This file is indexed.

/usr/include/mdds/segment_tree_def.inl is in libmdds-dev 0.12.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
/*************************************************************************
*
* Copyright (c) 2015 Kohei Yoshida
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
************************************************************************/

namespace mdds {

template<typename _Key, typename _Data>
segment_tree<_Key, _Data>::segment_tree()
    : m_root_node(NULL)
    , m_valid_tree(false)
{
}

template<typename _Key, typename _Data>
segment_tree<_Key, _Data>::segment_tree(const segment_tree& r)
    : m_segment_data(r.m_segment_data)
    , m_root_node(NULL)
    , m_valid_tree(r.m_valid_tree)
{
    if (m_valid_tree)
        build_tree();
}

template<typename _Key, typename _Data>
segment_tree<_Key, _Data>::~segment_tree()
{
    clear_all_nodes();
}

template<typename _Key, typename _Data>
bool segment_tree<_Key, _Data>::operator==(const segment_tree& r) const
{
    if (m_valid_tree != r.m_valid_tree)
        return false;

    // Sort the data by key values first.
    sorted_segment_map_type seg1(m_segment_data.begin(), m_segment_data.end());
    sorted_segment_map_type seg2(r.m_segment_data.begin(), r.m_segment_data.end());
    typename sorted_segment_map_type::const_iterator itr1 = seg1.begin(), itr1_end = seg1.end();
    typename sorted_segment_map_type::const_iterator itr2 = seg2.begin(), itr2_end = seg2.end();

    for (; itr1 != itr1_end; ++itr1, ++itr2)
    {
        if (itr2 == itr2_end)
            return false;

        if (*itr1 != *itr2)
            return false;
    }
    if (itr2 != itr2_end)
        return false;

    return true;
}

template<typename _Key, typename _Data>
void segment_tree<_Key, _Data>::build_tree()
{
    build_leaf_nodes();
    m_nonleaf_node_pool.clear();

    // Count the number of leaf nodes.
    size_t leaf_count = __st::count_leaf_nodes(m_left_leaf.get(), m_right_leaf.get());

    // Determine the total number of non-leaf nodes needed to build the whole tree.
    size_t nonleaf_count = __st::count_needed_nonleaf_nodes(leaf_count);

    m_nonleaf_node_pool.resize(nonleaf_count);

    mdds::__st::tree_builder<segment_tree> builder(m_nonleaf_node_pool);
    m_root_node = builder.build(m_left_leaf);

    // Start "inserting" all segments from the root.
    typename segment_map_type::const_iterator itr,
        itr_beg = m_segment_data.begin(), itr_end = m_segment_data.end();

    data_node_map_type tagged_node_map;
    for (itr = itr_beg; itr != itr_end; ++itr)
    {
        data_type pdata = itr->first;
        ::std::pair<typename data_node_map_type::iterator, bool> r =
            tagged_node_map.insert(pdata, new node_list_type);
        node_list_type* plist = r.first->second;
        plist->reserve(10);

        descend_tree_and_mark(m_root_node, pdata, itr->second.first, itr->second.second, plist);
    }

    m_tagged_node_map.swap(tagged_node_map);
    m_valid_tree = true;
}

template<typename _Key, typename _Data>
void segment_tree<_Key, _Data>::descend_tree_and_mark(
    __st::node_base* pnode, data_type pdata, key_type begin_key, key_type end_key, node_list_type* plist)
{
    if (!pnode)
        return;

    if (pnode->is_leaf)
    {
        // This is a leaf node.
        node* pleaf = static_cast<node*>(pnode);
        if (begin_key <= pleaf->value_leaf.key && pleaf->value_leaf.key < end_key)
        {
            leaf_value_type& v = pleaf->value_leaf;
            if (!v.data_chain)
                v.data_chain = new data_chain_type;
            v.data_chain->push_back(pdata);
            plist->push_back(pnode);
        }
        return;
    }

    nonleaf_node* pnonleaf = static_cast<nonleaf_node*>(pnode);
    if (end_key < pnonleaf->value_nonleaf.low || pnonleaf->value_nonleaf.high <= begin_key)
        return;

    nonleaf_value_type& v = pnonleaf->value_nonleaf;
    if (begin_key <= v.low && v.high < end_key)
    {
        // mark this non-leaf node and stop.
        if (!v.data_chain)
            v.data_chain = new data_chain_type;
        v.data_chain->push_back(pdata);
        plist->push_back(pnode);
        return;
    }

    descend_tree_and_mark(pnonleaf->left, pdata, begin_key, end_key, plist);
    descend_tree_and_mark(pnonleaf->right, pdata, begin_key, end_key, plist);
}

template<typename _Key, typename _Data>
void segment_tree<_Key, _Data>::build_leaf_nodes()
{
    using namespace std;

    disconnect_leaf_nodes(m_left_leaf.get(), m_right_leaf.get());

    // In 1st pass, collect unique end-point values and sort them.
    vector<key_type> keys_uniq;
    keys_uniq.reserve(m_segment_data.size()*2);
    typename segment_map_type::const_iterator itr, itr_beg = m_segment_data.begin(), itr_end = m_segment_data.end();
    for (itr = itr_beg; itr != itr_end; ++itr)
    {
        keys_uniq.push_back(itr->second.first);
        keys_uniq.push_back(itr->second.second);
    }

    // sort and remove duplicates.
    sort(keys_uniq.begin(), keys_uniq.end());
    keys_uniq.erase(unique(keys_uniq.begin(), keys_uniq.end()), keys_uniq.end());

    create_leaf_node_instances(keys_uniq, m_left_leaf, m_right_leaf);
}

template<typename _Key, typename _Data>
void segment_tree<_Key, _Data>::create_leaf_node_instances(const ::std::vector<key_type>& keys, node_ptr& left, node_ptr& right)
{
    if (keys.empty() || keys.size() < 2)
        // We need at least two keys in order to build tree.
        return;

    typename ::std::vector<key_type>::const_iterator itr = keys.begin(), itr_end = keys.end();

    // left-most node
    left.reset(new node);
    left->value_leaf.key = *itr;

    // move on to next.
    left->next.reset(new node);
    node_ptr prev_node = left;
    node_ptr cur_node = left->next;
    cur_node->prev = prev_node;

    for (++itr; itr != itr_end; ++itr)
    {
        cur_node->value_leaf.key = *itr;

        // move on to next
        cur_node->next.reset(new node);
        prev_node = cur_node;
        cur_node = cur_node->next;
        cur_node->prev = prev_node;
    }

    // Remove the excess node.
    prev_node->next.reset();
    right = prev_node;
}

template<typename _Key, typename _Data>
bool segment_tree<_Key, _Data>::insert(key_type begin_key, key_type end_key, data_type pdata)
{
    if (begin_key >= end_key)
        return false;

    if (m_segment_data.find(pdata) != m_segment_data.end())
        // Insertion of duplicate data is not allowed.
        return false;

    ::std::pair<key_type, key_type> range;
    range.first = begin_key;
    range.second = end_key;
    m_segment_data.insert(typename segment_map_type::value_type(pdata, range));

    m_valid_tree = false;
    return true;
}

template<typename _Key, typename _Data>
bool segment_tree<_Key, _Data>::search(key_type point, search_result_type& result) const
{
    if (!m_valid_tree)
        // Tree is invalidated.
        return false;

    if (!m_root_node)
        // Tree doesn't exist.  Since the tree is flagged valid, this means no
        // segments have been inserted.
        return true;

    search_result_vector_inserter result_inserter(result);
    typedef segment_tree<_Key,_Data> tree_type;
    __st::descend_tree_for_search<
        tree_type, search_result_vector_inserter>(point, m_root_node, result_inserter);
    return true;
}

template<typename _Key, typename _Data>
typename segment_tree<_Key, _Data>::search_result
segment_tree<_Key, _Data>::search(key_type point) const
{
    search_result result;
    if (!m_valid_tree || !m_root_node)
        return result;

    search_result_inserter result_inserter(result);
    typedef segment_tree<_Key,_Data> tree_type;
    __st::descend_tree_for_search<tree_type, search_result_inserter>(
        point, m_root_node, result_inserter);

    return result;
}

template<typename _Key, typename _Data>
void segment_tree<_Key, _Data>::search(key_type point, search_result_base& result) const
{
    if (!m_valid_tree || !m_root_node)
        return;

    search_result_inserter result_inserter(result);
    typedef segment_tree<_Key,_Data> tree_type;
    __st::descend_tree_for_search<tree_type>(point, m_root_node, result_inserter);
}

template<typename _Key, typename _Data>
void segment_tree<_Key, _Data>::remove(data_type pdata)
{
    using namespace std;

    typename data_node_map_type::iterator itr = m_tagged_node_map.find(pdata);
    if (itr != m_tagged_node_map.end())
    {
        // Tagged node list found.  Remove all the tags from the tree nodes.
        node_list_type* plist = itr->second;
        if (!plist)
            return;

        remove_data_from_nodes(plist, pdata);

        // Remove the tags associated with this pointer from the data set.
        m_tagged_node_map.erase(itr);
    }

    // Remove from the segment data array.
    m_segment_data.erase(pdata);
}

template<typename _Key, typename _Data>
void segment_tree<_Key, _Data>::clear()
{
    m_tagged_node_map.clear();
    m_segment_data.clear();
    clear_all_nodes();
    m_valid_tree = false;
}

template<typename _Key, typename _Data>
size_t segment_tree<_Key, _Data>::size() const
{
    return m_segment_data.size();
}

template<typename _Key, typename _Data>
bool segment_tree<_Key, _Data>::empty() const
{
    return m_segment_data.empty();
}

template<typename _Key, typename _Value>
size_t segment_tree<_Key, _Value>::leaf_size() const
{
    return __st::count_leaf_nodes(m_left_leaf.get(), m_right_leaf.get());
}

template<typename _Key, typename _Data>
void segment_tree<_Key, _Data>::remove_data_from_nodes(node_list_type* plist, const data_type pdata)
{
    typename node_list_type::iterator itr = plist->begin(), itr_end = plist->end();
    for (; itr != itr_end; ++itr)
    {
        data_chain_type* chain = NULL;
        __st::node_base* p = *itr;
        if (p->is_leaf)
            chain = static_cast<node*>(p)->value_leaf.data_chain;
        else
            chain = static_cast<nonleaf_node*>(p)->value_nonleaf.data_chain;

        if (!chain)
            continue;

        remove_data_from_chain(*chain, pdata);
    }
}

template<typename _Key, typename _Data>
void segment_tree<_Key, _Data>::remove_data_from_chain(data_chain_type& chain, const data_type pdata)
{
    typename data_chain_type::iterator itr = ::std::find(chain.begin(), chain.end(), pdata);
    if (itr != chain.end())
    {
        *itr = chain.back();
        chain.pop_back();
    }
}

template<typename _Key, typename _Data>
void segment_tree<_Key, _Data>::clear_all_nodes()
{
    disconnect_leaf_nodes(m_left_leaf.get(), m_right_leaf.get());
    m_nonleaf_node_pool.clear();
    m_left_leaf.reset();
    m_right_leaf.reset();
    m_root_node = NULL;
}

#ifdef MDDS_UNIT_TEST
template<typename _Key, typename _Data>
void segment_tree<_Key, _Data>::dump_tree() const
{
    using ::std::cout;
    using ::std::endl;

    if (!m_valid_tree)
        assert(!"attempted to dump an invalid tree!");

    cout << "dump tree ------------------------------------------------------" << endl;
    size_t node_count = mdds::__st::tree_dumper<node, nonleaf_node>::dump(m_root_node);
    size_t node_instance_count = node::get_instance_count();

    cout << "tree node count = " << node_count << "    node instance count = " << node_instance_count << endl;
}

template<typename _Key, typename _Data>
void segment_tree<_Key, _Data>::dump_leaf_nodes() const
{
    using ::std::cout;
    using ::std::endl;

    cout << "dump leaf nodes ------------------------------------------------" << endl;

    node* p = m_left_leaf.get();
    while (p)
    {
        print_leaf_value(p->value_leaf);
        p = p->next.get();
    }
    cout << "  node instance count = " << node::get_instance_count() << endl;
}

template<typename _Key, typename _Data>
void segment_tree<_Key, _Data>::dump_segment_data() const
{
    using namespace std;
    cout << "dump segment data ----------------------------------------------" << endl;

    segment_map_printer func;
    for_each(m_segment_data.begin(), m_segment_data.end(), func);
}

template<typename _Key, typename _Data>
bool segment_tree<_Key, _Data>::verify_node_lists() const
{
    using namespace std;

    typename data_node_map_type::const_iterator
        itr = m_tagged_node_map.begin(), itr_end = m_tagged_node_map.end();
    for (; itr != itr_end; ++itr)
    {
        // Print stored nodes.
        cout << "node list " << itr->first->name << ": ";
        const node_list_type* plist = itr->second;
        assert(plist);
        node_printer func;
        for_each(plist->begin(), plist->end(), func);
        cout << endl;

        // Verify that all of these nodes have the data pointer.
        if (!has_data_pointer(*plist, itr->first))
            return false;
    }
    return true;
}

template<typename _Key, typename _Data>
bool segment_tree<_Key, _Data>::verify_leaf_nodes(const ::std::vector<leaf_node_check>& checks) const
{
    using namespace std;

    node* cur_node = m_left_leaf.get();
    typename ::std::vector<leaf_node_check>::const_iterator itr = checks.begin(), itr_end = checks.end();
    for (; itr != itr_end; ++itr)
    {
        if (!cur_node)
            // Position past the right-mode node.  Invalid.
            return false;

        if (cur_node->value_leaf.key != itr->key)
            // Key values differ.
            return false;

        if (itr->data_chain.empty())
        {
            if (cur_node->value_leaf.data_chain)
                // The data chain should be empty (i.e. the pointer should be NULL).
                return false;
        }
        else
        {
            if (!cur_node->value_leaf.data_chain)
                // This node should have data pointers!
                return false;

            data_chain_type chain1 = itr->data_chain;
            data_chain_type chain2 = *cur_node->value_leaf.data_chain;

            if (chain1.size() != chain2.size())
                return false;

            ::std::vector<data_type> test1, test2;
            test1.reserve(chain1.size());
            test2.reserve(chain2.size());
            copy(chain1.begin(), chain1.end(), back_inserter(test1));
            copy(chain2.begin(), chain2.end(), back_inserter(test2));

            // Sort both arrays before comparing them.
            sort(test1.begin(), test1.end());
            sort(test2.begin(), test2.end());

            if (test1 != test2)
                return false;
        }

        cur_node = cur_node->next.get();
    }

    if (cur_node)
        // At this point, we expect the current node to be at the position
        // past the right-most node, which is NULL.
        return false;

    return true;
}

template<typename _Key, typename _Data>
bool segment_tree<_Key, _Data>::verify_segment_data(const segment_map_type& checks) const
{
    // Sort the data by key values first.
    sorted_segment_map_type seg1(checks.begin(), checks.end());
    sorted_segment_map_type seg2(m_segment_data.begin(), m_segment_data.end());

    typename sorted_segment_map_type::const_iterator itr1 = seg1.begin(), itr1_end = seg1.end();
    typename sorted_segment_map_type::const_iterator itr2 = seg2.begin(), itr2_end = seg2.end();
    for (; itr1 != itr1_end; ++itr1, ++itr2)
    {
        if (itr2 == itr2_end)
            return false;

        if (*itr1 != *itr2)
            return false;
    }
    if (itr2 != itr2_end)
        return false;

    return true;
}

template<typename _Key, typename _Data>
bool segment_tree<_Key, _Data>::has_data_pointer(const node_list_type& node_list, const data_type pdata)
{
    using namespace std;

    typename node_list_type::const_iterator
        itr = node_list.begin(), itr_end = node_list.end();

    for (; itr != itr_end; ++itr)
    {
        // Check each node, and make sure each node has the pdata pointer
        // listed.
        const __st::node_base* pnode = *itr;
        const data_chain_type* chain = NULL;
        if (pnode->is_leaf)
            chain = static_cast<const node*>(pnode)->value_leaf.data_chain;
        else
            chain = static_cast<const nonleaf_node*>(pnode)->value_nonleaf.data_chain;

        if (!chain)
            return false;

        if (find(chain->begin(), chain->end(), pdata) == chain->end())
            return false;
    }
    return true;
}

template<typename _Key, typename _Data>
void segment_tree<_Key, _Data>::print_leaf_value(const leaf_value_type& v)
{
    using namespace std;
    cout << v.key << ": { ";
    if (v.data_chain)
    {
        const data_chain_type* pchain = v.data_chain;
        typename data_chain_type::const_iterator itr, itr_beg = pchain->begin(), itr_end = pchain->end();
        for (itr = itr_beg; itr != itr_end; ++itr)
        {
            if (itr != itr_beg)
                cout << ", ";
            cout << (*itr)->name;
        }
    }
    cout << " }" << endl;
}
#endif

}