This file is indexed.

/usr/include/kj/units.h is in libcapnp-dev 0.5.3-2ubuntu1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

// This file contains types which are intended to help detect incorrect usage at compile
// time, but should then be optimized down to basic primitives (usually, integers) by the
// compiler.

#ifndef KJ_UNITS_H_
#define KJ_UNITS_H_

#if defined(__GNUC__) && !KJ_HEADER_WARNINGS
#pragma GCC system_header
#endif

#include "common.h"

namespace kj {

// =======================================================================================
// IDs

template <typename UnderlyingType, typename Label>
struct Id {
  // A type-safe numeric ID.  `UnderlyingType` is the underlying integer representation.  `Label`
  // distinguishes this Id from other Id types.  Sample usage:
  //
  //   class Foo;
  //   typedef Id<uint, Foo> FooId;
  //
  //   class Bar;
  //   typedef Id<uint, Bar> BarId;
  //
  // You can now use the FooId and BarId types without any possibility of accidentally using a
  // FooId when you really wanted a BarId or vice-versa.

  UnderlyingType value;

  inline constexpr Id(): value(0) {}
  inline constexpr explicit Id(int value): value(value) {}

  inline constexpr bool operator==(const Id& other) const { return value == other.value; }
  inline constexpr bool operator!=(const Id& other) const { return value != other.value; }
  inline constexpr bool operator<=(const Id& other) const { return value <= other.value; }
  inline constexpr bool operator>=(const Id& other) const { return value >= other.value; }
  inline constexpr bool operator< (const Id& other) const { return value <  other.value; }
  inline constexpr bool operator> (const Id& other) const { return value >  other.value; }
};

// =======================================================================================
// Quantity and UnitRatio -- implement unit analysis via the type system

#if !_MSC_VER
// TODO(msvc): MSVC has trouble with this intense templating. Luckily Cap'n Proto can deal with
//   using regular integers in place of Quantity, so we can just skip all this.

template <typename T> constexpr bool isIntegral() { return false; }
template <> constexpr bool isIntegral<char>() { return true; }
template <> constexpr bool isIntegral<signed char>() { return true; }
template <> constexpr bool isIntegral<short>() { return true; }
template <> constexpr bool isIntegral<int>() { return true; }
template <> constexpr bool isIntegral<long>() { return true; }
template <> constexpr bool isIntegral<long long>() { return true; }
template <> constexpr bool isIntegral<unsigned char>() { return true; }
template <> constexpr bool isIntegral<unsigned short>() { return true; }
template <> constexpr bool isIntegral<unsigned int>() { return true; }
template <> constexpr bool isIntegral<unsigned long>() { return true; }
template <> constexpr bool isIntegral<unsigned long long>() { return true; }

template <typename Number, typename Unit1, typename Unit2>
class UnitRatio {
  // A multiplier used to convert Quantities of one unit to Quantities of another unit.  See
  // Quantity, below.
  //
  // Construct this type by dividing one Quantity by another of a different unit.  Use this type
  // by multiplying it by a Quantity, or dividing a Quantity by it.

  static_assert(isIntegral<Number>(), "Underlying type for UnitRatio must be integer.");

public:
  inline UnitRatio() {}

  constexpr explicit UnitRatio(Number unit1PerUnit2): unit1PerUnit2(unit1PerUnit2) {}
  // This constructor was intended to be private, but GCC complains about it being private in a
  // bunch of places that don't appear to even call it, so I made it public.  Oh well.

  template <typename OtherNumber>
  inline constexpr UnitRatio(const UnitRatio<OtherNumber, Unit1, Unit2>& other)
      : unit1PerUnit2(other.unit1PerUnit2) {}

  template <typename OtherNumber>
  inline constexpr UnitRatio<decltype(Number(1)+OtherNumber(1)), Unit1, Unit2>
      operator+(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
    return UnitRatio<decltype(Number(1)+OtherNumber(1)), Unit1, Unit2>(
        unit1PerUnit2 + other.unit1PerUnit2);
  }
  template <typename OtherNumber>
  inline constexpr UnitRatio<decltype(Number(1)-OtherNumber(1)), Unit1, Unit2>
      operator-(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
    return UnitRatio<decltype(Number(1)-OtherNumber(1)), Unit1, Unit2>(
        unit1PerUnit2 - other.unit1PerUnit2);
  }

  template <typename OtherNumber, typename Unit3>
  inline constexpr UnitRatio<decltype(Number(1)*OtherNumber(1)), Unit3, Unit2>
      operator*(UnitRatio<OtherNumber, Unit3, Unit1> other) const {
    // U1 / U2 * U3 / U1 = U3 / U2
    return UnitRatio<decltype(Number(1)*OtherNumber(1)), Unit3, Unit2>(
        unit1PerUnit2 * other.unit1PerUnit2);
  }
  template <typename OtherNumber, typename Unit3>
  inline constexpr UnitRatio<decltype(Number(1)*OtherNumber(1)), Unit1, Unit3>
      operator*(UnitRatio<OtherNumber, Unit2, Unit3> other) const {
    // U1 / U2 * U2 / U3 = U1 / U3
    return UnitRatio<decltype(Number(1)*OtherNumber(1)), Unit1, Unit3>(
        unit1PerUnit2 * other.unit1PerUnit2);
  }

  template <typename OtherNumber, typename Unit3>
  inline constexpr UnitRatio<decltype(Number(1)*OtherNumber(1)), Unit3, Unit2>
      operator/(UnitRatio<OtherNumber, Unit1, Unit3> other) const {
    // (U1 / U2) / (U1 / U3) = U3 / U2
    return UnitRatio<decltype(Number(1)*OtherNumber(1)), Unit3, Unit2>(
        unit1PerUnit2 / other.unit1PerUnit2);
  }
  template <typename OtherNumber, typename Unit3>
  inline constexpr UnitRatio<decltype(Number(1)*OtherNumber(1)), Unit1, Unit3>
      operator/(UnitRatio<OtherNumber, Unit3, Unit2> other) const {
    // (U1 / U2) / (U3 / U2) = U1 / U3
    return UnitRatio<decltype(Number(1)*OtherNumber(1)), Unit1, Unit3>(
        unit1PerUnit2 / other.unit1PerUnit2);
  }

  template <typename OtherNumber>
  inline decltype(Number(1) / OtherNumber(1))
      operator/(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
    return unit1PerUnit2 / other.unit1PerUnit2;
  }

  inline bool operator==(UnitRatio other) const { return unit1PerUnit2 == other.unit1PerUnit2; }
  inline bool operator!=(UnitRatio other) const { return unit1PerUnit2 != other.unit1PerUnit2; }

private:
  Number unit1PerUnit2;

  template <typename OtherNumber, typename OtherUnit>
  friend class Quantity;
  template <typename OtherNumber, typename OtherUnit1, typename OtherUnit2>
  friend class UnitRatio;

  template <typename N1, typename N2, typename U1, typename U2>
  friend inline constexpr UnitRatio<decltype(N1(1) * N2(1)), U1, U2>
      operator*(N1, UnitRatio<N2, U1, U2>);
};

template <typename N1, typename N2, typename U1, typename U2>
inline constexpr UnitRatio<decltype(N1(1) * N2(1)), U1, U2>
    operator*(N1 n, UnitRatio<N2, U1, U2> r) {
  return UnitRatio<decltype(N1(1) * N2(1)), U1, U2>(n * r.unit1PerUnit2);
}

template <typename Number, typename Unit>
class Quantity {
  // A type-safe numeric quantity, specified in terms of some unit.  Two Quantities cannot be used
  // in arithmetic unless they use the same unit.  The `Unit` type parameter is only used to prevent
  // accidental mixing of units; this type is never instantiated and can very well be incomplete.
  // `Number` is the underlying primitive numeric type.
  //
  // Quantities support most basic arithmetic operators, intelligently handling units, and
  // automatically casting the underlying type in the same way that the compiler would.
  //
  // To convert a primitive number to a Quantity, multiply it by unit<Quantity<N, U>>().
  // To convert a Quantity to a primitive number, divide it by unit<Quantity<N, U>>().
  // To convert a Quantity of one unit to another unit, multiply or divide by a UnitRatio.
  //
  // The Quantity class is not well-suited to hardcore physics as it does not allow multiplying
  // one quantity by another.  For example, multiplying meters by meters won't get you square
  // meters; it will get you a compiler error.  It would be interesting to see if template
  // metaprogramming could properly deal with such things but this isn't needed for the present
  // use case.
  //
  // Sample usage:
  //
  //   class SecondsLabel;
  //   typedef Quantity<double, SecondsLabel> Seconds;
  //   constexpr Seconds SECONDS = unit<Seconds>();
  //
  //   class MinutesLabel;
  //   typedef Quantity<double, MinutesLabel> Minutes;
  //   constexpr Minutes MINUTES = unit<Minutes>();
  //
  //   constexpr UnitRatio<double, SecondsLabel, MinutesLabel> SECONDS_PER_MINUTE =
  //       60 * SECONDS / MINUTES;
  //
  //   void waitFor(Seconds seconds) {
  //     sleep(seconds / SECONDS);
  //   }
  //   void waitFor(Minutes minutes) {
  //     waitFor(minutes * SECONDS_PER_MINUTE);
  //   }
  //
  //   void waitThreeMinutes() {
  //     waitFor(3 * MINUTES);
  //   }

  static_assert(isIntegral<Number>(), "Underlying type for Quantity must be integer.");

public:
  inline constexpr Quantity() {}

  inline constexpr Quantity(decltype(maxValue)): value(maxValue) {}
  inline constexpr Quantity(decltype(minValue)): value(minValue) {}
  // Allow initialization from maxValue and minValue.

  inline explicit constexpr Quantity(Number value): value(value) {}
  // This constructor was intended to be private, but GCC complains about it being private in a
  // bunch of places that don't appear to even call it, so I made it public.  Oh well.

  template <typename OtherNumber>
  inline constexpr Quantity(const Quantity<OtherNumber, Unit>& other)
      : value(other.value) {}

  template <typename OtherNumber>
  inline constexpr Quantity<decltype(Number(1) + OtherNumber(1)), Unit>
      operator+(const Quantity<OtherNumber, Unit>& other) const {
    return Quantity<decltype(Number(1) + OtherNumber(1)), Unit>(value + other.value);
  }
  template <typename OtherNumber>
  inline constexpr Quantity<decltype(Number(1) - OtherNumber(1)), Unit>
      operator-(const Quantity<OtherNumber, Unit>& other) const {
    return Quantity<decltype(Number(1) - OtherNumber(1)), Unit>(value - other.value);
  }
  template <typename OtherNumber>
  inline constexpr Quantity<decltype(Number(1) * OtherNumber(1)), Unit>
      operator*(OtherNumber other) const {
    static_assert(isIntegral<OtherNumber>(), "Multiplied Quantity by non-integer.");
    return Quantity<decltype(Number(1) * other), Unit>(value * other);
  }
  template <typename OtherNumber>
  inline constexpr Quantity<decltype(Number(1) / OtherNumber(1)), Unit>
      operator/(OtherNumber other) const {
    static_assert(isIntegral<OtherNumber>(), "Divided Quantity by non-integer.");
    return Quantity<decltype(Number(1) / other), Unit>(value / other);
  }
  template <typename OtherNumber>
  inline constexpr decltype(Number(1) / OtherNumber(1))
      operator/(const Quantity<OtherNumber, Unit>& other) const {
    return value / other.value;
  }
  template <typename OtherNumber>
  inline constexpr decltype(Number(1) % OtherNumber(1))
      operator%(const Quantity<OtherNumber, Unit>& other) const {
    return value % other.value;
  }

  template <typename OtherNumber, typename OtherUnit>
  inline constexpr Quantity<decltype(Number(1) * OtherNumber(1)), OtherUnit>
      operator*(const UnitRatio<OtherNumber, OtherUnit, Unit>& ratio) const {
    return Quantity<decltype(Number(1) * OtherNumber(1)), OtherUnit>(
        value * ratio.unit1PerUnit2);
  }
  template <typename OtherNumber, typename OtherUnit>
  inline constexpr Quantity<decltype(Number(1) / OtherNumber(1)), OtherUnit>
      operator/(const UnitRatio<OtherNumber, Unit, OtherUnit>& ratio) const {
    return Quantity<decltype(Number(1) / OtherNumber(1)), OtherUnit>(
        value / ratio.unit1PerUnit2);
  }
  template <typename OtherNumber, typename OtherUnit>
  inline constexpr Quantity<decltype(Number(1) % OtherNumber(1)), Unit>
      operator%(const UnitRatio<OtherNumber, Unit, OtherUnit>& ratio) const {
    return Quantity<decltype(Number(1) % OtherNumber(1)), Unit>(
        value % ratio.unit1PerUnit2);
  }
  template <typename OtherNumber, typename OtherUnit>
  inline constexpr UnitRatio<decltype(Number(1) / OtherNumber(1)), Unit, OtherUnit>
      operator/(const Quantity<OtherNumber, OtherUnit>& other) const {
    return UnitRatio<decltype(Number(1) / OtherNumber(1)), Unit, OtherUnit>(value / other.value);
  }

  template <typename OtherNumber>
  inline constexpr bool operator==(const Quantity<OtherNumber, Unit>& other) const {
    return value == other.value;
  }
  template <typename OtherNumber>
  inline constexpr bool operator!=(const Quantity<OtherNumber, Unit>& other) const {
    return value != other.value;
  }
  template <typename OtherNumber>
  inline constexpr bool operator<=(const Quantity<OtherNumber, Unit>& other) const {
    return value <= other.value;
  }
  template <typename OtherNumber>
  inline constexpr bool operator>=(const Quantity<OtherNumber, Unit>& other) const {
    return value >= other.value;
  }
  template <typename OtherNumber>
  inline constexpr bool operator<(const Quantity<OtherNumber, Unit>& other) const {
    return value < other.value;
  }
  template <typename OtherNumber>
  inline constexpr bool operator>(const Quantity<OtherNumber, Unit>& other) const {
    return value > other.value;
  }

  template <typename OtherNumber>
  inline Quantity& operator+=(const Quantity<OtherNumber, Unit>& other) {
    value += other.value;
    return *this;
  }
  template <typename OtherNumber>
  inline Quantity& operator-=(const Quantity<OtherNumber, Unit>& other) {
    value -= other.value;
    return *this;
  }
  template <typename OtherNumber>
  inline Quantity& operator*=(OtherNumber other) {
    value *= other;
    return *this;
  }
  template <typename OtherNumber>
  inline Quantity& operator/=(OtherNumber other) {
    value /= other.value;
    return *this;
  }

private:
  Number value;

  template <typename OtherNumber, typename OtherUnit>
  friend class Quantity;

  template <typename Number1, typename Number2, typename Unit2>
  friend inline constexpr auto operator*(Number1 a, Quantity<Number2, Unit2> b)
      -> Quantity<decltype(Number1(1) * Number2(1)), Unit2>;

  template <typename T>
  friend inline constexpr T unit();
};

#endif  // !_MSC_VER

template <typename T>
inline constexpr T unit() { return T(1); }
// unit<Quantity<T, U>>() returns a Quantity of value 1.  It also, intentionally, works on basic
// numeric types.

#if !_MSC_VER

template <typename Number1, typename Number2, typename Unit>
inline constexpr auto operator*(Number1 a, Quantity<Number2, Unit> b)
    -> Quantity<decltype(Number1(1) * Number2(1)), Unit> {
  return Quantity<decltype(Number1(1) * Number2(1)), Unit>(a * b.value);
}

template <typename Number1, typename Number2, typename Unit, typename Unit2>
inline constexpr auto operator*(UnitRatio<Number1, Unit2, Unit> ratio,
    Quantity<Number2, Unit> measure)
    -> decltype(measure * ratio) {
  return measure * ratio;
}

// =======================================================================================
// Absolute measures

template <typename T, typename Label>
class Absolute {
  // Wraps some other value -- typically a Quantity -- but represents a value measured based on
  // some absolute origin.  For exmaple, if `Duration` is a type representing a time duration,
  // Absolute<Duration, UnixEpoch> might be a calendar date.
  //
  // Since Absolute represents measurements relative to some arbitrary origin, the only sensible
  // arithmetic to perform on them is addition and subtraction.

  // TODO(someday):  Do the same automatic expansion of integer width that Quantity does?  Doesn't
  //   matter for our time use case, where we always use 64-bit anyway.  Note that fixing this
  //   would implicitly allow things like multiplying an Absolute by a UnitRatio to change its
  //   units, which is actually totally logical and kind of neat.

public:
  inline constexpr Absolute operator+(const T& other) const { return Absolute(value + other); }
  inline constexpr Absolute operator-(const T& other) const { return Absolute(value - other); }
  inline constexpr T operator-(const Absolute& other) const { return value - other.value; }

  inline Absolute& operator+=(const T& other) { value += other; return *this; }
  inline Absolute& operator-=(const T& other) { value -= other; return *this; }

  inline constexpr bool operator==(const Absolute& other) const { return value == other.value; }
  inline constexpr bool operator!=(const Absolute& other) const { return value != other.value; }
  inline constexpr bool operator<=(const Absolute& other) const { return value <= other.value; }
  inline constexpr bool operator>=(const Absolute& other) const { return value >= other.value; }
  inline constexpr bool operator< (const Absolute& other) const { return value <  other.value; }
  inline constexpr bool operator> (const Absolute& other) const { return value >  other.value; }

private:
  T value;

  explicit constexpr Absolute(T value): value(value) {}

  template <typename U>
  friend inline constexpr U origin();
};

template <typename T, typename Label>
inline constexpr Absolute<T, Label> operator+(const T& a, const Absolute<T, Label>& b) {
  return b + a;
}

template <typename T> struct UnitOf_ { typedef T Type; };
template <typename T, typename Label> struct UnitOf_<Absolute<T, Label>> { typedef T Type; };
template <typename T>
using UnitOf = typename UnitOf_<T>::Type;
// UnitOf<Absolute<T, U>> is T.  UnitOf<AnythingElse> is AnythingElse.

template <typename T>
inline constexpr T origin() { return T(0 * unit<UnitOf<T>>()); }
// origin<Absolute<T, U>>() returns an Absolute of value 0.  It also, intentionally, works on basic
// numeric types.

#endif  // !_MSC_VER

}  // namespace kj

#endif  // KJ_UNITS_H_