    continue
                result.extend([
                    (NAME, 'L_'),
                    (OP, '('),
                    (STRING, '"' + tokval + '"'),
                    (OP, ')')
                ])
            else:
                result.append((toknum, tokval))

        ret = eval(untokenize(result),
                   {'__builtins__': None},
                   {'L_': cls.from_word})
        if isinstance(ret, Number):
            return ParserHelper(ret)

        if not reps:
            return ret

        return ParserHelper(ret.scale,
                            dict((key.replace('__obra__', '[').replace('__cbra__', ']'), value)
                                 for key, value in ret.items()))

    def copy(self):
        return ParserHelper(scale=self.scale, **self)

    def __missing__(self, key):
        return 0.0

    def __eq__(self, other):
        if isinstance(other, self.__class__):
            return self.scale == other.scale and super(ParserHelper, self).__eq__(other)
        elif isinstance(other, dict):
            return self.scale == 1 and super(ParserHelper, self).__eq__(other)
        elif isinstance(other, string_types):
            return self == ParserHelper.from_string(other)
        elif isinstance(other, Number):
            return self.scale == other and not len(self)
        else:
            return False

    def __ne__(self, other):
        return not self.__eq__(other)

    def add(self, key, value):
        newval = self.__getitem__(key) + value
        if newval:
            self.__setitem__(key, newval)
        else:
            del self[key]

    def operate(self, items, op=operator.iadd, cleanup=True):
        for key, value in items:
            self[key] = op(self[key], value)

        if cleanup:
            keys = [key for key, value in self.items() if value == 0]
            for key in keys:
                del self[key]

    def __str__(self):
        tmp = '{%s}' % ', '.join(["'{0}': {1}".format(key, value) for key, value in sorted(self.items())])
        return '{0} {1}'.format(self.scale, tmp)

    def __repr__(self):
        tmp = '{%s}' % ', '.join(["'{0}': {1}".format(key, value) for key, value in sorted(self.items())])
        return '<ParserHelper({0}, {1})>'.format(self.scale, tmp)

    def __mul__(self, other):
        if isinstance(other, string_types):
            self.add(other, 1)
        elif isinstance(other, Number):
            self.scale *= other
        elif isinstance(other, self.__class__):
            self.scale *= other.scale
            self.operate(other.items())
        else:
            self.operate(other.items())
        return self

    __imul__ = __mul__
    __rmul__ = __mul__

    def __pow__(self, other):
        self.scale **= other
        for key in self.keys():
            self[key] *= other
        return self

    __ipow__ = __pow__

    def __truediv__(self, other):
        if isinstance(other, string_types):
            self.add(other, -1)
        elif isinstance(other, Number):
            self.scale /= other
        elif isinstance(other, self.__class__):
            self.scale /= other.scale
            self.operate(other.items(), operator.sub)
        else:
            self.operate(other.items(), operator.sub)
        return self

    __itruediv__ = __truediv__
    __floordiv__ = __truediv__

    def __rtruediv__(self, other):
        self.__pow__(-1)
        if isinstance(other, string_types):
            self.add(other, 1)
        elif isinstance(other, Number):
            self.scale *= other
        elif isinstance(other, self.__class__):
            self.scale *= other.scale
            self.operate(other.items(), operator.add)
        else:
            self.operate(other.items(), operator.add)
        return self


#: List of regex substitution pairs.
_subs_re = [(r"([\w\.\-\+\*\\\^])\s+", r"\1 "), # merge multiple spaces
            (r"({0}) squared", r"\1**2"),  # Handle square and cube
            (r"({0}) cubed", r"\1**3"),
            (r"cubic ({0})", r"\1**3"),
            (r"square ({0})", r"\1**2"),
            (r"sq ({0})", r"\1**2"),
            (r"\b([0-9]+\.?[0-9]*)(?=[e|E][a-zA-Z]|[a-df-zA-DF-Z])", r"\1*"),  # Handle numberLetter for multiplication
            (r"([\w\.\-])\s+(?=\w)", r"\1*"),  # Handle space for multiplication
            ]

#: Compiles the regex and replace {0} by a regex that matches an identifier.
_subs_re = [(re.compile(a.format(r"[_a-zA-Z][_a-zA-Z0-9]*")), b) for a, b in _subs_re]
_pretty_table = maketrans('⁰¹²³⁴⁵⁶⁷⁸⁹·⁻', '0123456789*-')
_pretty_exp_re = re.compile(r"⁻?[⁰¹²³⁴⁵⁶⁷⁸⁹]+(?:\.[⁰¹²³⁴⁵⁶⁷⁸⁹]*)?")


def string_preprocessor(input_string):

    input_string = input_string.replace(",", "")
    input_string = input_string.replace(" per ", "/")

    for a, b in _subs_re:
        input_string = a.sub(b, input_string)

    # Replace pretty format characters
    for pretty_exp in _pretty_exp_re.findall(input_string):
        exp = '**' + pretty_exp.translate(_pretty_table)
        input_string = input_string.replace(pretty_exp, exp)
    input_string = input_string.translate(_pretty_table)

    # Handle caret exponentiation
    input_string = input_string.replace("^", "**")
    return input_string