This file is indexed.

/usr/lib/python2.7/dist-packages/ecdsa/rfc6979.py is in python-ecdsa 0.13-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
'''
RFC 6979:
    Deterministic Usage of the Digital Signature Algorithm (DSA) and
    Elliptic Curve Digital Signature Algorithm (ECDSA)

    http://tools.ietf.org/html/rfc6979

Many thanks to Coda Hale for his implementation in Go language:
    https://github.com/codahale/rfc6979
'''

import hmac
from binascii import hexlify
from .util import number_to_string, number_to_string_crop
from six import b

try:
    bin(0)
except NameError:
    binmap = {"0": "0000", "1": "0001", "2": "0010", "3": "0011",
              "4": "0100", "5": "0101", "6": "0110", "7": "0111",
              "8": "1000", "9": "1001", "a": "1010", "b": "1011",
              "c": "1100", "d": "1101", "e": "1110", "f": "1111"}
    def bin(value): # for python2.5
        v = "".join(binmap[x] for x in "%x"%abs(value)).lstrip("0")
        if value < 0:
            return "-0b" + v
        return "0b" + v

def bit_length(num):
    # http://docs.python.org/dev/library/stdtypes.html#int.bit_length
    s = bin(num)  # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b')  # remove leading zeros and minus sign
    return len(s)  # len('100101') --> 6

def bits2int(data, qlen):
    x = int(hexlify(data), 16)
    l = len(data) * 8

    if l > qlen:
        return x >> (l-qlen)
    return x

def bits2octets(data, order):
    z1 = bits2int(data, bit_length(order))
    z2 = z1 - order

    if z2 < 0:
        z2 = z1

    return number_to_string_crop(z2, order)

# https://tools.ietf.org/html/rfc6979#section-3.2
def generate_k(order, secexp, hash_func, data):
    '''
        order - order of the DSA generator used in the signature
        secexp - secure exponent (private key) in numeric form
        hash_func - reference to the same hash function used for generating hash
        data - hash in binary form of the signing data
    '''

    qlen = bit_length(order)
    holen = hash_func().digest_size
    rolen = (qlen + 7) / 8
    bx = number_to_string(secexp, order) + bits2octets(data, order)

    # Step B
    v = b('\x01') * holen

    # Step C
    k = b('\x00') * holen

    # Step D

    k = hmac.new(k, v+b('\x00')+bx, hash_func).digest()

    # Step E
    v = hmac.new(k, v, hash_func).digest()

    # Step F
    k = hmac.new(k, v+b('\x01')+bx, hash_func).digest()

    # Step G
    v = hmac.new(k, v, hash_func).digest()

    # Step H
    while True:
        # Step H1
        t = b('')

        # Step H2
        while len(t) < rolen:
            v = hmac.new(k, v, hash_func).digest()
            t += v

        # Step H3
        secret = bits2int(t, qlen)

        if secret >= 1 and secret < order:
            return secret

        k = hmac.new(k, v+b('\x00'), hash_func).digest()
        v = hmac.new(k, v, hash_func).digest()