/usr/share/perl/5.22.1/Math/Trig.pm is in perl-modules-5.22 5.22.1-9.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 | #
# Trigonometric functions, mostly inherited from Math::Complex.
# -- Jarkko Hietaniemi, since April 1997
# -- Raphael Manfredi, September 1996 (indirectly: because of Math::Complex)
#
package Math::Trig;
{ use 5.006; }
use strict;
use Math::Complex 1.59;
use Math::Complex qw(:trig :pi);
require Exporter;
our @ISA = qw(Exporter);
our $VERSION = 1.23;
my @angcnv = qw(rad2deg rad2grad
deg2rad deg2grad
grad2rad grad2deg);
my @areal = qw(asin_real acos_real);
our @EXPORT = (@{$Math::Complex::EXPORT_TAGS{'trig'}},
@angcnv, @areal);
my @rdlcnv = qw(cartesian_to_cylindrical
cartesian_to_spherical
cylindrical_to_cartesian
cylindrical_to_spherical
spherical_to_cartesian
spherical_to_cylindrical);
my @greatcircle = qw(
great_circle_distance
great_circle_direction
great_circle_bearing
great_circle_waypoint
great_circle_midpoint
great_circle_destination
);
my @pi = qw(pi pi2 pi4 pip2 pip4);
our @EXPORT_OK = (@rdlcnv, @greatcircle, @pi, 'Inf');
# See e.g. the following pages:
# http://www.movable-type.co.uk/scripts/LatLong.html
# http://williams.best.vwh.net/avform.htm
our %EXPORT_TAGS = ('radial' => [ @rdlcnv ],
'great_circle' => [ @greatcircle ],
'pi' => [ @pi ]);
sub _DR () { pi2/360 }
sub _RD () { 360/pi2 }
sub _DG () { 400/360 }
sub _GD () { 360/400 }
sub _RG () { 400/pi2 }
sub _GR () { pi2/400 }
#
# Truncating remainder.
#
sub _remt ($$) {
# Oh yes, POSIX::fmod() would be faster. Possibly. If it is available.
$_[0] - $_[1] * int($_[0] / $_[1]);
}
#
# Angle conversions.
#
sub rad2rad($) { _remt($_[0], pi2) }
sub deg2deg($) { _remt($_[0], 360) }
sub grad2grad($) { _remt($_[0], 400) }
sub rad2deg ($;$) { my $d = _RD * $_[0]; $_[1] ? $d : deg2deg($d) }
sub deg2rad ($;$) { my $d = _DR * $_[0]; $_[1] ? $d : rad2rad($d) }
sub grad2deg ($;$) { my $d = _GD * $_[0]; $_[1] ? $d : deg2deg($d) }
sub deg2grad ($;$) { my $d = _DG * $_[0]; $_[1] ? $d : grad2grad($d) }
sub rad2grad ($;$) { my $d = _RG * $_[0]; $_[1] ? $d : grad2grad($d) }
sub grad2rad ($;$) { my $d = _GR * $_[0]; $_[1] ? $d : rad2rad($d) }
#
# acos and asin functions which always return a real number
#
sub acos_real {
return 0 if $_[0] >= 1;
return pi if $_[0] <= -1;
return acos($_[0]);
}
sub asin_real {
return &pip2 if $_[0] >= 1;
return -&pip2 if $_[0] <= -1;
return asin($_[0]);
}
sub cartesian_to_spherical {
my ( $x, $y, $z ) = @_;
my $rho = sqrt( $x * $x + $y * $y + $z * $z );
return ( $rho,
atan2( $y, $x ),
$rho ? acos_real( $z / $rho ) : 0 );
}
sub spherical_to_cartesian {
my ( $rho, $theta, $phi ) = @_;
return ( $rho * cos( $theta ) * sin( $phi ),
$rho * sin( $theta ) * sin( $phi ),
$rho * cos( $phi ) );
}
sub spherical_to_cylindrical {
my ( $x, $y, $z ) = spherical_to_cartesian( @_ );
return ( sqrt( $x * $x + $y * $y ), $_[1], $z );
}
sub cartesian_to_cylindrical {
my ( $x, $y, $z ) = @_;
return ( sqrt( $x * $x + $y * $y ), atan2( $y, $x ), $z );
}
sub cylindrical_to_cartesian {
my ( $rho, $theta, $z ) = @_;
return ( $rho * cos( $theta ), $rho * sin( $theta ), $z );
}
sub cylindrical_to_spherical {
return ( cartesian_to_spherical( cylindrical_to_cartesian( @_ ) ) );
}
sub great_circle_distance {
my ( $theta0, $phi0, $theta1, $phi1, $rho ) = @_;
$rho = 1 unless defined $rho; # Default to the unit sphere.
my $lat0 = pip2 - $phi0;
my $lat1 = pip2 - $phi1;
return $rho *
acos_real( cos( $lat0 ) * cos( $lat1 ) * cos( $theta0 - $theta1 ) +
sin( $lat0 ) * sin( $lat1 ) );
}
sub great_circle_direction {
my ( $theta0, $phi0, $theta1, $phi1 ) = @_;
my $lat0 = pip2 - $phi0;
my $lat1 = pip2 - $phi1;
return rad2rad(pi2 -
atan2(sin($theta0-$theta1) * cos($lat1),
cos($lat0) * sin($lat1) -
sin($lat0) * cos($lat1) * cos($theta0-$theta1)));
}
*great_circle_bearing = \&great_circle_direction;
sub great_circle_waypoint {
my ( $theta0, $phi0, $theta1, $phi1, $point ) = @_;
$point = 0.5 unless defined $point;
my $d = great_circle_distance( $theta0, $phi0, $theta1, $phi1 );
return undef if $d == pi;
my $sd = sin($d);
return ($theta0, $phi0) if $sd == 0;
my $A = sin((1 - $point) * $d) / $sd;
my $B = sin( $point * $d) / $sd;
my $lat0 = pip2 - $phi0;
my $lat1 = pip2 - $phi1;
my $x = $A * cos($lat0) * cos($theta0) + $B * cos($lat1) * cos($theta1);
my $y = $A * cos($lat0) * sin($theta0) + $B * cos($lat1) * sin($theta1);
my $z = $A * sin($lat0) + $B * sin($lat1);
my $theta = atan2($y, $x);
my $phi = acos_real($z);
return ($theta, $phi);
}
sub great_circle_midpoint {
great_circle_waypoint(@_[0..3], 0.5);
}
sub great_circle_destination {
my ( $theta0, $phi0, $dir0, $dst ) = @_;
my $lat0 = pip2 - $phi0;
my $phi1 = asin_real(sin($lat0)*cos($dst) +
cos($lat0)*sin($dst)*cos($dir0));
my $theta1 = $theta0 + atan2(sin($dir0)*sin($dst)*cos($lat0),
cos($dst)-sin($lat0)*sin($phi1));
my $dir1 = great_circle_bearing($theta1, $phi1, $theta0, $phi0) + pi;
$dir1 -= pi2 if $dir1 > pi2;
return ($theta1, $phi1, $dir1);
}
1;
__END__
=pod
=head1 NAME
Math::Trig - trigonometric functions
=head1 SYNOPSIS
use Math::Trig;
$x = tan(0.9);
$y = acos(3.7);
$z = asin(2.4);
$halfpi = pi/2;
$rad = deg2rad(120);
# Import constants pi2, pip2, pip4 (2*pi, pi/2, pi/4).
use Math::Trig ':pi';
# Import the conversions between cartesian/spherical/cylindrical.
use Math::Trig ':radial';
# Import the great circle formulas.
use Math::Trig ':great_circle';
=head1 DESCRIPTION
C<Math::Trig> defines many trigonometric functions not defined by the
core Perl which defines only the C<sin()> and C<cos()>. The constant
B<pi> is also defined as are a few convenience functions for angle
conversions, and I<great circle formulas> for spherical movement.
=head1 TRIGONOMETRIC FUNCTIONS
The tangent
=over 4
=item B<tan>
=back
The cofunctions of the sine, cosine, and tangent (cosec/csc and cotan/cot
are aliases)
B<csc>, B<cosec>, B<sec>, B<sec>, B<cot>, B<cotan>
The arcus (also known as the inverse) functions of the sine, cosine,
and tangent
B<asin>, B<acos>, B<atan>
The principal value of the arc tangent of y/x
B<atan2>(y, x)
The arcus cofunctions of the sine, cosine, and tangent (acosec/acsc
and acotan/acot are aliases). Note that atan2(0, 0) is not well-defined.
B<acsc>, B<acosec>, B<asec>, B<acot>, B<acotan>
The hyperbolic sine, cosine, and tangent
B<sinh>, B<cosh>, B<tanh>
The cofunctions of the hyperbolic sine, cosine, and tangent (cosech/csch
and cotanh/coth are aliases)
B<csch>, B<cosech>, B<sech>, B<coth>, B<cotanh>
The area (also known as the inverse) functions of the hyperbolic
sine, cosine, and tangent
B<asinh>, B<acosh>, B<atanh>
The area cofunctions of the hyperbolic sine, cosine, and tangent
(acsch/acosech and acoth/acotanh are aliases)
B<acsch>, B<acosech>, B<asech>, B<acoth>, B<acotanh>
The trigonometric constant B<pi> and some of handy multiples
of it are also defined.
B<pi, pi2, pi4, pip2, pip4>
=head2 ERRORS DUE TO DIVISION BY ZERO
The following functions
acoth
acsc
acsch
asec
asech
atanh
cot
coth
csc
csch
sec
sech
tan
tanh
cannot be computed for all arguments because that would mean dividing
by zero or taking logarithm of zero. These situations cause fatal
runtime errors looking like this
cot(0): Division by zero.
(Because in the definition of cot(0), the divisor sin(0) is 0)
Died at ...
or
atanh(-1): Logarithm of zero.
Died at...
For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,
C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the
C<atanh>, C<acoth>, the argument cannot be C<1> (one). For the
C<atanh>, C<acoth>, the argument cannot be C<-1> (minus one). For the
C<tan>, C<sec>, C<tanh>, C<sech>, the argument cannot be I<pi/2 + k *
pi>, where I<k> is any integer.
Note that atan2(0, 0) is not well-defined.
=head2 SIMPLE (REAL) ARGUMENTS, COMPLEX RESULTS
Please note that some of the trigonometric functions can break out
from the B<real axis> into the B<complex plane>. For example
C<asin(2)> has no definition for plain real numbers but it has
definition for complex numbers.
In Perl terms this means that supplying the usual Perl numbers (also
known as scalars, please see L<perldata>) as input for the
trigonometric functions might produce as output results that no more
are simple real numbers: instead they are complex numbers.
The C<Math::Trig> handles this by using the C<Math::Complex> package
which knows how to handle complex numbers, please see L<Math::Complex>
for more information. In practice you need not to worry about getting
complex numbers as results because the C<Math::Complex> takes care of
details like for example how to display complex numbers. For example:
print asin(2), "\n";
should produce something like this (take or leave few last decimals):
1.5707963267949-1.31695789692482i
That is, a complex number with the real part of approximately C<1.571>
and the imaginary part of approximately C<-1.317>.
=head1 PLANE ANGLE CONVERSIONS
(Plane, 2-dimensional) angles may be converted with the following functions.
=over
=item deg2rad
$radians = deg2rad($degrees);
=item grad2rad
$radians = grad2rad($gradians);
=item rad2deg
$degrees = rad2deg($radians);
=item grad2deg
$degrees = grad2deg($gradians);
=item deg2grad
$gradians = deg2grad($degrees);
=item rad2grad
$gradians = rad2grad($radians);
=back
The full circle is 2 I<pi> radians or I<360> degrees or I<400> gradians.
The result is by default wrapped to be inside the [0, {2pi,360,400}[ circle.
If you don't want this, supply a true second argument:
$zillions_of_radians = deg2rad($zillions_of_degrees, 1);
$negative_degrees = rad2deg($negative_radians, 1);
You can also do the wrapping explicitly by rad2rad(), deg2deg(), and
grad2grad().
=over 4
=item rad2rad
$radians_wrapped_by_2pi = rad2rad($radians);
=item deg2deg
$degrees_wrapped_by_360 = deg2deg($degrees);
=item grad2grad
$gradians_wrapped_by_400 = grad2grad($gradians);
=back
=head1 RADIAL COORDINATE CONVERSIONS
B<Radial coordinate systems> are the B<spherical> and the B<cylindrical>
systems, explained shortly in more detail.
You can import radial coordinate conversion functions by using the
C<:radial> tag:
use Math::Trig ':radial';
($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);
($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);
($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);
($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);
($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);
($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi);
B<All angles are in radians>.
=head2 COORDINATE SYSTEMS
B<Cartesian> coordinates are the usual rectangular I<(x, y, z)>-coordinates.
Spherical coordinates, I<(rho, theta, pi)>, are three-dimensional
coordinates which define a point in three-dimensional space. They are
based on a sphere surface. The radius of the sphere is B<rho>, also
known as the I<radial> coordinate. The angle in the I<xy>-plane
(around the I<z>-axis) is B<theta>, also known as the I<azimuthal>
coordinate. The angle from the I<z>-axis is B<phi>, also known as the
I<polar> coordinate. The North Pole is therefore I<0, 0, rho>, and
the Gulf of Guinea (think of the missing big chunk of Africa) I<0,
pi/2, rho>. In geographical terms I<phi> is latitude (northward
positive, southward negative) and I<theta> is longitude (eastward
positive, westward negative).
B<BEWARE>: some texts define I<theta> and I<phi> the other way round,
some texts define the I<phi> to start from the horizontal plane, some
texts use I<r> in place of I<rho>.
Cylindrical coordinates, I<(rho, theta, z)>, are three-dimensional
coordinates which define a point in three-dimensional space. They are
based on a cylinder surface. The radius of the cylinder is B<rho>,
also known as the I<radial> coordinate. The angle in the I<xy>-plane
(around the I<z>-axis) is B<theta>, also known as the I<azimuthal>
coordinate. The third coordinate is the I<z>, pointing up from the
B<theta>-plane.
=head2 3-D ANGLE CONVERSIONS
Conversions to and from spherical and cylindrical coordinates are
available. Please notice that the conversions are not necessarily
reversible because of the equalities like I<pi> angles being equal to
I<-pi> angles.
=over 4
=item cartesian_to_cylindrical
($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);
=item cartesian_to_spherical
($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);
=item cylindrical_to_cartesian
($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);
=item cylindrical_to_spherical
($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);
Notice that when C<$z> is not 0 C<$rho_s> is not equal to C<$rho_c>.
=item spherical_to_cartesian
($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);
=item spherical_to_cylindrical
($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi);
Notice that when C<$z> is not 0 C<$rho_c> is not equal to C<$rho_s>.
=back
=head1 GREAT CIRCLE DISTANCES AND DIRECTIONS
A great circle is section of a circle that contains the circle
diameter: the shortest distance between two (non-antipodal) points on
the spherical surface goes along the great circle connecting those two
points.
=head2 great_circle_distance
You can compute spherical distances, called B<great circle distances>,
by importing the great_circle_distance() function:
use Math::Trig 'great_circle_distance';
$distance = great_circle_distance($theta0, $phi0, $theta1, $phi1, [, $rho]);
The I<great circle distance> is the shortest distance between two
points on a sphere. The distance is in C<$rho> units. The C<$rho> is
optional, it defaults to 1 (the unit sphere), therefore the distance
defaults to radians.
If you think geographically the I<theta> are longitudes: zero at the
Greenwhich meridian, eastward positive, westward negative -- and the
I<phi> are latitudes: zero at the North Pole, northward positive,
southward negative. B<NOTE>: this formula thinks in mathematics, not
geographically: the I<phi> zero is at the North Pole, not at the
Equator on the west coast of Africa (Bay of Guinea). You need to
subtract your geographical coordinates from I<pi/2> (also known as 90
degrees).
$distance = great_circle_distance($lon0, pi/2 - $lat0,
$lon1, pi/2 - $lat1, $rho);
=head2 great_circle_direction
The direction you must follow the great circle (also known as I<bearing>)
can be computed by the great_circle_direction() function:
use Math::Trig 'great_circle_direction';
$direction = great_circle_direction($theta0, $phi0, $theta1, $phi1);
=head2 great_circle_bearing
Alias 'great_circle_bearing' for 'great_circle_direction' is also available.
use Math::Trig 'great_circle_bearing';
$direction = great_circle_bearing($theta0, $phi0, $theta1, $phi1);
The result of great_circle_direction is in radians, zero indicating
straight north, pi or -pi straight south, pi/2 straight west, and
-pi/2 straight east.
=head2 great_circle_destination
You can inversely compute the destination if you know the
starting point, direction, and distance:
use Math::Trig 'great_circle_destination';
# $diro is the original direction,
# for example from great_circle_bearing().
# $distance is the angular distance in radians,
# for example from great_circle_distance().
# $thetad and $phid are the destination coordinates,
# $dird is the final direction at the destination.
($thetad, $phid, $dird) =
great_circle_destination($theta, $phi, $diro, $distance);
or the midpoint if you know the end points:
=head2 great_circle_midpoint
use Math::Trig 'great_circle_midpoint';
($thetam, $phim) =
great_circle_midpoint($theta0, $phi0, $theta1, $phi1);
The great_circle_midpoint() is just a special case of
=head2 great_circle_waypoint
use Math::Trig 'great_circle_waypoint';
($thetai, $phii) =
great_circle_waypoint($theta0, $phi0, $theta1, $phi1, $way);
Where the $way is a value from zero ($theta0, $phi0) to one ($theta1,
$phi1). Note that antipodal points (where their distance is I<pi>
radians) do not have waypoints between them (they would have an an
"equator" between them), and therefore C<undef> is returned for
antipodal points. If the points are the same and the distance
therefore zero and all waypoints therefore identical, the first point
(either point) is returned.
The thetas, phis, direction, and distance in the above are all in radians.
You can import all the great circle formulas by
use Math::Trig ':great_circle';
Notice that the resulting directions might be somewhat surprising if
you are looking at a flat worldmap: in such map projections the great
circles quite often do not look like the shortest routes -- but for
example the shortest possible routes from Europe or North America to
Asia do often cross the polar regions. (The common Mercator projection
does B<not> show great circles as straight lines: straight lines in the
Mercator projection are lines of constant bearing.)
=head1 EXAMPLES
To calculate the distance between London (51.3N 0.5W) and Tokyo
(35.7N 139.8E) in kilometers:
use Math::Trig qw(great_circle_distance deg2rad);
# Notice the 90 - latitude: phi zero is at the North Pole.
sub NESW { deg2rad($_[0]), deg2rad(90 - $_[1]) }
my @L = NESW( -0.5, 51.3);
my @T = NESW(139.8, 35.7);
my $km = great_circle_distance(@L, @T, 6378); # About 9600 km.
The direction you would have to go from London to Tokyo (in radians,
straight north being zero, straight east being pi/2).
use Math::Trig qw(great_circle_direction);
my $rad = great_circle_direction(@L, @T); # About 0.547 or 0.174 pi.
The midpoint between London and Tokyo being
use Math::Trig qw(great_circle_midpoint);
my @M = great_circle_midpoint(@L, @T);
or about 69 N 89 E, in the frozen wastes of Siberia.
B<NOTE>: you B<cannot> get from A to B like this:
Dist = great_circle_distance(A, B)
Dir = great_circle_direction(A, B)
C = great_circle_destination(A, Dist, Dir)
and expect C to be B, because the bearing constantly changes when
going from A to B (except in some special case like the meridians or
the circles of latitudes) and in great_circle_destination() one gives
a B<constant> bearing to follow.
=head2 CAVEAT FOR GREAT CIRCLE FORMULAS
The answers may be off by few percentages because of the irregular
(slightly aspherical) form of the Earth. The errors are at worst
about 0.55%, but generally below 0.3%.
=head2 Real-valued asin and acos
For small inputs asin() and acos() may return complex numbers even
when real numbers would be enough and correct, this happens because of
floating-point inaccuracies. You can see these inaccuracies for
example by trying theses:
print cos(1e-6)**2+sin(1e-6)**2 - 1,"\n";
printf "%.20f", cos(1e-6)**2+sin(1e-6)**2,"\n";
which will print something like this
-1.11022302462516e-16
0.99999999999999988898
even though the expected results are of course exactly zero and one.
The formulas used to compute asin() and acos() are quite sensitive to
this, and therefore they might accidentally slip into the complex
plane even when they should not. To counter this there are two
interfaces that are guaranteed to return a real-valued output.
=over 4
=item asin_real
use Math::Trig qw(asin_real);
$real_angle = asin_real($input_sin);
Return a real-valued arcus sine if the input is between [-1, 1],
B<inclusive> the endpoints. For inputs greater than one, pi/2
is returned. For inputs less than minus one, -pi/2 is returned.
=item acos_real
use Math::Trig qw(acos_real);
$real_angle = acos_real($input_cos);
Return a real-valued arcus cosine if the input is between [-1, 1],
B<inclusive> the endpoints. For inputs greater than one, zero
is returned. For inputs less than minus one, pi is returned.
=back
=head1 BUGS
Saying C<use Math::Trig;> exports many mathematical routines in the
caller environment and even overrides some (C<sin>, C<cos>). This is
construed as a feature by the Authors, actually... ;-)
The code is not optimized for speed, especially because we use
C<Math::Complex> and thus go quite near complex numbers while doing
the computations even when the arguments are not. This, however,
cannot be completely avoided if we want things like C<asin(2)> to give
an answer instead of giving a fatal runtime error.
Do not attempt navigation using these formulas.
L<Math::Complex>
=head1 AUTHORS
Jarkko Hietaniemi <F<jhi!at!iki.fi>>,
Raphael Manfredi <F<Raphael_Manfredi!at!pobox.com>>,
Zefram <zefram@fysh.org>
=head1 LICENSE
This library is free software; you can redistribute it and/or modify
it under the same terms as Perl itself.
=cut
# eof
|