/usr/include/nettle/macros.h is in nettle-dev 3.2-1ubuntu0.16.04.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 | /* macros.h
Copyright (C) 2001, 2010 Niels Möller
This file is part of GNU Nettle.
GNU Nettle is free software: you can redistribute it and/or
modify it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your
option) any later version.
or both in parallel, as here.
GNU Nettle is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received copies of the GNU General Public License and
the GNU Lesser General Public License along with this program. If
not, see http://www.gnu.org/licenses/.
*/
#ifndef NETTLE_MACROS_H_INCLUDED
#define NETTLE_MACROS_H_INCLUDED
/* Reads a 64-bit integer, in network, big-endian, byte order */
#define READ_UINT64(p) \
( (((uint64_t) (p)[0]) << 56) \
| (((uint64_t) (p)[1]) << 48) \
| (((uint64_t) (p)[2]) << 40) \
| (((uint64_t) (p)[3]) << 32) \
| (((uint64_t) (p)[4]) << 24) \
| (((uint64_t) (p)[5]) << 16) \
| (((uint64_t) (p)[6]) << 8) \
| ((uint64_t) (p)[7]))
#define WRITE_UINT64(p, i) \
do { \
(p)[0] = ((i) >> 56) & 0xff; \
(p)[1] = ((i) >> 48) & 0xff; \
(p)[2] = ((i) >> 40) & 0xff; \
(p)[3] = ((i) >> 32) & 0xff; \
(p)[4] = ((i) >> 24) & 0xff; \
(p)[5] = ((i) >> 16) & 0xff; \
(p)[6] = ((i) >> 8) & 0xff; \
(p)[7] = (i) & 0xff; \
} while(0)
/* Reads a 32-bit integer, in network, big-endian, byte order */
#define READ_UINT32(p) \
( (((uint32_t) (p)[0]) << 24) \
| (((uint32_t) (p)[1]) << 16) \
| (((uint32_t) (p)[2]) << 8) \
| ((uint32_t) (p)[3]))
#define WRITE_UINT32(p, i) \
do { \
(p)[0] = ((i) >> 24) & 0xff; \
(p)[1] = ((i) >> 16) & 0xff; \
(p)[2] = ((i) >> 8) & 0xff; \
(p)[3] = (i) & 0xff; \
} while(0)
/* Analogous macros, for 24 and 16 bit numbers */
#define READ_UINT24(p) \
( (((uint32_t) (p)[0]) << 16) \
| (((uint32_t) (p)[1]) << 8) \
| ((uint32_t) (p)[2]))
#define WRITE_UINT24(p, i) \
do { \
(p)[0] = ((i) >> 16) & 0xff; \
(p)[1] = ((i) >> 8) & 0xff; \
(p)[2] = (i) & 0xff; \
} while(0)
#define READ_UINT16(p) \
( (((uint32_t) (p)[0]) << 8) \
| ((uint32_t) (p)[1]))
#define WRITE_UINT16(p, i) \
do { \
(p)[0] = ((i) >> 8) & 0xff; \
(p)[1] = (i) & 0xff; \
} while(0)
/* And the other, little-endian, byteorder */
#define LE_READ_UINT64(p) \
( (((uint64_t) (p)[7]) << 56) \
| (((uint64_t) (p)[6]) << 48) \
| (((uint64_t) (p)[5]) << 40) \
| (((uint64_t) (p)[4]) << 32) \
| (((uint64_t) (p)[3]) << 24) \
| (((uint64_t) (p)[2]) << 16) \
| (((uint64_t) (p)[1]) << 8) \
| ((uint64_t) (p)[0]))
#define LE_WRITE_UINT64(p, i) \
do { \
(p)[7] = ((i) >> 56) & 0xff; \
(p)[6] = ((i) >> 48) & 0xff; \
(p)[5] = ((i) >> 40) & 0xff; \
(p)[4] = ((i) >> 32) & 0xff; \
(p)[3] = ((i) >> 24) & 0xff; \
(p)[2] = ((i) >> 16) & 0xff; \
(p)[1] = ((i) >> 8) & 0xff; \
(p)[0] = (i) & 0xff; \
} while (0)
#define LE_READ_UINT32(p) \
( (((uint32_t) (p)[3]) << 24) \
| (((uint32_t) (p)[2]) << 16) \
| (((uint32_t) (p)[1]) << 8) \
| ((uint32_t) (p)[0]))
#define LE_WRITE_UINT32(p, i) \
do { \
(p)[3] = ((i) >> 24) & 0xff; \
(p)[2] = ((i) >> 16) & 0xff; \
(p)[1] = ((i) >> 8) & 0xff; \
(p)[0] = (i) & 0xff; \
} while(0)
/* Analogous macros, for 16 bit numbers */
#define LE_READ_UINT16(p) \
( (((uint32_t) (p)[1]) << 8) \
| ((uint32_t) (p)[0]))
#define LE_WRITE_UINT16(p, i) \
do { \
(p)[1] = ((i) >> 8) & 0xff; \
(p)[0] = (i) & 0xff; \
} while(0)
/* Macro to make it easier to loop over several blocks. */
#define FOR_BLOCKS(length, dst, src, blocksize) \
assert( !((length) % (blocksize))); \
for (; (length); ((length) -= (blocksize), \
(dst) += (blocksize), \
(src) += (blocksize)) )
/* The masking of the right shift is needed to allow n == 0 (using
just 32 - n and 64 - n results in undefined behaviour). Most uses
of these macros use a constant and non-zero rotation count. */
#define ROTL32(n,x) (((x)<<(n)) | ((x)>>((-(n)&31))))
#define ROTL64(n,x) (((x)<<(n)) | ((x)>>((-(n))&63)))
/* Requires that size > 0 */
#define INCREMENT(size, ctr) \
do { \
unsigned increment_i = (size) - 1; \
if (++(ctr)[increment_i] == 0) \
while (increment_i > 0 \
&& ++(ctr)[--increment_i] == 0 ) \
; \
} while (0)
/* Helper macro for Merkle-Damgård hash functions. Assumes the context
structs includes the following fields:
uint8_t block[...]; // Buffer holding one block
unsigned int index; // Index into block
*/
/* Currently used by sha512 (and sha384) only. */
#define MD_INCR(ctx) ((ctx)->count_high += !++(ctx)->count_low)
/* Takes the compression function f as argument. NOTE: also clobbers
length and data. */
#define MD_UPDATE(ctx, length, data, f, incr) \
do { \
if ((ctx)->index) \
{ \
/* Try to fill partial block */ \
unsigned __md_left = sizeof((ctx)->block) - (ctx)->index; \
if ((length) < __md_left) \
{ \
memcpy((ctx)->block + (ctx)->index, (data), (length)); \
(ctx)->index += (length); \
goto __md_done; /* Finished */ \
} \
else \
{ \
memcpy((ctx)->block + (ctx)->index, (data), __md_left); \
\
f((ctx), (ctx)->block); \
(incr); \
\
(data) += __md_left; \
(length) -= __md_left; \
} \
} \
while ((length) >= sizeof((ctx)->block)) \
{ \
f((ctx), (data)); \
(incr); \
\
(data) += sizeof((ctx)->block); \
(length) -= sizeof((ctx)->block); \
} \
memcpy ((ctx)->block, (data), (length)); \
(ctx)->index = (length); \
__md_done: \
; \
} while (0)
/* Pads the block to a block boundary with the bit pattern 1 0*,
leaving size octets for the length field at the end. If needed,
compresses the block and starts a new one. */
#define MD_PAD(ctx, size, f) \
do { \
unsigned __md_i; \
__md_i = (ctx)->index; \
\
/* Set the first char of padding to 0x80. This is safe since there \
is always at least one byte free */ \
\
assert(__md_i < sizeof((ctx)->block)); \
(ctx)->block[__md_i++] = 0x80; \
\
if (__md_i > (sizeof((ctx)->block) - (size))) \
{ /* No room for length in this block. Process it and \
pad with another one */ \
memset((ctx)->block + __md_i, 0, sizeof((ctx)->block) - __md_i); \
\
f((ctx), (ctx)->block); \
__md_i = 0; \
} \
memset((ctx)->block + __md_i, 0, \
sizeof((ctx)->block) - (size) - __md_i); \
\
} while (0)
#endif /* NETTLE_MACROS_H_INCLUDED */
|