/usr/include/kj/units.h is in libcapnp-dev 0.5.3-2ubuntu1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 | // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// This file contains types which are intended to help detect incorrect usage at compile
// time, but should then be optimized down to basic primitives (usually, integers) by the
// compiler.
#ifndef KJ_UNITS_H_
#define KJ_UNITS_H_
#if defined(__GNUC__) && !KJ_HEADER_WARNINGS
#pragma GCC system_header
#endif
#include "common.h"
namespace kj {
// =======================================================================================
// IDs
template <typename UnderlyingType, typename Label>
struct Id {
// A type-safe numeric ID. `UnderlyingType` is the underlying integer representation. `Label`
// distinguishes this Id from other Id types. Sample usage:
//
// class Foo;
// typedef Id<uint, Foo> FooId;
//
// class Bar;
// typedef Id<uint, Bar> BarId;
//
// You can now use the FooId and BarId types without any possibility of accidentally using a
// FooId when you really wanted a BarId or vice-versa.
UnderlyingType value;
inline constexpr Id(): value(0) {}
inline constexpr explicit Id(int value): value(value) {}
inline constexpr bool operator==(const Id& other) const { return value == other.value; }
inline constexpr bool operator!=(const Id& other) const { return value != other.value; }
inline constexpr bool operator<=(const Id& other) const { return value <= other.value; }
inline constexpr bool operator>=(const Id& other) const { return value >= other.value; }
inline constexpr bool operator< (const Id& other) const { return value < other.value; }
inline constexpr bool operator> (const Id& other) const { return value > other.value; }
};
// =======================================================================================
// Quantity and UnitRatio -- implement unit analysis via the type system
#if !_MSC_VER
// TODO(msvc): MSVC has trouble with this intense templating. Luckily Cap'n Proto can deal with
// using regular integers in place of Quantity, so we can just skip all this.
template <typename T> constexpr bool isIntegral() { return false; }
template <> constexpr bool isIntegral<char>() { return true; }
template <> constexpr bool isIntegral<signed char>() { return true; }
template <> constexpr bool isIntegral<short>() { return true; }
template <> constexpr bool isIntegral<int>() { return true; }
template <> constexpr bool isIntegral<long>() { return true; }
template <> constexpr bool isIntegral<long long>() { return true; }
template <> constexpr bool isIntegral<unsigned char>() { return true; }
template <> constexpr bool isIntegral<unsigned short>() { return true; }
template <> constexpr bool isIntegral<unsigned int>() { return true; }
template <> constexpr bool isIntegral<unsigned long>() { return true; }
template <> constexpr bool isIntegral<unsigned long long>() { return true; }
template <typename Number, typename Unit1, typename Unit2>
class UnitRatio {
// A multiplier used to convert Quantities of one unit to Quantities of another unit. See
// Quantity, below.
//
// Construct this type by dividing one Quantity by another of a different unit. Use this type
// by multiplying it by a Quantity, or dividing a Quantity by it.
static_assert(isIntegral<Number>(), "Underlying type for UnitRatio must be integer.");
public:
inline UnitRatio() {}
constexpr explicit UnitRatio(Number unit1PerUnit2): unit1PerUnit2(unit1PerUnit2) {}
// This constructor was intended to be private, but GCC complains about it being private in a
// bunch of places that don't appear to even call it, so I made it public. Oh well.
template <typename OtherNumber>
inline constexpr UnitRatio(const UnitRatio<OtherNumber, Unit1, Unit2>& other)
: unit1PerUnit2(other.unit1PerUnit2) {}
template <typename OtherNumber>
inline constexpr UnitRatio<decltype(Number(1)+OtherNumber(1)), Unit1, Unit2>
operator+(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
return UnitRatio<decltype(Number(1)+OtherNumber(1)), Unit1, Unit2>(
unit1PerUnit2 + other.unit1PerUnit2);
}
template <typename OtherNumber>
inline constexpr UnitRatio<decltype(Number(1)-OtherNumber(1)), Unit1, Unit2>
operator-(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
return UnitRatio<decltype(Number(1)-OtherNumber(1)), Unit1, Unit2>(
unit1PerUnit2 - other.unit1PerUnit2);
}
template <typename OtherNumber, typename Unit3>
inline constexpr UnitRatio<decltype(Number(1)*OtherNumber(1)), Unit3, Unit2>
operator*(UnitRatio<OtherNumber, Unit3, Unit1> other) const {
// U1 / U2 * U3 / U1 = U3 / U2
return UnitRatio<decltype(Number(1)*OtherNumber(1)), Unit3, Unit2>(
unit1PerUnit2 * other.unit1PerUnit2);
}
template <typename OtherNumber, typename Unit3>
inline constexpr UnitRatio<decltype(Number(1)*OtherNumber(1)), Unit1, Unit3>
operator*(UnitRatio<OtherNumber, Unit2, Unit3> other) const {
// U1 / U2 * U2 / U3 = U1 / U3
return UnitRatio<decltype(Number(1)*OtherNumber(1)), Unit1, Unit3>(
unit1PerUnit2 * other.unit1PerUnit2);
}
template <typename OtherNumber, typename Unit3>
inline constexpr UnitRatio<decltype(Number(1)*OtherNumber(1)), Unit3, Unit2>
operator/(UnitRatio<OtherNumber, Unit1, Unit3> other) const {
// (U1 / U2) / (U1 / U3) = U3 / U2
return UnitRatio<decltype(Number(1)*OtherNumber(1)), Unit3, Unit2>(
unit1PerUnit2 / other.unit1PerUnit2);
}
template <typename OtherNumber, typename Unit3>
inline constexpr UnitRatio<decltype(Number(1)*OtherNumber(1)), Unit1, Unit3>
operator/(UnitRatio<OtherNumber, Unit3, Unit2> other) const {
// (U1 / U2) / (U3 / U2) = U1 / U3
return UnitRatio<decltype(Number(1)*OtherNumber(1)), Unit1, Unit3>(
unit1PerUnit2 / other.unit1PerUnit2);
}
template <typename OtherNumber>
inline decltype(Number(1) / OtherNumber(1))
operator/(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
return unit1PerUnit2 / other.unit1PerUnit2;
}
inline bool operator==(UnitRatio other) const { return unit1PerUnit2 == other.unit1PerUnit2; }
inline bool operator!=(UnitRatio other) const { return unit1PerUnit2 != other.unit1PerUnit2; }
private:
Number unit1PerUnit2;
template <typename OtherNumber, typename OtherUnit>
friend class Quantity;
template <typename OtherNumber, typename OtherUnit1, typename OtherUnit2>
friend class UnitRatio;
template <typename N1, typename N2, typename U1, typename U2>
friend inline constexpr UnitRatio<decltype(N1(1) * N2(1)), U1, U2>
operator*(N1, UnitRatio<N2, U1, U2>);
};
template <typename N1, typename N2, typename U1, typename U2>
inline constexpr UnitRatio<decltype(N1(1) * N2(1)), U1, U2>
operator*(N1 n, UnitRatio<N2, U1, U2> r) {
return UnitRatio<decltype(N1(1) * N2(1)), U1, U2>(n * r.unit1PerUnit2);
}
template <typename Number, typename Unit>
class Quantity {
// A type-safe numeric quantity, specified in terms of some unit. Two Quantities cannot be used
// in arithmetic unless they use the same unit. The `Unit` type parameter is only used to prevent
// accidental mixing of units; this type is never instantiated and can very well be incomplete.
// `Number` is the underlying primitive numeric type.
//
// Quantities support most basic arithmetic operators, intelligently handling units, and
// automatically casting the underlying type in the same way that the compiler would.
//
// To convert a primitive number to a Quantity, multiply it by unit<Quantity<N, U>>().
// To convert a Quantity to a primitive number, divide it by unit<Quantity<N, U>>().
// To convert a Quantity of one unit to another unit, multiply or divide by a UnitRatio.
//
// The Quantity class is not well-suited to hardcore physics as it does not allow multiplying
// one quantity by another. For example, multiplying meters by meters won't get you square
// meters; it will get you a compiler error. It would be interesting to see if template
// metaprogramming could properly deal with such things but this isn't needed for the present
// use case.
//
// Sample usage:
//
// class SecondsLabel;
// typedef Quantity<double, SecondsLabel> Seconds;
// constexpr Seconds SECONDS = unit<Seconds>();
//
// class MinutesLabel;
// typedef Quantity<double, MinutesLabel> Minutes;
// constexpr Minutes MINUTES = unit<Minutes>();
//
// constexpr UnitRatio<double, SecondsLabel, MinutesLabel> SECONDS_PER_MINUTE =
// 60 * SECONDS / MINUTES;
//
// void waitFor(Seconds seconds) {
// sleep(seconds / SECONDS);
// }
// void waitFor(Minutes minutes) {
// waitFor(minutes * SECONDS_PER_MINUTE);
// }
//
// void waitThreeMinutes() {
// waitFor(3 * MINUTES);
// }
static_assert(isIntegral<Number>(), "Underlying type for Quantity must be integer.");
public:
inline constexpr Quantity() {}
inline constexpr Quantity(decltype(maxValue)): value(maxValue) {}
inline constexpr Quantity(decltype(minValue)): value(minValue) {}
// Allow initialization from maxValue and minValue.
inline explicit constexpr Quantity(Number value): value(value) {}
// This constructor was intended to be private, but GCC complains about it being private in a
// bunch of places that don't appear to even call it, so I made it public. Oh well.
template <typename OtherNumber>
inline constexpr Quantity(const Quantity<OtherNumber, Unit>& other)
: value(other.value) {}
template <typename OtherNumber>
inline constexpr Quantity<decltype(Number(1) + OtherNumber(1)), Unit>
operator+(const Quantity<OtherNumber, Unit>& other) const {
return Quantity<decltype(Number(1) + OtherNumber(1)), Unit>(value + other.value);
}
template <typename OtherNumber>
inline constexpr Quantity<decltype(Number(1) - OtherNumber(1)), Unit>
operator-(const Quantity<OtherNumber, Unit>& other) const {
return Quantity<decltype(Number(1) - OtherNumber(1)), Unit>(value - other.value);
}
template <typename OtherNumber>
inline constexpr Quantity<decltype(Number(1) * OtherNumber(1)), Unit>
operator*(OtherNumber other) const {
static_assert(isIntegral<OtherNumber>(), "Multiplied Quantity by non-integer.");
return Quantity<decltype(Number(1) * other), Unit>(value * other);
}
template <typename OtherNumber>
inline constexpr Quantity<decltype(Number(1) / OtherNumber(1)), Unit>
operator/(OtherNumber other) const {
static_assert(isIntegral<OtherNumber>(), "Divided Quantity by non-integer.");
return Quantity<decltype(Number(1) / other), Unit>(value / other);
}
template <typename OtherNumber>
inline constexpr decltype(Number(1) / OtherNumber(1))
operator/(const Quantity<OtherNumber, Unit>& other) const {
return value / other.value;
}
template <typename OtherNumber>
inline constexpr decltype(Number(1) % OtherNumber(1))
operator%(const Quantity<OtherNumber, Unit>& other) const {
return value % other.value;
}
template <typename OtherNumber, typename OtherUnit>
inline constexpr Quantity<decltype(Number(1) * OtherNumber(1)), OtherUnit>
operator*(const UnitRatio<OtherNumber, OtherUnit, Unit>& ratio) const {
return Quantity<decltype(Number(1) * OtherNumber(1)), OtherUnit>(
value * ratio.unit1PerUnit2);
}
template <typename OtherNumber, typename OtherUnit>
inline constexpr Quantity<decltype(Number(1) / OtherNumber(1)), OtherUnit>
operator/(const UnitRatio<OtherNumber, Unit, OtherUnit>& ratio) const {
return Quantity<decltype(Number(1) / OtherNumber(1)), OtherUnit>(
value / ratio.unit1PerUnit2);
}
template <typename OtherNumber, typename OtherUnit>
inline constexpr Quantity<decltype(Number(1) % OtherNumber(1)), Unit>
operator%(const UnitRatio<OtherNumber, Unit, OtherUnit>& ratio) const {
return Quantity<decltype(Number(1) % OtherNumber(1)), Unit>(
value % ratio.unit1PerUnit2);
}
template <typename OtherNumber, typename OtherUnit>
inline constexpr UnitRatio<decltype(Number(1) / OtherNumber(1)), Unit, OtherUnit>
operator/(const Quantity<OtherNumber, OtherUnit>& other) const {
return UnitRatio<decltype(Number(1) / OtherNumber(1)), Unit, OtherUnit>(value / other.value);
}
template <typename OtherNumber>
inline constexpr bool operator==(const Quantity<OtherNumber, Unit>& other) const {
return value == other.value;
}
template <typename OtherNumber>
inline constexpr bool operator!=(const Quantity<OtherNumber, Unit>& other) const {
return value != other.value;
}
template <typename OtherNumber>
inline constexpr bool operator<=(const Quantity<OtherNumber, Unit>& other) const {
return value <= other.value;
}
template <typename OtherNumber>
inline constexpr bool operator>=(const Quantity<OtherNumber, Unit>& other) const {
return value >= other.value;
}
template <typename OtherNumber>
inline constexpr bool operator<(const Quantity<OtherNumber, Unit>& other) const {
return value < other.value;
}
template <typename OtherNumber>
inline constexpr bool operator>(const Quantity<OtherNumber, Unit>& other) const {
return value > other.value;
}
template <typename OtherNumber>
inline Quantity& operator+=(const Quantity<OtherNumber, Unit>& other) {
value += other.value;
return *this;
}
template <typename OtherNumber>
inline Quantity& operator-=(const Quantity<OtherNumber, Unit>& other) {
value -= other.value;
return *this;
}
template <typename OtherNumber>
inline Quantity& operator*=(OtherNumber other) {
value *= other;
return *this;
}
template <typename OtherNumber>
inline Quantity& operator/=(OtherNumber other) {
value /= other.value;
return *this;
}
private:
Number value;
template <typename OtherNumber, typename OtherUnit>
friend class Quantity;
template <typename Number1, typename Number2, typename Unit2>
friend inline constexpr auto operator*(Number1 a, Quantity<Number2, Unit2> b)
-> Quantity<decltype(Number1(1) * Number2(1)), Unit2>;
template <typename T>
friend inline constexpr T unit();
};
#endif // !_MSC_VER
template <typename T>
inline constexpr T unit() { return T(1); }
// unit<Quantity<T, U>>() returns a Quantity of value 1. It also, intentionally, works on basic
// numeric types.
#if !_MSC_VER
template <typename Number1, typename Number2, typename Unit>
inline constexpr auto operator*(Number1 a, Quantity<Number2, Unit> b)
-> Quantity<decltype(Number1(1) * Number2(1)), Unit> {
return Quantity<decltype(Number1(1) * Number2(1)), Unit>(a * b.value);
}
template <typename Number1, typename Number2, typename Unit, typename Unit2>
inline constexpr auto operator*(UnitRatio<Number1, Unit2, Unit> ratio,
Quantity<Number2, Unit> measure)
-> decltype(measure * ratio) {
return measure * ratio;
}
// =======================================================================================
// Absolute measures
template <typename T, typename Label>
class Absolute {
// Wraps some other value -- typically a Quantity -- but represents a value measured based on
// some absolute origin. For exmaple, if `Duration` is a type representing a time duration,
// Absolute<Duration, UnixEpoch> might be a calendar date.
//
// Since Absolute represents measurements relative to some arbitrary origin, the only sensible
// arithmetic to perform on them is addition and subtraction.
// TODO(someday): Do the same automatic expansion of integer width that Quantity does? Doesn't
// matter for our time use case, where we always use 64-bit anyway. Note that fixing this
// would implicitly allow things like multiplying an Absolute by a UnitRatio to change its
// units, which is actually totally logical and kind of neat.
public:
inline constexpr Absolute operator+(const T& other) const { return Absolute(value + other); }
inline constexpr Absolute operator-(const T& other) const { return Absolute(value - other); }
inline constexpr T operator-(const Absolute& other) const { return value - other.value; }
inline Absolute& operator+=(const T& other) { value += other; return *this; }
inline Absolute& operator-=(const T& other) { value -= other; return *this; }
inline constexpr bool operator==(const Absolute& other) const { return value == other.value; }
inline constexpr bool operator!=(const Absolute& other) const { return value != other.value; }
inline constexpr bool operator<=(const Absolute& other) const { return value <= other.value; }
inline constexpr bool operator>=(const Absolute& other) const { return value >= other.value; }
inline constexpr bool operator< (const Absolute& other) const { return value < other.value; }
inline constexpr bool operator> (const Absolute& other) const { return value > other.value; }
private:
T value;
explicit constexpr Absolute(T value): value(value) {}
template <typename U>
friend inline constexpr U origin();
};
template <typename T, typename Label>
inline constexpr Absolute<T, Label> operator+(const T& a, const Absolute<T, Label>& b) {
return b + a;
}
template <typename T> struct UnitOf_ { typedef T Type; };
template <typename T, typename Label> struct UnitOf_<Absolute<T, Label>> { typedef T Type; };
template <typename T>
using UnitOf = typename UnitOf_<T>::Type;
// UnitOf<Absolute<T, U>> is T. UnitOf<AnythingElse> is AnythingElse.
template <typename T>
inline constexpr T origin() { return T(0 * unit<UnitOf<T>>()); }
// origin<Absolute<T, U>>() returns an Absolute of value 0. It also, intentionally, works on basic
// numeric types.
#endif // !_MSC_VER
} // namespace kj
#endif // KJ_UNITS_H_
|