/usr/share/perl/5.22.1/Tie/File.pm is in perl-modules-5.22 5.22.1-9.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 | package Tie::File;
require 5.005;
use Carp ':DEFAULT', 'confess';
use POSIX 'SEEK_SET';
use Fcntl 'O_CREAT', 'O_RDWR', 'LOCK_EX', 'LOCK_SH', 'O_WRONLY', 'O_RDONLY';
sub O_ACCMODE () { O_RDONLY | O_RDWR | O_WRONLY }
$VERSION = "1.01";
my $DEFAULT_MEMORY_SIZE = 1<<21; # 2 megabytes
my $DEFAULT_AUTODEFER_THRESHHOLD = 3; # 3 records
my $DEFAULT_AUTODEFER_FILELEN_THRESHHOLD = 65536; # 16 disk blocksful
my %good_opt = map {$_ => 1, "-$_" => 1}
qw(memory dw_size mode recsep discipline
autodefer autochomp autodefer_threshhold concurrent);
sub TIEARRAY {
if (@_ % 2 != 0) {
croak "usage: tie \@array, $_[0], filename, [option => value]...";
}
my ($pack, $file, %opts) = @_;
# transform '-foo' keys into 'foo' keys
for my $key (keys %opts) {
unless ($good_opt{$key}) {
croak("$pack: Unrecognized option '$key'\n");
}
my $okey = $key;
if ($key =~ s/^-+//) {
$opts{$key} = delete $opts{$okey};
}
}
if ($opts{concurrent}) {
croak("$pack: concurrent access not supported yet\n");
}
unless (defined $opts{memory}) {
# default is the larger of the default cache size and the
# deferred-write buffer size (if specified)
$opts{memory} = $DEFAULT_MEMORY_SIZE;
$opts{memory} = $opts{dw_size}
if defined $opts{dw_size} && $opts{dw_size} > $DEFAULT_MEMORY_SIZE;
# Dora Winifred Read
}
$opts{dw_size} = $opts{memory} unless defined $opts{dw_size};
if ($opts{dw_size} > $opts{memory}) {
croak("$pack: dw_size may not be larger than total memory allocation\n");
}
# are we in deferred-write mode?
$opts{defer} = 0 unless defined $opts{defer};
$opts{deferred} = {}; # no records are presently deferred
$opts{deferred_s} = 0; # count of total bytes in ->{deferred}
$opts{deferred_max} = -1; # empty
# What's a good way to arrange that this class can be overridden?
$opts{cache} = Tie::File::Cache->new($opts{memory});
# autodeferment is enabled by default
$opts{autodefer} = 1 unless defined $opts{autodefer};
$opts{autodeferring} = 0; # but is not initially active
$opts{ad_history} = [];
$opts{autodefer_threshhold} = $DEFAULT_AUTODEFER_THRESHHOLD
unless defined $opts{autodefer_threshhold};
$opts{autodefer_filelen_threshhold} = $DEFAULT_AUTODEFER_FILELEN_THRESHHOLD
unless defined $opts{autodefer_filelen_threshhold};
$opts{offsets} = [0];
$opts{filename} = $file;
unless (defined $opts{recsep}) {
$opts{recsep} = _default_recsep();
}
$opts{recseplen} = length($opts{recsep});
if ($opts{recseplen} == 0) {
croak "Empty record separator not supported by $pack";
}
$opts{autochomp} = 1 unless defined $opts{autochomp};
$opts{mode} = O_CREAT|O_RDWR unless defined $opts{mode};
$opts{rdonly} = (($opts{mode} & O_ACCMODE) == O_RDONLY);
$opts{sawlastrec} = undef;
my $fh;
if (UNIVERSAL::isa($file, 'GLOB')) {
# We use 1 here on the theory that some systems
# may not indicate failure if we use 0.
# MSWin32 does not indicate failure with 0, but I don't know if
# it will indicate failure with 1 or not.
unless (seek $file, 1, SEEK_SET) {
croak "$pack: your filehandle does not appear to be seekable";
}
seek $file, 0, SEEK_SET; # put it back
$fh = $file; # setting binmode is the user's problem
} elsif (ref $file) {
croak "usage: tie \@array, $pack, filename, [option => value]...";
} else {
# $fh = \do { local *FH }; # XXX this is buggy
if ($] < 5.006) {
# perl 5.005 and earlier don't autovivify filehandles
require Symbol;
$fh = Symbol::gensym();
}
sysopen $fh, $file, $opts{mode}, 0666 or return;
binmode $fh;
++$opts{ourfh};
}
{ my $ofh = select $fh; $| = 1; select $ofh } # autoflush on write
if (defined $opts{discipline} && $] >= 5.006) {
# This avoids a compile-time warning under 5.005
eval 'binmode($fh, $opts{discipline})';
croak $@ if $@ =~ /unknown discipline/i;
die if $@;
}
$opts{fh} = $fh;
bless \%opts => $pack;
}
sub FETCH {
my ($self, $n) = @_;
my $rec;
# check the defer buffer
$rec = $self->{deferred}{$n} if exists $self->{deferred}{$n};
$rec = $self->_fetch($n) unless defined $rec;
# inlined _chomp1
substr($rec, - $self->{recseplen}) = ""
if defined $rec && $self->{autochomp};
$rec;
}
# Chomp many records in-place; return nothing useful
sub _chomp {
my $self = shift;
return unless $self->{autochomp};
if ($self->{autochomp}) {
for (@_) {
next unless defined;
substr($_, - $self->{recseplen}) = "";
}
}
}
# Chomp one record in-place; return modified record
sub _chomp1 {
my ($self, $rec) = @_;
return $rec unless $self->{autochomp};
return unless defined $rec;
substr($rec, - $self->{recseplen}) = "";
$rec;
}
sub _fetch {
my ($self, $n) = @_;
# check the record cache
{ my $cached = $self->{cache}->lookup($n);
return $cached if defined $cached;
}
if ($#{$self->{offsets}} < $n) {
return if $self->{eof}; # request for record beyond end of file
my $o = $self->_fill_offsets_to($n);
# If it's still undefined, there is no such record, so return 'undef'
return unless defined $o;
}
my $fh = $self->{FH};
$self->_seek($n); # we can do this now that offsets is populated
my $rec = $self->_read_record;
# If we happen to have just read the first record, check to see if
# the length of the record matches what 'tell' says. If not, Tie::File
# won't work, and should drop dead.
#
# if ($n == 0 && defined($rec) && tell($self->{fh}) != length($rec)) {
# if (defined $self->{discipline}) {
# croak "I/O discipline $self->{discipline} not supported";
# } else {
# croak "File encoding not supported";
# }
# }
$self->{cache}->insert($n, $rec) if defined $rec && not $self->{flushing};
$rec;
}
sub STORE {
my ($self, $n, $rec) = @_;
die "STORE called from _check_integrity!" if $DIAGNOSTIC;
$self->_fixrecs($rec);
if ($self->{autodefer}) {
$self->_annotate_ad_history($n);
}
return $self->_store_deferred($n, $rec) if $self->_is_deferring;
# We need this to decide whether the new record will fit
# It incidentally populates the offsets table
# Note we have to do this before we alter the cache
# 20020324 Wait, but this DOES alter the cache. TODO BUG?
my $oldrec = $self->_fetch($n);
if (not defined $oldrec) {
# We're storing a record beyond the end of the file
$self->_extend_file_to($n+1);
$oldrec = $self->{recsep};
}
# return if $oldrec eq $rec; # don't bother
my $len_diff = length($rec) - length($oldrec);
# length($oldrec) here is not consistent with text mode TODO XXX BUG
$self->_mtwrite($rec, $self->{offsets}[$n], length($oldrec));
$self->_oadjust([$n, 1, $rec]);
$self->{cache}->update($n, $rec);
}
sub _store_deferred {
my ($self, $n, $rec) = @_;
$self->{cache}->remove($n);
my $old_deferred = $self->{deferred}{$n};
if (defined $self->{deferred_max} && $n > $self->{deferred_max}) {
$self->{deferred_max} = $n;
}
$self->{deferred}{$n} = $rec;
my $len_diff = length($rec);
$len_diff -= length($old_deferred) if defined $old_deferred;
$self->{deferred_s} += $len_diff;
$self->{cache}->adj_limit(-$len_diff);
if ($self->{deferred_s} > $self->{dw_size}) {
$self->_flush;
} elsif ($self->_cache_too_full) {
$self->_cache_flush;
}
}
# Remove a single record from the deferred-write buffer without writing it
# The record need not be present
sub _delete_deferred {
my ($self, $n) = @_;
my $rec = delete $self->{deferred}{$n};
return unless defined $rec;
if (defined $self->{deferred_max}
&& $n == $self->{deferred_max}) {
undef $self->{deferred_max};
}
$self->{deferred_s} -= length $rec;
$self->{cache}->adj_limit(length $rec);
}
sub FETCHSIZE {
my $self = shift;
my $n = $self->{eof} ? $#{$self->{offsets}} : $self->_fill_offsets;
my $top_deferred = $self->_defer_max;
$n = $top_deferred+1 if defined $top_deferred && $n < $top_deferred+1;
$n;
}
sub STORESIZE {
my ($self, $len) = @_;
if ($self->{autodefer}) {
$self->_annotate_ad_history('STORESIZE');
}
my $olen = $self->FETCHSIZE;
return if $len == $olen; # Woo-hoo!
# file gets longer
if ($len > $olen) {
if ($self->_is_deferring) {
for ($olen .. $len-1) {
$self->_store_deferred($_, $self->{recsep});
}
} else {
$self->_extend_file_to($len);
}
return;
}
# file gets shorter
if ($self->_is_deferring) {
# TODO maybe replace this with map-plus-assignment?
for (grep $_ >= $len, keys %{$self->{deferred}}) {
$self->_delete_deferred($_);
}
$self->{deferred_max} = $len-1;
}
$self->_seek($len);
$self->_chop_file;
$#{$self->{offsets}} = $len;
# $self->{offsets}[0] = 0; # in case we just chopped this
$self->{cache}->remove(grep $_ >= $len, $self->{cache}->ckeys);
}
### OPTIMIZE ME
### It should not be necessary to do FETCHSIZE
### Just seek to the end of the file.
sub PUSH {
my $self = shift;
$self->SPLICE($self->FETCHSIZE, scalar(@_), @_);
# No need to return:
# $self->FETCHSIZE; # because av.c takes care of this for me
}
sub POP {
my $self = shift;
my $size = $self->FETCHSIZE;
return if $size == 0;
# print STDERR "# POPPITY POP POP POP\n";
scalar $self->SPLICE($size-1, 1);
}
sub SHIFT {
my $self = shift;
scalar $self->SPLICE(0, 1);
}
sub UNSHIFT {
my $self = shift;
$self->SPLICE(0, 0, @_);
# $self->FETCHSIZE; # av.c takes care of this for me
}
sub CLEAR {
my $self = shift;
if ($self->{autodefer}) {
$self->_annotate_ad_history('CLEAR');
}
$self->_seekb(0);
$self->_chop_file;
$self->{cache}->set_limit($self->{memory});
$self->{cache}->empty;
@{$self->{offsets}} = (0);
%{$self->{deferred}}= ();
$self->{deferred_s} = 0;
$self->{deferred_max} = -1;
}
sub EXTEND {
my ($self, $n) = @_;
# No need to pre-extend anything in this case
return if $self->_is_deferring;
$self->_fill_offsets_to($n);
$self->_extend_file_to($n);
}
sub DELETE {
my ($self, $n) = @_;
if ($self->{autodefer}) {
$self->_annotate_ad_history('DELETE');
}
my $lastrec = $self->FETCHSIZE-1;
my $rec = $self->FETCH($n);
$self->_delete_deferred($n) if $self->_is_deferring;
if ($n == $lastrec) {
$self->_seek($n);
$self->_chop_file;
$#{$self->{offsets}}--;
$self->{cache}->remove($n);
# perhaps in this case I should also remove trailing null records?
# 20020316
# Note that delete @a[-3..-1] deletes the records in the wrong order,
# so we only chop the very last one out of the file. We could repair this
# by tracking deleted records inside the object.
} elsif ($n < $lastrec) {
$self->STORE($n, "");
}
$rec;
}
sub EXISTS {
my ($self, $n) = @_;
return 1 if exists $self->{deferred}{$n};
$n < $self->FETCHSIZE;
}
sub SPLICE {
my $self = shift;
if ($self->{autodefer}) {
$self->_annotate_ad_history('SPLICE');
}
$self->_flush if $self->_is_deferring; # move this up?
if (wantarray) {
$self->_chomp(my @a = $self->_splice(@_));
@a;
} else {
$self->_chomp1(scalar $self->_splice(@_));
}
}
sub DESTROY {
my $self = shift;
$self->flush if $self->_is_deferring;
$self->{cache}->delink if defined $self->{cache}; # break circular link
if ($self->{fh} and $self->{ourfh}) {
delete $self->{ourfh};
close delete $self->{fh};
}
}
sub _splice {
my ($self, $pos, $nrecs, @data) = @_;
my @result;
$pos = 0 unless defined $pos;
# Deal with negative and other out-of-range positions
# Also set default for $nrecs
{
my $oldsize = $self->FETCHSIZE;
$nrecs = $oldsize unless defined $nrecs;
my $oldpos = $pos;
if ($pos < 0) {
$pos += $oldsize;
if ($pos < 0) {
croak "Modification of non-creatable array value attempted, " .
"subscript $oldpos";
}
}
if ($pos > $oldsize) {
return unless @data;
$pos = $oldsize; # This is what perl does for normal arrays
}
# The manual is very unclear here
if ($nrecs < 0) {
$nrecs = $oldsize - $pos + $nrecs;
$nrecs = 0 if $nrecs < 0;
}
# nrecs is too big---it really means "until the end"
# 20030507
if ($nrecs + $pos > $oldsize) {
$nrecs = $oldsize - $pos;
}
}
$self->_fixrecs(@data);
my $data = join '', @data;
my $datalen = length $data;
my $oldlen = 0;
# compute length of data being removed
for ($pos .. $pos+$nrecs-1) {
last unless defined $self->_fill_offsets_to($_);
my $rec = $self->_fetch($_);
last unless defined $rec;
push @result, $rec;
# Why don't we just use length($rec) here?
# Because that record might have come from the cache. _splice
# might have been called to flush out the deferred-write records,
# and in this case length($rec) is the length of the record to be
# *written*, not the length of the actual record in the file. But
# the offsets are still true. 20020322
$oldlen += $self->{offsets}[$_+1] - $self->{offsets}[$_]
if defined $self->{offsets}[$_+1];
}
$self->_fill_offsets_to($pos+$nrecs);
# Modify the file
$self->_mtwrite($data, $self->{offsets}[$pos], $oldlen);
# Adjust the offsets table
$self->_oadjust([$pos, $nrecs, @data]);
{ # Take this read cache stuff out into a separate function
# You made a half-attempt to put it into _oadjust.
# Finish something like that up eventually.
# STORE also needs to do something similarish
# update the read cache, part 1
# modified records
for ($pos .. $pos+$nrecs-1) {
my $new = $data[$_-$pos];
if (defined $new) {
$self->{cache}->update($_, $new);
} else {
$self->{cache}->remove($_);
}
}
# update the read cache, part 2
# moved records - records past the site of the change
# need to be renumbered
# Maybe merge this with the previous block?
{
my @oldkeys = grep $_ >= $pos + $nrecs, $self->{cache}->ckeys;
my @newkeys = map $_-$nrecs+@data, @oldkeys;
$self->{cache}->rekey(\@oldkeys, \@newkeys);
}
# Now there might be too much data in the cache, if we spliced out
# some short records and spliced in some long ones. If so, flush
# the cache.
$self->_cache_flush;
}
# Yes, the return value of 'splice' *is* actually this complicated
wantarray ? @result : @result ? $result[-1] : undef;
}
# write data into the file
# $data is the data to be written.
# it should be written at position $pos, and should overwrite
# exactly $len of the following bytes.
# Note that if length($data) > $len, the subsequent bytes will have to
# be moved up, and if length($data) < $len, they will have to
# be moved down
sub _twrite {
my ($self, $data, $pos, $len) = @_;
unless (defined $pos) {
die "\$pos was undefined in _twrite";
}
my $len_diff = length($data) - $len;
if ($len_diff == 0) { # Woo-hoo!
my $fh = $self->{fh};
$self->_seekb($pos);
$self->_write_record($data);
return; # well, that was easy.
}
# the two records are of different lengths
# our strategy here: rewrite the tail of the file,
# reading ahead one buffer at a time
# $bufsize is required to be at least as large as the data we're overwriting
my $bufsize = _bufsize($len_diff);
my ($writepos, $readpos) = ($pos, $pos+$len);
my $next_block;
my $more_data;
# Seems like there ought to be a way to avoid the repeated code
# and the special case here. The read(1) is also a little weird.
# Think about this.
do {
$self->_seekb($readpos);
my $br = read $self->{fh}, $next_block, $bufsize;
$more_data = read $self->{fh}, my($dummy), 1;
$self->_seekb($writepos);
$self->_write_record($data);
$readpos += $br;
$writepos += length $data;
$data = $next_block;
} while $more_data;
$self->_seekb($writepos);
$self->_write_record($next_block);
# There might be leftover data at the end of the file
$self->_chop_file if $len_diff < 0;
}
# _iwrite(D, S, E)
# Insert text D at position S.
# Let C = E-S-|D|. If C < 0; die.
# Data in [S,S+C) is copied to [S+D,S+D+C) = [S+D,E).
# Data in [S+C = E-D, E) is returned. Data in [E, oo) is untouched.
#
# In a later version, don't read the entire intervening area into
# memory at once; do the copying block by block.
sub _iwrite {
my $self = shift;
my ($D, $s, $e) = @_;
my $d = length $D;
my $c = $e-$s-$d;
local *FH = $self->{fh};
confess "Not enough space to insert $d bytes between $s and $e"
if $c < 0;
confess "[$s,$e) is an invalid insertion range" if $e < $s;
$self->_seekb($s);
read FH, my $buf, $e-$s;
$D .= substr($buf, 0, $c, "");
$self->_seekb($s);
$self->_write_record($D);
return $buf;
}
# Like _twrite, but the data-pos-len triple may be repeated; you may
# write several chunks. All the writing will be done in
# one pass. Chunks SHALL be in ascending order and SHALL NOT overlap.
sub _mtwrite {
my $self = shift;
my $unwritten = "";
my $delta = 0;
@_ % 3 == 0
or die "Arguments to _mtwrite did not come in groups of three";
while (@_) {
my ($data, $pos, $len) = splice @_, 0, 3;
my $end = $pos + $len; # The OLD end of the segment to be replaced
$data = $unwritten . $data;
$delta -= length($unwritten);
$unwritten = "";
$pos += $delta; # This is where the data goes now
my $dlen = length $data;
$self->_seekb($pos);
if ($len >= $dlen) { # the data will fit
$self->_write_record($data);
$delta += ($dlen - $len); # everything following moves down by this much
$data = ""; # All the data in the buffer has been written
} else { # won't fit
my $writable = substr($data, 0, $len - $delta, "");
$self->_write_record($writable);
$delta += ($dlen - $len); # everything following moves down by this much
}
# At this point we've written some but maybe not all of the data.
# There might be a gap to close up, or $data might still contain a
# bunch of unwritten data that didn't fit.
my $ndlen = length $data;
if ($delta == 0) {
$self->_write_record($data);
} elsif ($delta < 0) {
# upcopy (close up gap)
if (@_) {
$self->_upcopy($end, $end + $delta, $_[1] - $end);
} else {
$self->_upcopy($end, $end + $delta);
}
} else {
# downcopy (insert data that didn't fit; replace this data in memory
# with _later_ data that doesn't fit)
if (@_) {
$unwritten = $self->_downcopy($data, $end, $_[1] - $end);
} else {
# Make the file longer to accommodate the last segment that doesn't
$unwritten = $self->_downcopy($data, $end);
}
}
}
}
# Copy block of data of length $len from position $spos to position $dpos
# $dpos must be <= $spos
#
# If $len is undefined, go all the way to the end of the file
# and then truncate it ($spos - $dpos bytes will be removed)
sub _upcopy {
my $blocksize = 8192;
my ($self, $spos, $dpos, $len) = @_;
if ($dpos > $spos) {
die "source ($spos) was upstream of destination ($dpos) in _upcopy";
} elsif ($dpos == $spos) {
return;
}
while (! defined ($len) || $len > 0) {
my $readsize = ! defined($len) ? $blocksize
: $len > $blocksize ? $blocksize
: $len;
my $fh = $self->{fh};
$self->_seekb($spos);
my $bytes_read = read $fh, my($data), $readsize;
$self->_seekb($dpos);
if ($data eq "") {
$self->_chop_file;
last;
}
$self->_write_record($data);
$spos += $bytes_read;
$dpos += $bytes_read;
$len -= $bytes_read if defined $len;
}
}
# Write $data into a block of length $len at position $pos,
# moving everything in the block forwards to make room.
# Instead of writing the last length($data) bytes from the block
# (because there isn't room for them any longer) return them.
#
# Undefined $len means 'until the end of the file'
sub _downcopy {
my $blocksize = 8192;
my ($self, $data, $pos, $len) = @_;
my $fh = $self->{fh};
while (! defined $len || $len > 0) {
my $readsize = ! defined($len) ? $blocksize
: $len > $blocksize? $blocksize : $len;
$self->_seekb($pos);
read $fh, my($old), $readsize;
my $last_read_was_short = length($old) < $readsize;
$data .= $old;
my $writable;
if ($last_read_was_short) {
# If last read was short, then $data now contains the entire rest
# of the file, so there's no need to write only one block of it
$writable = $data;
$data = "";
} else {
$writable = substr($data, 0, $readsize, "");
}
last if $writable eq "";
$self->_seekb($pos);
$self->_write_record($writable);
last if $last_read_was_short && $data eq "";
$len -= $readsize if defined $len;
$pos += $readsize;
}
return $data;
}
# Adjust the object data structures following an '_mtwrite'
# Arguments are
# [$pos, $nrecs, @length] items
# indicating that $nrecs records were removed at $recpos (a record offset)
# and replaced with records of length @length...
# Arguments guarantee that $recpos is strictly increasing.
# No return value
sub _oadjust {
my $self = shift;
my $delta = 0;
my $delta_recs = 0;
my $prev_end = -1;
my %newkeys;
for (@_) {
my ($pos, $nrecs, @data) = @$_;
$pos += $delta_recs;
# Adjust the offsets of the records after the previous batch up
# to the first new one of this batch
for my $i ($prev_end+2 .. $pos - 1) {
$self->{offsets}[$i] += $delta;
$newkey{$i} = $i + $delta_recs;
}
$prev_end = $pos + @data - 1; # last record moved on this pass
# Remove the offsets for the removed records;
# replace with the offsets for the inserted records
my @newoff = ($self->{offsets}[$pos] + $delta);
for my $i (0 .. $#data) {
my $newlen = length $data[$i];
push @newoff, $newoff[$i] + $newlen;
$delta += $newlen;
}
for my $i ($pos .. $pos+$nrecs-1) {
last if $i+1 > $#{$self->{offsets}};
my $oldlen = $self->{offsets}[$i+1] - $self->{offsets}[$i];
$delta -= $oldlen;
}
# # also this data has changed, so update it in the cache
# for (0 .. $#data) {
# $self->{cache}->update($pos + $_, $data[$_]);
# }
# if ($delta_recs) {
# my @oldkeys = grep $_ >= $pos + @data, $self->{cache}->ckeys;
# my @newkeys = map $_ + $delta_recs, @oldkeys;
# $self->{cache}->rekey(\@oldkeys, \@newkeys);
# }
# replace old offsets with new
splice @{$self->{offsets}}, $pos, $nrecs+1, @newoff;
# What if we just spliced out the end of the offsets table?
# shouldn't we clear $self->{eof}? Test for this XXX BUG TODO
$delta_recs += @data - $nrecs; # net change in total number of records
}
# The trailing records at the very end of the file
if ($delta) {
for my $i ($prev_end+2 .. $#{$self->{offsets}}) {
$self->{offsets}[$i] += $delta;
}
}
# If we scrubbed out all known offsets, regenerate the trivial table
# that knows that the file does indeed start at 0.
$self->{offsets}[0] = 0 unless @{$self->{offsets}};
# If the file got longer, the offsets table is no longer complete
# $self->{eof} = 0 if $delta_recs > 0;
# Now there might be too much data in the cache, if we spliced out
# some short records and spliced in some long ones. If so, flush
# the cache.
$self->_cache_flush;
}
# If a record does not already end with the appropriate terminator
# string, append one.
sub _fixrecs {
my $self = shift;
for (@_) {
$_ = "" unless defined $_;
$_ .= $self->{recsep}
unless substr($_, - $self->{recseplen}) eq $self->{recsep};
}
}
################################################################
#
# Basic read, write, and seek
#
# seek to the beginning of record #$n
# Assumes that the offsets table is already correctly populated
#
# Note that $n=-1 has a special meaning here: It means the start of
# the last known record; this may or may not be the very last record
# in the file, depending on whether the offsets table is fully populated.
#
sub _seek {
my ($self, $n) = @_;
my $o = $self->{offsets}[$n];
defined($o)
or confess("logic error: undefined offset for record $n");
seek $self->{fh}, $o, SEEK_SET
or confess "Couldn't seek filehandle: $!"; # "Should never happen."
}
# seek to byte $b in the file
sub _seekb {
my ($self, $b) = @_;
seek $self->{fh}, $b, SEEK_SET
or die "Couldn't seek filehandle: $!"; # "Should never happen."
}
# populate the offsets table up to the beginning of record $n
# return the offset of record $n
sub _fill_offsets_to {
my ($self, $n) = @_;
return $self->{offsets}[$n] if $self->{eof};
my $fh = $self->{fh};
local *OFF = $self->{offsets};
my $rec;
until ($#OFF >= $n) {
$self->_seek(-1); # tricky -- see comment at _seek
$rec = $self->_read_record;
if (defined $rec) {
push @OFF, int(tell $fh); # Tels says that int() saves memory here
} else {
$self->{eof} = 1;
return; # It turns out there is no such record
}
}
# we have now read all the records up to record n-1,
# so we can return the offset of record n
$OFF[$n];
}
sub _fill_offsets {
my ($self) = @_;
my $fh = $self->{fh};
local *OFF = $self->{offsets};
$self->_seek(-1); # tricky -- see comment at _seek
# Tels says that inlining read_record() would make this loop
# five times faster. 20030508
while ( defined $self->_read_record()) {
# int() saves us memory here
push @OFF, int(tell $fh);
}
$self->{eof} = 1;
$#OFF;
}
# assumes that $rec is already suitably terminated
sub _write_record {
my ($self, $rec) = @_;
my $fh = $self->{fh};
local $\ = "";
print $fh $rec
or die "Couldn't write record: $!"; # "Should never happen."
# $self->{_written} += length($rec);
}
sub _read_record {
my $self = shift;
my $rec;
{ local $/ = $self->{recsep};
my $fh = $self->{fh};
$rec = <$fh>;
}
return unless defined $rec;
if (substr($rec, -$self->{recseplen}) ne $self->{recsep}) {
# improperly terminated final record --- quietly fix it.
# my $ac = substr($rec, -$self->{recseplen});
# $ac =~ s/\n/\\n/g;
$self->{sawlastrec} = 1;
unless ($self->{rdonly}) {
local $\ = "";
my $fh = $self->{fh};
print $fh $self->{recsep};
}
$rec .= $self->{recsep};
}
# $self->{_read} += length($rec) if defined $rec;
$rec;
}
sub _rw_stats {
my $self = shift;
@{$self}{'_read', '_written'};
}
################################################################
#
# Read cache management
sub _cache_flush {
my ($self) = @_;
$self->{cache}->reduce_size_to($self->{memory} - $self->{deferred_s});
}
sub _cache_too_full {
my $self = shift;
$self->{cache}->bytes + $self->{deferred_s} >= $self->{memory};
}
################################################################
#
# File custodial services
#
# We have read to the end of the file and have the offsets table
# entirely populated. Now we need to write a new record beyond
# the end of the file. We prepare for this by writing
# empty records into the file up to the position we want
#
# assumes that the offsets table already contains the offset of record $n,
# if it exists, and extends to the end of the file if not.
sub _extend_file_to {
my ($self, $n) = @_;
$self->_seek(-1); # position after the end of the last record
my $pos = $self->{offsets}[-1];
# the offsets table has one entry more than the total number of records
my $extras = $n - $#{$self->{offsets}};
# Todo : just use $self->{recsep} x $extras here?
while ($extras-- > 0) {
$self->_write_record($self->{recsep});
push @{$self->{offsets}}, int(tell $self->{fh});
}
}
# Truncate the file at the current position
sub _chop_file {
my $self = shift;
truncate $self->{fh}, tell($self->{fh});
}
# compute the size of a buffer suitable for moving
# all the data in a file forward $n bytes
# ($n may be negative)
# The result should be at least $n.
sub _bufsize {
my $n = shift;
return 8192 if $n <= 0;
my $b = $n & ~8191;
$b += 8192 if $n & 8191;
$b;
}
################################################################
#
# Miscellaneous public methods
#
# Lock the file
sub flock {
my ($self, $op) = @_;
unless (@_ <= 3) {
my $pack = ref $self;
croak "Usage: $pack\->flock([OPERATION])";
}
my $fh = $self->{fh};
$op = LOCK_EX unless defined $op;
my $locked = flock $fh, $op;
if ($locked && ($op & (LOCK_EX | LOCK_SH))) {
# If you're locking the file, then presumably it's because
# there might have been a write access by another process.
# In that case, the read cache contents and the offsets table
# might be invalid, so discard them. 20030508
$self->{offsets} = [0];
$self->{cache}->empty;
}
$locked;
}
# Get/set autochomp option
sub autochomp {
my $self = shift;
if (@_) {
my $old = $self->{autochomp};
$self->{autochomp} = shift;
$old;
} else {
$self->{autochomp};
}
}
# Get offset table entries; returns offset of nth record
sub offset {
my ($self, $n) = @_;
if ($#{$self->{offsets}} < $n) {
return if $self->{eof}; # request for record beyond the end of file
my $o = $self->_fill_offsets_to($n);
# If it's still undefined, there is no such record, so return 'undef'
return unless defined $o;
}
$self->{offsets}[$n];
}
sub discard_offsets {
my $self = shift;
$self->{offsets} = [0];
}
################################################################
#
# Matters related to deferred writing
#
# Defer writes
sub defer {
my $self = shift;
$self->_stop_autodeferring;
@{$self->{ad_history}} = ();
$self->{defer} = 1;
}
# Flush deferred writes
#
# This could be better optimized to write the file in one pass, instead
# of one pass per block of records. But that will require modifications
# to _twrite, so I should have a good _twrite test suite first.
sub flush {
my $self = shift;
$self->_flush;
$self->{defer} = 0;
}
sub _old_flush {
my $self = shift;
my @writable = sort {$a<=>$b} (keys %{$self->{deferred}});
while (@writable) {
# gather all consecutive records from the front of @writable
my $first_rec = shift @writable;
my $last_rec = $first_rec+1;
++$last_rec, shift @writable while @writable && $last_rec == $writable[0];
--$last_rec;
$self->_fill_offsets_to($last_rec);
$self->_extend_file_to($last_rec);
$self->_splice($first_rec, $last_rec-$first_rec+1,
@{$self->{deferred}}{$first_rec .. $last_rec});
}
$self->_discard; # clear out defered-write-cache
}
sub _flush {
my $self = shift;
my @writable = sort {$a<=>$b} (keys %{$self->{deferred}});
my @args;
my @adjust;
while (@writable) {
# gather all consecutive records from the front of @writable
my $first_rec = shift @writable;
my $last_rec = $first_rec+1;
++$last_rec, shift @writable while @writable && $last_rec == $writable[0];
--$last_rec;
my $end = $self->_fill_offsets_to($last_rec+1);
if (not defined $end) {
$self->_extend_file_to($last_rec);
$end = $self->{offsets}[$last_rec];
}
my ($start) = $self->{offsets}[$first_rec];
push @args,
join("", @{$self->{deferred}}{$first_rec .. $last_rec}), # data
$start, # position
$end-$start; # length
push @adjust, [$first_rec, # starting at this position...
$last_rec-$first_rec+1, # this many records...
# are replaced with these...
@{$self->{deferred}}{$first_rec .. $last_rec},
];
}
$self->_mtwrite(@args); # write multiple record groups
$self->_discard; # clear out defered-write-cache
$self->_oadjust(@adjust);
}
# Discard deferred writes and disable future deferred writes
sub discard {
my $self = shift;
$self->_discard;
$self->{defer} = 0;
}
# Discard deferred writes, but retain old deferred writing mode
sub _discard {
my $self = shift;
%{$self->{deferred}} = ();
$self->{deferred_s} = 0;
$self->{deferred_max} = -1;
$self->{cache}->set_limit($self->{memory});
}
# Deferred writing is enabled, either explicitly ($self->{defer})
# or automatically ($self->{autodeferring})
sub _is_deferring {
my $self = shift;
$self->{defer} || $self->{autodeferring};
}
# The largest record number of any deferred record
sub _defer_max {
my $self = shift;
return $self->{deferred_max} if defined $self->{deferred_max};
my $max = -1;
for my $key (keys %{$self->{deferred}}) {
$max = $key if $key > $max;
}
$self->{deferred_max} = $max;
$max;
}
################################################################
#
# Matters related to autodeferment
#
# Get/set autodefer option
sub autodefer {
my $self = shift;
if (@_) {
my $old = $self->{autodefer};
$self->{autodefer} = shift;
if ($old) {
$self->_stop_autodeferring;
@{$self->{ad_history}} = ();
}
$old;
} else {
$self->{autodefer};
}
}
# The user is trying to store record #$n Record that in the history,
# and then enable (or disable) autodeferment if that seems useful.
# Note that it's OK for $n to be a non-number, as long as the function
# is prepared to deal with that. Nobody else looks at the ad_history.
#
# Now, what does the ad_history mean, and what is this function doing?
# Essentially, the idea is to enable autodeferring when we see that the
# user has made three consecutive STORE calls to three consecutive records.
# ("Three" is actually ->{autodefer_threshhold}.)
# A STORE call for record #$n inserts $n into the autodefer history,
# and if the history contains three consecutive records, we enable
# autodeferment. An ad_history of [X, Y] means that the most recent
# STOREs were for records X, X+1, ..., Y, in that order.
#
# Inserting a nonconsecutive number erases the history and starts over.
#
# Performing a special operation like SPLICE erases the history.
#
# There's one special case: CLEAR means that CLEAR was just called.
# In this case, we prime the history with [-2, -1] so that if the next
# write is for record 0, autodeferring goes on immediately. This is for
# the common special case of "@a = (...)".
#
sub _annotate_ad_history {
my ($self, $n) = @_;
return unless $self->{autodefer}; # feature is disabled
return if $self->{defer}; # already in explicit defer mode
return unless $self->{offsets}[-1] >= $self->{autodefer_filelen_threshhold};
local *H = $self->{ad_history};
if ($n eq 'CLEAR') {
@H = (-2, -1); # prime the history with fake records
$self->_stop_autodeferring;
} elsif ($n =~ /^\d+$/) {
if (@H == 0) {
@H = ($n, $n);
} else { # @H == 2
if ($H[1] == $n-1) { # another consecutive record
$H[1]++;
if ($H[1] - $H[0] + 1 >= $self->{autodefer_threshhold}) {
$self->{autodeferring} = 1;
}
} else { # nonconsecutive- erase and start over
@H = ($n, $n);
$self->_stop_autodeferring;
}
}
} else { # SPLICE or STORESIZE or some such
@H = ();
$self->_stop_autodeferring;
}
}
# If autodeferring was enabled, cut it out and discard the history
sub _stop_autodeferring {
my $self = shift;
if ($self->{autodeferring}) {
$self->_flush;
}
$self->{autodeferring} = 0;
}
################################################################
# This is NOT a method. It is here for two reasons:
# 1. To factor a fairly complicated block out of the constructor
# 2. To provide access for the test suite, which need to be sure
# files are being written properly.
sub _default_recsep {
my $recsep = $/;
if ($^O eq 'MSWin32') { # Dos too?
# Windows users expect files to be terminated with \r\n
# But $/ is set to \n instead
# Note that this also transforms \n\n into \r\n\r\n.
# That is a feature.
$recsep =~ s/\n/\r\n/g;
}
$recsep;
}
# Utility function for _check_integrity
sub _ci_warn {
my $msg = shift;
$msg =~ s/\n/\\n/g;
$msg =~ s/\r/\\r/g;
print "# $msg\n";
}
# Given a file, make sure the cache is consistent with the
# file contents and the internal data structures are consistent with
# each other. Returns true if everything checks out, false if not
#
# The $file argument is no longer used. It is retained for compatibility
# with the existing test suite.
sub _check_integrity {
my ($self, $file, $warn) = @_;
my $rsl = $self->{recseplen};
my $rs = $self->{recsep};
my $good = 1;
local *_; # local $_ does not work here
local $DIAGNOSTIC = 1;
if (not defined $rs) {
_ci_warn("recsep is undef!");
$good = 0;
} elsif ($rs eq "") {
_ci_warn("recsep is empty!");
$good = 0;
} elsif ($rsl != length $rs) {
my $ln = length $rs;
_ci_warn("recsep <$rs> has length $ln, should be $rsl");
$good = 0;
}
if (not defined $self->{offsets}[0]) {
_ci_warn("offset 0 is missing!");
$good = 0;
} elsif ($self->{offsets}[0] != 0) {
_ci_warn("rec 0: offset <$self->{offsets}[0]> s/b 0!");
$good = 0;
}
my $cached = 0;
{
local *F = $self->{fh};
seek F, 0, SEEK_SET;
local $. = 0;
local $/ = $rs;
while (<F>) {
my $n = $. - 1;
my $cached = $self->{cache}->_produce($n);
my $offset = $self->{offsets}[$.];
my $ao = tell F;
if (defined $offset && $offset != $ao) {
_ci_warn("rec $n: offset <$offset> actual <$ao>");
$good = 0;
}
if (defined $cached && $_ ne $cached && ! $self->{deferred}{$n}) {
$good = 0;
_ci_warn("rec $n: cached <$cached> actual <$_>");
}
if (defined $cached && substr($cached, -$rsl) ne $rs) {
$good = 0;
_ci_warn("rec $n in the cache is missing the record separator");
}
if (! defined $offset && $self->{eof}) {
$good = 0;
_ci_warn("The offset table was marked complete, but it is missing " .
"element $.");
}
}
if (@{$self->{offsets}} > $.+1) {
$good = 0;
my $n = @{$self->{offsets}};
_ci_warn("The offset table has $n items, but the file has only $.");
}
my $deferring = $self->_is_deferring;
for my $n ($self->{cache}->ckeys) {
my $r = $self->{cache}->_produce($n);
$cached += length($r);
next if $n+1 <= $.; # checked this already
_ci_warn("spurious caching of record $n");
$good = 0;
}
my $b = $self->{cache}->bytes;
if ($cached != $b) {
_ci_warn("cache size is $b, should be $cached");
$good = 0;
}
}
# That cache has its own set of tests
$good = 0 unless $self->{cache}->_check_integrity;
# Now let's check the deferbuffer
# Unless deferred writing is enabled, it should be empty
if (! $self->_is_deferring && %{$self->{deferred}}) {
_ci_warn("deferred writing disabled, but deferbuffer nonempty");
$good = 0;
}
# Any record in the deferbuffer should *not* be present in the readcache
my $deferred_s = 0;
while (my ($n, $r) = each %{$self->{deferred}}) {
$deferred_s += length($r);
if (defined $self->{cache}->_produce($n)) {
_ci_warn("record $n is in the deferbuffer *and* the readcache");
$good = 0;
}
if (substr($r, -$rsl) ne $rs) {
_ci_warn("rec $n in the deferbuffer is missing the record separator");
$good = 0;
}
}
# Total size of deferbuffer should match internal total
if ($deferred_s != $self->{deferred_s}) {
_ci_warn("buffer size is $self->{deferred_s}, should be $deferred_s");
$good = 0;
}
# Total size of deferbuffer should not exceed the specified limit
if ($deferred_s > $self->{dw_size}) {
_ci_warn("buffer size is $self->{deferred_s} which exceeds the limit " .
"of $self->{dw_size}");
$good = 0;
}
# Total size of cached data should not exceed the specified limit
if ($deferred_s + $cached > $self->{memory}) {
my $total = $deferred_s + $cached;
_ci_warn("total stored data size is $total which exceeds the limit " .
"of $self->{memory}");
$good = 0;
}
# Stuff related to autodeferment
if (!$self->{autodefer} && @{$self->{ad_history}}) {
_ci_warn("autodefer is disabled, but ad_history is nonempty");
$good = 0;
}
if ($self->{autodeferring} && $self->{defer}) {
_ci_warn("both autodeferring and explicit deferring are active");
$good = 0;
}
if (@{$self->{ad_history}} == 0) {
# That's OK, no additional tests required
} elsif (@{$self->{ad_history}} == 2) {
my @non_number = grep !/^-?\d+$/, @{$self->{ad_history}};
if (@non_number) {
my $msg;
{ local $" = ')(';
$msg = "ad_history contains non-numbers (@{$self->{ad_history}})";
}
_ci_warn($msg);
$good = 0;
} elsif ($self->{ad_history}[1] < $self->{ad_history}[0]) {
_ci_warn("ad_history has nonsensical values @{$self->{ad_history}}");
$good = 0;
}
} else {
_ci_warn("ad_history has bad length <@{$self->{ad_history}}>");
$good = 0;
}
$good;
}
################################################################
#
# Tie::File::Cache
#
# Read cache
package Tie::File::Cache;
$Tie::File::Cache::VERSION = $Tie::File::VERSION;
use Carp ':DEFAULT', 'confess';
sub HEAP () { 0 }
sub HASH () { 1 }
sub MAX () { 2 }
sub BYTES() { 3 }
#sub STAT () { 4 } # Array with request statistics for each record
#sub MISS () { 5 } # Total number of cache misses
#sub REQ () { 6 } # Total number of cache requests
use strict 'vars';
sub new {
my ($pack, $max) = @_;
local *_;
croak "missing argument to ->new" unless defined $max;
my $self = [];
bless $self => $pack;
@$self = (Tie::File::Heap->new($self), {}, $max, 0);
$self;
}
sub adj_limit {
my ($self, $n) = @_;
$self->[MAX] += $n;
}
sub set_limit {
my ($self, $n) = @_;
$self->[MAX] = $n;
}
# For internal use only
# Will be called by the heap structure to notify us that a certain
# piece of data has moved from one heap element to another.
# $k is the hash key of the item
# $n is the new index into the heap at which it is stored
# If $n is undefined, the item has been removed from the heap.
sub _heap_move {
my ($self, $k, $n) = @_;
if (defined $n) {
$self->[HASH]{$k} = $n;
} else {
delete $self->[HASH]{$k};
}
}
sub insert {
my ($self, $key, $val) = @_;
local *_;
croak "missing argument to ->insert" unless defined $key;
unless (defined $self->[MAX]) {
confess "undefined max" ;
}
confess "undefined val" unless defined $val;
return if length($val) > $self->[MAX];
# if ($self->[STAT]) {
# $self->[STAT][$key] = 1;
# return;
# }
my $oldnode = $self->[HASH]{$key};
if (defined $oldnode) {
my $oldval = $self->[HEAP]->set_val($oldnode, $val);
$self->[BYTES] -= length($oldval);
} else {
$self->[HEAP]->insert($key, $val);
}
$self->[BYTES] += length($val);
$self->flush if $self->[BYTES] > $self->[MAX];
}
sub expire {
my $self = shift;
my $old_data = $self->[HEAP]->popheap;
return unless defined $old_data;
$self->[BYTES] -= length $old_data;
$old_data;
}
sub remove {
my ($self, @keys) = @_;
my @result;
# if ($self->[STAT]) {
# for my $key (@keys) {
# $self->[STAT][$key] = 0;
# }
# return;
# }
for my $key (@keys) {
next unless exists $self->[HASH]{$key};
my $old_data = $self->[HEAP]->remove($self->[HASH]{$key});
$self->[BYTES] -= length $old_data;
push @result, $old_data;
}
@result;
}
sub lookup {
my ($self, $key) = @_;
local *_;
croak "missing argument to ->lookup" unless defined $key;
# if ($self->[STAT]) {
# $self->[MISS]++ if $self->[STAT][$key]++ == 0;
# $self->[REQ]++;
# my $hit_rate = 1 - $self->[MISS] / $self->[REQ];
# # Do some testing to determine this threshhold
# $#$self = STAT - 1 if $hit_rate > 0.20;
# }
if (exists $self->[HASH]{$key}) {
$self->[HEAP]->lookup($self->[HASH]{$key});
} else {
return;
}
}
# For internal use only
sub _produce {
my ($self, $key) = @_;
my $loc = $self->[HASH]{$key};
return unless defined $loc;
$self->[HEAP][$loc][2];
}
# For internal use only
sub _promote {
my ($self, $key) = @_;
$self->[HEAP]->promote($self->[HASH]{$key});
}
sub empty {
my ($self) = @_;
%{$self->[HASH]} = ();
$self->[BYTES] = 0;
$self->[HEAP]->empty;
# @{$self->[STAT]} = ();
# $self->[MISS] = 0;
# $self->[REQ] = 0;
}
sub is_empty {
my ($self) = @_;
keys %{$self->[HASH]} == 0;
}
sub update {
my ($self, $key, $val) = @_;
local *_;
croak "missing argument to ->update" unless defined $key;
if (length($val) > $self->[MAX]) {
my ($oldval) = $self->remove($key);
$self->[BYTES] -= length($oldval) if defined $oldval;
} elsif (exists $self->[HASH]{$key}) {
my $oldval = $self->[HEAP]->set_val($self->[HASH]{$key}, $val);
$self->[BYTES] += length($val);
$self->[BYTES] -= length($oldval) if defined $oldval;
} else {
$self->[HEAP]->insert($key, $val);
$self->[BYTES] += length($val);
}
$self->flush;
}
sub rekey {
my ($self, $okeys, $nkeys) = @_;
local *_;
my %map;
@map{@$okeys} = @$nkeys;
croak "missing argument to ->rekey" unless defined $nkeys;
croak "length mismatch in ->rekey arguments" unless @$nkeys == @$okeys;
my %adjusted; # map new keys to heap indices
# You should be able to cut this to one loop TODO XXX
for (0 .. $#$okeys) {
$adjusted{$nkeys->[$_]} = delete $self->[HASH]{$okeys->[$_]};
}
while (my ($nk, $ix) = each %adjusted) {
# @{$self->[HASH]}{keys %adjusted} = values %adjusted;
$self->[HEAP]->rekey($ix, $nk);
$self->[HASH]{$nk} = $ix;
}
}
sub ckeys {
my $self = shift;
my @a = keys %{$self->[HASH]};
@a;
}
# Return total amount of cached data
sub bytes {
my $self = shift;
$self->[BYTES];
}
# Expire oldest item from cache until cache size is smaller than $max
sub reduce_size_to {
my ($self, $max) = @_;
until ($self->[BYTES] <= $max) {
# Note that Tie::File::Cache::expire has been inlined here
my $old_data = $self->[HEAP]->popheap;
return unless defined $old_data;
$self->[BYTES] -= length $old_data;
}
}
# Why not just $self->reduce_size_to($self->[MAX])?
# Try this when things stabilize TODO XXX
# If the cache is too full, expire the oldest records
sub flush {
my $self = shift;
$self->reduce_size_to($self->[MAX]) if $self->[BYTES] > $self->[MAX];
}
# For internal use only
sub _produce_lru {
my $self = shift;
$self->[HEAP]->expire_order;
}
BEGIN { *_ci_warn = \&Tie::File::_ci_warn }
sub _check_integrity { # For CACHE
my $self = shift;
my $good = 1;
# Test HEAP
$self->[HEAP]->_check_integrity or $good = 0;
# Test HASH
my $bytes = 0;
for my $k (keys %{$self->[HASH]}) {
if ($k ne '0' && $k !~ /^[1-9][0-9]*$/) {
$good = 0;
_ci_warn "Cache hash key <$k> is non-numeric";
}
my $h = $self->[HASH]{$k};
if (! defined $h) {
$good = 0;
_ci_warn "Heap index number for key $k is undefined";
} elsif ($h == 0) {
$good = 0;
_ci_warn "Heap index number for key $k is zero";
} else {
my $j = $self->[HEAP][$h];
if (! defined $j) {
$good = 0;
_ci_warn "Heap contents key $k (=> $h) are undefined";
} else {
$bytes += length($j->[2]);
if ($k ne $j->[1]) {
$good = 0;
_ci_warn "Heap contents key $k (=> $h) is $j->[1], should be $k";
}
}
}
}
# Test BYTES
if ($bytes != $self->[BYTES]) {
$good = 0;
_ci_warn "Total data in cache is $bytes, expected $self->[BYTES]";
}
# Test MAX
if ($bytes > $self->[MAX]) {
$good = 0;
_ci_warn "Total data in cache is $bytes, exceeds maximum $self->[MAX]";
}
return $good;
}
sub delink {
my $self = shift;
$self->[HEAP] = undef; # Bye bye heap
}
################################################################
#
# Tie::File::Heap
#
# Heap data structure for use by cache LRU routines
package Tie::File::Heap;
use Carp ':DEFAULT', 'confess';
$Tie::File::Heap::VERSION = $Tie::File::Cache::VERSION;
sub SEQ () { 0 };
sub KEY () { 1 };
sub DAT () { 2 };
sub new {
my ($pack, $cache) = @_;
die "$pack: Parent cache object $cache does not support _heap_move method"
unless eval { $cache->can('_heap_move') };
my $self = [[0,$cache,0]];
bless $self => $pack;
}
# Allocate a new sequence number, larger than all previously allocated numbers
sub _nseq {
my $self = shift;
$self->[0][0]++;
}
sub _cache {
my $self = shift;
$self->[0][1];
}
sub _nelts {
my $self = shift;
$self->[0][2];
}
sub _nelts_inc {
my $self = shift;
++$self->[0][2];
}
sub _nelts_dec {
my $self = shift;
--$self->[0][2];
}
sub is_empty {
my $self = shift;
$self->_nelts == 0;
}
sub empty {
my $self = shift;
$#$self = 0;
$self->[0][2] = 0;
$self->[0][0] = 0; # might as well reset the sequence numbers
}
# notify the parent cache object that we moved something
sub _heap_move {
my $self = shift;
$self->_cache->_heap_move(@_);
}
# Insert a piece of data into the heap with the indicated sequence number.
# The item with the smallest sequence number is always at the top.
# If no sequence number is specified, allocate a new one and insert the
# item at the bottom.
sub insert {
my ($self, $key, $data, $seq) = @_;
$seq = $self->_nseq unless defined $seq;
$self->_insert_new([$seq, $key, $data]);
}
# Insert a new, fresh item at the bottom of the heap
sub _insert_new {
my ($self, $item) = @_;
my $i = @$self;
$i = int($i/2) until defined $self->[$i/2];
$self->[$i] = $item;
$self->[0][1]->_heap_move($self->[$i][KEY], $i);
$self->_nelts_inc;
}
# Insert [$data, $seq] pair at or below item $i in the heap.
# If $i is omitted, default to 1 (the top element.)
sub _insert {
my ($self, $item, $i) = @_;
# $self->_check_loc($i) if defined $i;
$i = 1 unless defined $i;
until (! defined $self->[$i]) {
if ($self->[$i][SEQ] > $item->[SEQ]) { # inserted item is older
($self->[$i], $item) = ($item, $self->[$i]);
$self->[0][1]->_heap_move($self->[$i][KEY], $i);
}
# If either is undefined, go that way. Otherwise, choose at random
my $dir;
$dir = 0 if !defined $self->[2*$i];
$dir = 1 if !defined $self->[2*$i+1];
$dir = int(rand(2)) unless defined $dir;
$i = 2*$i + $dir;
}
$self->[$i] = $item;
$self->[0][1]->_heap_move($self->[$i][KEY], $i);
$self->_nelts_inc;
}
# Remove the item at node $i from the heap, moving child items upwards.
# The item with the smallest sequence number is always at the top.
# Moving items upwards maintains this condition.
# Return the removed item. Return undef if there was no item at node $i.
sub remove {
my ($self, $i) = @_;
$i = 1 unless defined $i;
my $top = $self->[$i];
return unless defined $top;
while (1) {
my $ii;
my ($L, $R) = (2*$i, 2*$i+1);
# If either is undefined, go the other way.
# Otherwise, go towards the smallest.
last unless defined $self->[$L] || defined $self->[$R];
$ii = $R if not defined $self->[$L];
$ii = $L if not defined $self->[$R];
unless (defined $ii) {
$ii = $self->[$L][SEQ] < $self->[$R][SEQ] ? $L : $R;
}
$self->[$i] = $self->[$ii]; # Promote child to fill vacated spot
$self->[0][1]->_heap_move($self->[$i][KEY], $i);
$i = $ii; # Fill new vacated spot
}
$self->[0][1]->_heap_move($top->[KEY], undef);
undef $self->[$i];
$self->_nelts_dec;
return $top->[DAT];
}
sub popheap {
my $self = shift;
$self->remove(1);
}
# set the sequence number of the indicated item to a higher number
# than any other item in the heap, and bubble the item down to the
# bottom.
sub promote {
my ($self, $n) = @_;
# $self->_check_loc($n);
$self->[$n][SEQ] = $self->_nseq;
my $i = $n;
while (1) {
my ($L, $R) = (2*$i, 2*$i+1);
my $dir;
last unless defined $self->[$L] || defined $self->[$R];
$dir = $R unless defined $self->[$L];
$dir = $L unless defined $self->[$R];
unless (defined $dir) {
$dir = $self->[$L][SEQ] < $self->[$R][SEQ] ? $L : $R;
}
@{$self}[$i, $dir] = @{$self}[$dir, $i];
for ($i, $dir) {
$self->[0][1]->_heap_move($self->[$_][KEY], $_) if defined $self->[$_];
}
$i = $dir;
}
}
# Return item $n from the heap, promoting its LRU status
sub lookup {
my ($self, $n) = @_;
# $self->_check_loc($n);
my $val = $self->[$n];
$self->promote($n);
$val->[DAT];
}
# Assign a new value for node $n, promoting it to the bottom of the heap
sub set_val {
my ($self, $n, $val) = @_;
# $self->_check_loc($n);
my $oval = $self->[$n][DAT];
$self->[$n][DAT] = $val;
$self->promote($n);
return $oval;
}
# The hash key has changed for an item;
# alter the heap's record of the hash key
sub rekey {
my ($self, $n, $new_key) = @_;
# $self->_check_loc($n);
$self->[$n][KEY] = $new_key;
}
sub _check_loc {
my ($self, $n) = @_;
unless (1 || defined $self->[$n]) {
confess "_check_loc($n) failed";
}
}
BEGIN { *_ci_warn = \&Tie::File::_ci_warn }
sub _check_integrity {
my $self = shift;
my $good = 1;
my %seq;
unless (eval {$self->[0][1]->isa("Tie::File::Cache")}) {
_ci_warn "Element 0 of heap corrupt";
$good = 0;
}
$good = 0 unless $self->_satisfies_heap_condition(1);
for my $i (2 .. $#{$self}) {
my $p = int($i/2); # index of parent node
if (defined $self->[$i] && ! defined $self->[$p]) {
_ci_warn "Element $i of heap defined, but parent $p isn't";
$good = 0;
}
if (defined $self->[$i]) {
if ($seq{$self->[$i][SEQ]}) {
my $seq = $self->[$i][SEQ];
_ci_warn "Nodes $i and $seq{$seq} both have SEQ=$seq";
$good = 0;
} else {
$seq{$self->[$i][SEQ]} = $i;
}
}
}
return $good;
}
sub _satisfies_heap_condition {
my $self = shift;
my $n = shift || 1;
my $good = 1;
for (0, 1) {
my $c = $n*2 + $_;
next unless defined $self->[$c];
if ($self->[$n][SEQ] >= $self->[$c]) {
_ci_warn "Node $n of heap does not predate node $c";
$good = 0 ;
}
$good = 0 unless $self->_satisfies_heap_condition($c);
}
return $good;
}
# Return a list of all the values, sorted by expiration order
sub expire_order {
my $self = shift;
my @nodes = sort {$a->[SEQ] <=> $b->[SEQ]} $self->_nodes;
map { $_->[KEY] } @nodes;
}
sub _nodes {
my $self = shift;
my $i = shift || 1;
return unless defined $self->[$i];
($self->[$i], $self->_nodes($i*2), $self->_nodes($i*2+1));
}
"Cogito, ergo sum."; # don't forget to return a true value from the file
__END__
=head1 NAME
Tie::File - Access the lines of a disk file via a Perl array
=head1 SYNOPSIS
# This file documents Tie::File version 0.98
use Tie::File;
tie @array, 'Tie::File', filename or die ...;
$array[13] = 'blah'; # line 13 of the file is now 'blah'
print $array[42]; # display line 42 of the file
$n_recs = @array; # how many records are in the file?
$#array -= 2; # chop two records off the end
for (@array) {
s/PERL/Perl/g; # Replace PERL with Perl everywhere in the file
}
# These are just like regular push, pop, unshift, shift, and splice
# Except that they modify the file in the way you would expect
push @array, new recs...;
my $r1 = pop @array;
unshift @array, new recs...;
my $r2 = shift @array;
@old_recs = splice @array, 3, 7, new recs...;
untie @array; # all finished
=head1 DESCRIPTION
C<Tie::File> represents a regular text file as a Perl array. Each
element in the array corresponds to a record in the file. The first
line of the file is element 0 of the array; the second line is element
1, and so on.
The file is I<not> loaded into memory, so this will work even for
gigantic files.
Changes to the array are reflected in the file immediately.
Lazy people and beginners may now stop reading the manual.
=head2 C<recsep>
What is a 'record'? By default, the meaning is the same as for the
C<E<lt>...E<gt>> operator: It's a string terminated by C<$/>, which is
probably C<"\n">. (Minor exception: on DOS and Win32 systems, a
'record' is a string terminated by C<"\r\n">.) You may change the
definition of "record" by supplying the C<recsep> option in the C<tie>
call:
tie @array, 'Tie::File', $file, recsep => 'es';
This says that records are delimited by the string C<es>. If the file
contained the following data:
Curse these pesky flies!\n
then the C<@array> would appear to have four elements:
"Curse th"
"e p"
"ky fli"
"!\n"
An undefined value is not permitted as a record separator. Perl's
special "paragraph mode" semantics (E<agrave> la C<$/ = "">) are not
emulated.
Records read from the tied array do not have the record separator
string on the end; this is to allow
$array[17] .= "extra";
to work as expected.
(See L<"autochomp">, below.) Records stored into the array will have
the record separator string appended before they are written to the
file, if they don't have one already. For example, if the record
separator string is C<"\n">, then the following two lines do exactly
the same thing:
$array[17] = "Cherry pie";
$array[17] = "Cherry pie\n";
The result is that the contents of line 17 of the file will be
replaced with "Cherry pie"; a newline character will separate line 17
from line 18. This means that this code will do nothing:
chomp $array[17];
Because the C<chomp>ed value will have the separator reattached when
it is written back to the file. There is no way to create a file
whose trailing record separator string is missing.
Inserting records that I<contain> the record separator string is not
supported by this module. It will probably produce a reasonable
result, but what this result will be may change in a future version.
Use 'splice' to insert records or to replace one record with several.
=head2 C<autochomp>
Normally, array elements have the record separator removed, so that if
the file contains the text
Gold
Frankincense
Myrrh
the tied array will appear to contain C<("Gold", "Frankincense",
"Myrrh")>. If you set C<autochomp> to a false value, the record
separator will not be removed. If the file above was tied with
tie @gifts, "Tie::File", $gifts, autochomp => 0;
then the array C<@gifts> would appear to contain C<("Gold\n",
"Frankincense\n", "Myrrh\n")>, or (on Win32 systems) C<("Gold\r\n",
"Frankincense\r\n", "Myrrh\r\n")>.
=head2 C<mode>
Normally, the specified file will be opened for read and write access,
and will be created if it does not exist. (That is, the flags
C<O_RDWR | O_CREAT> are supplied in the C<open> call.) If you want to
change this, you may supply alternative flags in the C<mode> option.
See L<Fcntl> for a listing of available flags.
For example:
# open the file if it exists, but fail if it does not exist
use Fcntl 'O_RDWR';
tie @array, 'Tie::File', $file, mode => O_RDWR;
# create the file if it does not exist
use Fcntl 'O_RDWR', 'O_CREAT';
tie @array, 'Tie::File', $file, mode => O_RDWR | O_CREAT;
# open an existing file in read-only mode
use Fcntl 'O_RDONLY';
tie @array, 'Tie::File', $file, mode => O_RDONLY;
Opening the data file in write-only or append mode is not supported.
=head2 C<memory>
This is an upper limit on the amount of memory that C<Tie::File> will
consume at any time while managing the file. This is used for two
things: managing the I<read cache> and managing the I<deferred write
buffer>.
Records read in from the file are cached, to avoid having to re-read
them repeatedly. If you read the same record twice, the first time it
will be stored in memory, and the second time it will be fetched from
the I<read cache>. The amount of data in the read cache will not
exceed the value you specified for C<memory>. If C<Tie::File> wants
to cache a new record, but the read cache is full, it will make room
by expiring the least-recently visited records from the read cache.
The default memory limit is 2Mib. You can adjust the maximum read
cache size by supplying the C<memory> option. The argument is the
desired cache size, in bytes.
# I have a lot of memory, so use a large cache to speed up access
tie @array, 'Tie::File', $file, memory => 20_000_000;
Setting the memory limit to 0 will inhibit caching; records will be
fetched from disk every time you examine them.
The C<memory> value is not an absolute or exact limit on the memory
used. C<Tie::File> objects contains some structures besides the read
cache and the deferred write buffer, whose sizes are not charged
against C<memory>.
The cache itself consumes about 310 bytes per cached record, so if
your file has many short records, you may want to decrease the cache
memory limit, or else the cache overhead may exceed the size of the
cached data.
=head2 C<dw_size>
(This is an advanced feature. Skip this section on first reading.)
If you use deferred writing (See L<"Deferred Writing">, below) then
data you write into the array will not be written directly to the
file; instead, it will be saved in the I<deferred write buffer> to be
written out later. Data in the deferred write buffer is also charged
against the memory limit you set with the C<memory> option.
You may set the C<dw_size> option to limit the amount of data that can
be saved in the deferred write buffer. This limit may not exceed the
total memory limit. For example, if you set C<dw_size> to 1000 and
C<memory> to 2500, that means that no more than 1000 bytes of deferred
writes will be saved up. The space available for the read cache will
vary, but it will always be at least 1500 bytes (if the deferred write
buffer is full) and it could grow as large as 2500 bytes (if the
deferred write buffer is empty.)
If you don't specify a C<dw_size>, it defaults to the entire memory
limit.
=head2 Option Format
C<-mode> is a synonym for C<mode>. C<-recsep> is a synonym for
C<recsep>. C<-memory> is a synonym for C<memory>. You get the
idea.
=head1 Public Methods
The C<tie> call returns an object, say C<$o>. You may call
$rec = $o->FETCH($n);
$o->STORE($n, $rec);
to fetch or store the record at line C<$n>, respectively; similarly
the other tied array methods. (See L<perltie> for details.) You may
also call the following methods on this object:
=head2 C<flock>
$o->flock(MODE)
will lock the tied file. C<MODE> has the same meaning as the second
argument to the Perl built-in C<flock> function; for example
C<LOCK_SH> or C<LOCK_EX | LOCK_NB>. (These constants are provided by
the C<use Fcntl ':flock'> declaration.)
C<MODE> is optional; the default is C<LOCK_EX>.
C<Tie::File> maintains an internal table of the byte offset of each
record it has seen in the file.
When you use C<flock> to lock the file, C<Tie::File> assumes that the
read cache is no longer trustworthy, because another process might
have modified the file since the last time it was read. Therefore, a
successful call to C<flock> discards the contents of the read cache
and the internal record offset table.
C<Tie::File> promises that the following sequence of operations will
be safe:
my $o = tie @array, "Tie::File", $filename;
$o->flock;
In particular, C<Tie::File> will I<not> read or write the file during
the C<tie> call. (Exception: Using C<mode =E<gt> O_TRUNC> will, of
course, erase the file during the C<tie> call. If you want to do this
safely, then open the file without C<O_TRUNC>, lock the file, and use
C<@array = ()>.)
The best way to unlock a file is to discard the object and untie the
array. It is probably unsafe to unlock the file without also untying
it, because if you do, changes may remain unwritten inside the object.
That is why there is no shortcut for unlocking. If you really want to
unlock the file prematurely, you know what to do; if you don't know
what to do, then don't do it.
All the usual warnings about file locking apply here. In particular,
note that file locking in Perl is B<advisory>, which means that
holding a lock will not prevent anyone else from reading, writing, or
erasing the file; it only prevents them from getting another lock at
the same time. Locks are analogous to green traffic lights: If you
have a green light, that does not prevent the idiot coming the other
way from plowing into you sideways; it merely guarantees to you that
the idiot does not also have a green light at the same time.
=head2 C<autochomp>
my $old_value = $o->autochomp(0); # disable autochomp option
my $old_value = $o->autochomp(1); # enable autochomp option
my $ac = $o->autochomp(); # recover current value
See L<"autochomp">, above.
=head2 C<defer>, C<flush>, C<discard>, and C<autodefer>
See L<"Deferred Writing">, below.
=head2 C<offset>
$off = $o->offset($n);
This method returns the byte offset of the start of the C<$n>th record
in the file. If there is no such record, it returns an undefined
value.
=head1 Tying to an already-opened filehandle
If C<$fh> is a filehandle, such as is returned by C<IO::File> or one
of the other C<IO> modules, you may use:
tie @array, 'Tie::File', $fh, ...;
Similarly if you opened that handle C<FH> with regular C<open> or
C<sysopen>, you may use:
tie @array, 'Tie::File', \*FH, ...;
Handles that were opened write-only won't work. Handles that were
opened read-only will work as long as you don't try to modify the
array. Handles must be attached to seekable sources of data---that
means no pipes or sockets. If C<Tie::File> can detect that you
supplied a non-seekable handle, the C<tie> call will throw an
exception. (On Unix systems, it can detect this.)
Note that Tie::File will only close any filehandles that it opened
internally. If you passed it a filehandle as above, you "own" the
filehandle, and are responsible for closing it after you have untied
the @array.
=head1 Deferred Writing
(This is an advanced feature. Skip this section on first reading.)
Normally, modifying a C<Tie::File> array writes to the underlying file
immediately. Every assignment like C<$a[3] = ...> rewrites as much of
the file as is necessary; typically, everything from line 3 through
the end will need to be rewritten. This is the simplest and most
transparent behavior. Performance even for large files is reasonably
good.
However, under some circumstances, this behavior may be excessively
slow. For example, suppose you have a million-record file, and you
want to do:
for (@FILE) {
$_ = "> $_";
}
The first time through the loop, you will rewrite the entire file,
from line 0 through the end. The second time through the loop, you
will rewrite the entire file from line 1 through the end. The third
time through the loop, you will rewrite the entire file from line 2 to
the end. And so on.
If the performance in such cases is unacceptable, you may defer the
actual writing, and then have it done all at once. The following loop
will perform much better for large files:
(tied @a)->defer;
for (@a) {
$_ = "> $_";
}
(tied @a)->flush;
If C<Tie::File>'s memory limit is large enough, all the writing will
done in memory. Then, when you call C<-E<gt>flush>, the entire file
will be rewritten in a single pass.
(Actually, the preceding discussion is something of a fib. You don't
need to enable deferred writing to get good performance for this
common case, because C<Tie::File> will do it for you automatically
unless you specifically tell it not to. See L<"Autodeferring">,
below.)
Calling C<-E<gt>flush> returns the array to immediate-write mode. If
you wish to discard the deferred writes, you may call C<-E<gt>discard>
instead of C<-E<gt>flush>. Note that in some cases, some of the data
will have been written already, and it will be too late for
C<-E<gt>discard> to discard all the changes. Support for
C<-E<gt>discard> may be withdrawn in a future version of C<Tie::File>.
Deferred writes are cached in memory up to the limit specified by the
C<dw_size> option (see above). If the deferred-write buffer is full
and you try to write still more deferred data, the buffer will be
flushed. All buffered data will be written immediately, the buffer
will be emptied, and the now-empty space will be used for future
deferred writes.
If the deferred-write buffer isn't yet full, but the total size of the
buffer and the read cache would exceed the C<memory> limit, the oldest
records will be expired from the read cache until the total size is
under the limit.
C<push>, C<pop>, C<shift>, C<unshift>, and C<splice> cannot be
deferred. When you perform one of these operations, any deferred data
is written to the file and the operation is performed immediately.
This may change in a future version.
If you resize the array with deferred writing enabled, the file will
be resized immediately, but deferred records will not be written.
This has a surprising consequence: C<@a = (...)> erases the file
immediately, but the writing of the actual data is deferred. This
might be a bug. If it is a bug, it will be fixed in a future version.
=head2 Autodeferring
C<Tie::File> tries to guess when deferred writing might be helpful,
and to turn it on and off automatically.
for (@a) {
$_ = "> $_";
}
In this example, only the first two assignments will be done
immediately; after this, all the changes to the file will be deferred
up to the user-specified memory limit.
You should usually be able to ignore this and just use the module
without thinking about deferring. However, special applications may
require fine control over which writes are deferred, or may require
that all writes be immediate. To disable the autodeferment feature,
use
(tied @o)->autodefer(0);
or
tie @array, 'Tie::File', $file, autodefer => 0;
Similarly, C<-E<gt>autodefer(1)> re-enables autodeferment, and
C<-E<gt>autodefer()> recovers the current value of the autodefer setting.
=head1 CONCURRENT ACCESS TO FILES
Caching and deferred writing are inappropriate if you want the same
file to be accessed simultaneously from more than one process. Other
optimizations performed internally by this module are also
incompatible with concurrent access. A future version of this module will
support a C<concurrent =E<gt> 1> option that enables safe concurrent access.
Previous versions of this documentation suggested using C<memory
=E<gt> 0> for safe concurrent access. This was mistaken. Tie::File
will not support safe concurrent access before version 0.96.
=head1 CAVEATS
(That's Latin for 'warnings'.)
=over 4
=item *
Reasonable effort was made to make this module efficient. Nevertheless,
changing the size of a record in the middle of a large file will
always be fairly slow, because everything after the new record must be
moved.
=item *
The behavior of tied arrays is not precisely the same as for regular
arrays. For example:
# This DOES print "How unusual!"
undef $a[10]; print "How unusual!\n" if defined $a[10];
C<undef>-ing a C<Tie::File> array element just blanks out the
corresponding record in the file. When you read it back again, you'll
get the empty string, so the supposedly-C<undef>'ed value will be
defined. Similarly, if you have C<autochomp> disabled, then
# This DOES print "How unusual!" if 'autochomp' is disabled
undef $a[10];
print "How unusual!\n" if $a[10];
Because when C<autochomp> is disabled, C<$a[10]> will read back as
C<"\n"> (or whatever the record separator string is.)
There are other minor differences, particularly regarding C<exists>
and C<delete>, but in general, the correspondence is extremely close.
=item *
I have supposed that since this module is concerned with file I/O,
almost all normal use of it will be heavily I/O bound. This means
that the time to maintain complicated data structures inside the
module will be dominated by the time to actually perform the I/O.
When there was an opportunity to spend CPU time to avoid doing I/O, I
usually tried to take it.
=item *
You might be tempted to think that deferred writing is like
transactions, with C<flush> as C<commit> and C<discard> as
C<rollback>, but it isn't, so don't.
=item *
There is a large memory overhead for each record offset and for each
cache entry: about 310 bytes per cached data record, and about 21 bytes
per offset table entry.
The per-record overhead will limit the maximum number of records you
can access per file. Note that I<accessing> the length of the array
via C<$x = scalar @tied_file> accesses B<all> records and stores their
offsets. The same for C<foreach (@tied_file)>, even if you exit the
loop early.
=back
=head1 SUBCLASSING
This version promises absolutely nothing about the internals, which
may change without notice. A future version of the module will have a
well-defined and stable subclassing API.
=head1 WHAT ABOUT C<DB_File>?
People sometimes point out that L<DB_File> will do something similar,
and ask why C<Tie::File> module is necessary.
There are a number of reasons that you might prefer C<Tie::File>.
A list is available at C<http://perl.plover.com/TieFile/why-not-DB_File>.
=head1 AUTHOR
Mark Jason Dominus
To contact the author, send email to: C<mjd-perl-tiefile+@plover.com>
To receive an announcement whenever a new version of this module is
released, send a blank email message to
C<mjd-perl-tiefile-subscribe@plover.com>.
The most recent version of this module, including documentation and
any news of importance, will be available at
http://perl.plover.com/TieFile/
=head1 LICENSE
C<Tie::File> version 0.96 is copyright (C) 2003 Mark Jason Dominus.
This library is free software; you may redistribute it and/or modify
it under the same terms as Perl itself.
These terms are your choice of any of (1) the Perl Artistic Licence,
or (2) version 2 of the GNU General Public License as published by the
Free Software Foundation, or (3) any later version of the GNU General
Public License.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this library program; it should be in the file C<COPYING>.
If not, write to the Free Software Foundation, Inc., 51 Franklin Street,
Fifth Floor, Boston, MA 02110-1301, USA
For licensing inquiries, contact the author at:
Mark Jason Dominus
255 S. Warnock St.
Philadelphia, PA 19107
=head1 WARRANTY
C<Tie::File> version 0.98 comes with ABSOLUTELY NO WARRANTY.
For details, see the license.
=head1 THANKS
Gigantic thanks to Jarkko Hietaniemi, for agreeing to put this in the
core when I hadn't written it yet, and for generally being helpful,
supportive, and competent. (Usually the rule is "choose any one.")
Also big thanks to Abhijit Menon-Sen for all of the same things.
Special thanks to Craig Berry and Peter Prymmer (for VMS portability
help), Randy Kobes (for Win32 portability help), Clinton Pierce and
Autrijus Tang (for heroic eleventh-hour Win32 testing above and beyond
the call of duty), Michael G Schwern (for testing advice), and the
rest of the CPAN testers (for testing generally).
Special thanks to Tels for suggesting several speed and memory
optimizations.
Additional thanks to:
Edward Avis /
Mattia Barbon /
Tom Christiansen /
Gerrit Haase /
Gurusamy Sarathy /
Jarkko Hietaniemi (again) /
Nikola Knezevic /
John Kominetz /
Nick Ing-Simmons /
Tassilo von Parseval /
H. Dieter Pearcey /
Slaven Rezic /
Eric Roode /
Peter Scott /
Peter Somu /
Autrijus Tang (again) /
Tels (again) /
Juerd Waalboer /
Todd Rinaldo
=head1 TODO
More tests. (Stuff I didn't think of yet.)
Paragraph mode?
Fixed-length mode. Leave-blanks mode.
Maybe an autolocking mode?
For many common uses of the module, the read cache is a liability.
For example, a program that inserts a single record, or that scans the
file once, will have a cache hit rate of zero. This suggests a major
optimization: The cache should be initially disabled. Here's a hybrid
approach: Initially, the cache is disabled, but the cache code
maintains statistics about how high the hit rate would be *if* it were
enabled. When it sees the hit rate get high enough, it enables
itself. The STAT comments in this code are the beginning of an
implementation of this.
Record locking with fcntl()? Then the module might support an undo
log and get real transactions. What a tour de force that would be.
Keeping track of the highest cached record. This would allow reads-in-a-row
to skip the cache lookup faster (if reading from 1..N with empty cache at
start, the last cached value will be always N-1).
More tests.
=cut
|