/usr/include/kj/string.h is in libcapnp-dev 0.5.3-2ubuntu1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 | // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef KJ_STRING_H_
#define KJ_STRING_H_
#if defined(__GNUC__) && !KJ_HEADER_WARNINGS
#pragma GCC system_header
#endif
#include <initializer_list>
#include "array.h"
#include <string.h>
namespace kj {
class StringPtr;
class String;
class StringTree; // string-tree.h
// Our STL string SFINAE trick does not work with GCC 4.7, but it works with Clang and GCC 4.8, so
// we'll just preprocess it out if not supported.
#if __clang__ || __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
#define KJ_COMPILER_SUPPORTS_STL_STRING_INTEROP 1
#endif
// =======================================================================================
// StringPtr -- A NUL-terminated ArrayPtr<const char> containing UTF-8 text.
//
// NUL bytes are allowed to appear before the end of the string. The only requirement is that
// a NUL byte appear immediately after the last byte of the content. This terminator byte is not
// counted in the string's size.
class StringPtr {
public:
inline StringPtr(): content("", 1) {}
inline StringPtr(decltype(nullptr)): content("", 1) {}
inline StringPtr(const char* value): content(value, strlen(value) + 1) {}
inline StringPtr(const char* value, size_t size): content(value, size + 1) {
KJ_IREQUIRE(value[size] == '\0', "StringPtr must be NUL-terminated.");
}
inline StringPtr(const char* begin, const char* end): StringPtr(begin, end - begin) {}
inline StringPtr(const String& value);
#if KJ_COMPILER_SUPPORTS_STL_STRING_INTEROP
template <typename T, typename = decltype(instance<T>().c_str())>
inline StringPtr(const T& t): StringPtr(t.c_str()) {}
// Allow implicit conversion from any class that has a c_str() method (namely, std::string).
// We use a template trick to detect std::string in order to avoid including the header for
// those who don't want it.
template <typename T, typename = decltype(instance<T>().c_str())>
inline operator T() const { return cStr(); }
// Allow implicit conversion to any class that has a c_str() method (namely, std::string).
// We use a template trick to detect std::string in order to avoid including the header for
// those who don't want it.
#endif
inline operator ArrayPtr<const char>() const;
inline ArrayPtr<const char> asArray() const;
inline ArrayPtr<const byte> asBytes() const { return asArray().asBytes(); }
// Result does not include NUL terminator.
inline const char* cStr() const { return content.begin(); }
// Returns NUL-terminated string.
inline size_t size() const { return content.size() - 1; }
// Result does not include NUL terminator.
inline char operator[](size_t index) const { return content[index]; }
inline const char* begin() const { return content.begin(); }
inline const char* end() const { return content.end() - 1; }
inline bool operator==(decltype(nullptr)) const { return content.size() <= 1; }
inline bool operator!=(decltype(nullptr)) const { return content.size() > 1; }
inline bool operator==(const StringPtr& other) const;
inline bool operator!=(const StringPtr& other) const { return !(*this == other); }
inline bool operator< (const StringPtr& other) const;
inline bool operator> (const StringPtr& other) const { return other < *this; }
inline bool operator<=(const StringPtr& other) const { return !(other < *this); }
inline bool operator>=(const StringPtr& other) const { return !(*this < other); }
inline StringPtr slice(size_t start) const;
inline ArrayPtr<const char> slice(size_t start, size_t end) const;
// A string slice is only NUL-terminated if it is a suffix, so slice() has a one-parameter
// version that assumes end = size().
inline bool startsWith(const StringPtr& other) const;
inline bool endsWith(const StringPtr& other) const;
inline Maybe<size_t> findFirst(char c) const;
inline Maybe<size_t> findLast(char c) const;
private:
inline StringPtr(ArrayPtr<const char> content): content(content) {}
ArrayPtr<const char> content;
};
inline bool operator==(const char* a, const StringPtr& b) { return b == a; }
inline bool operator!=(const char* a, const StringPtr& b) { return b != a; }
// =======================================================================================
// String -- A NUL-terminated Array<char> containing UTF-8 text.
//
// NUL bytes are allowed to appear before the end of the string. The only requirement is that
// a NUL byte appear immediately after the last byte of the content. This terminator byte is not
// counted in the string's size.
//
// To allocate a String, you must call kj::heapString(). We do not implement implicit copying to
// the heap because this hides potential inefficiency from the developer.
class String {
public:
String() = default;
inline String(decltype(nullptr)): content(nullptr) {}
inline String(char* value, size_t size, const ArrayDisposer& disposer);
// Does not copy. `size` does not include NUL terminator, but `value` must be NUL-terminated.
inline explicit String(Array<char> buffer);
// Does not copy. Requires `buffer` ends with `\0`.
inline operator ArrayPtr<char>();
inline operator ArrayPtr<const char>() const;
inline ArrayPtr<char> asArray();
inline ArrayPtr<const char> asArray() const;
inline ArrayPtr<byte> asBytes() { return asArray().asBytes(); }
inline ArrayPtr<const byte> asBytes() const { return asArray().asBytes(); }
// Result does not include NUL terminator.
inline const char* cStr() const;
inline size_t size() const;
// Result does not include NUL terminator.
inline char operator[](size_t index) const;
inline char& operator[](size_t index);
inline char* begin();
inline char* end();
inline const char* begin() const;
inline const char* end() const;
inline bool operator==(decltype(nullptr)) const { return content.size() <= 1; }
inline bool operator!=(decltype(nullptr)) const { return content.size() > 1; }
inline bool operator==(const StringPtr& other) const { return StringPtr(*this) == other; }
inline bool operator!=(const StringPtr& other) const { return StringPtr(*this) != other; }
inline bool operator< (const StringPtr& other) const { return StringPtr(*this) < other; }
inline bool operator> (const StringPtr& other) const { return StringPtr(*this) > other; }
inline bool operator<=(const StringPtr& other) const { return StringPtr(*this) <= other; }
inline bool operator>=(const StringPtr& other) const { return StringPtr(*this) >= other; }
inline bool startsWith(const StringPtr& other) const { return StringPtr(*this).startsWith(other);}
inline bool endsWith(const StringPtr& other) const { return StringPtr(*this).endsWith(other); }
inline StringPtr slice(size_t start) const { return StringPtr(*this).slice(start); }
inline ArrayPtr<const char> slice(size_t start, size_t end) const {
return StringPtr(*this).slice(start, end);
}
inline Maybe<size_t> findFirst(char c) const { return StringPtr(*this).findFirst(c); }
inline Maybe<size_t> findLast(char c) const { return StringPtr(*this).findLast(c); }
private:
Array<char> content;
};
inline bool operator==(const char* a, const String& b) { return b == a; }
inline bool operator!=(const char* a, const String& b) { return b != a; }
String heapString(size_t size);
// Allocate a String of the given size on the heap, not including NUL terminator. The NUL
// terminator will be initialized automatically but the rest of the content is not initialized.
String heapString(const char* value);
String heapString(const char* value, size_t size);
String heapString(StringPtr value);
String heapString(const String& value);
String heapString(ArrayPtr<const char> value);
// Allocates a copy of the given value on the heap.
// =======================================================================================
// Magic str() function which transforms parameters to text and concatenates them into one big
// String.
namespace _ { // private
inline size_t sum(std::initializer_list<size_t> nums) {
size_t result = 0;
for (auto num: nums) {
result += num;
}
return result;
}
inline char* fill(char* ptr) { return ptr; }
template <typename... Rest>
char* fill(char* __restrict__ target, const StringTree& first, Rest&&... rest);
// Make str() work with stringifiers that return StringTree by patching fill().
//
// Defined in string-tree.h.
template <typename First, typename... Rest>
char* fill(char* __restrict__ target, const First& first, Rest&&... rest) {
auto i = first.begin();
auto end = first.end();
while (i != end) {
*target++ = *i++;
}
return fill(target, kj::fwd<Rest>(rest)...);
}
template <typename... Params>
String concat(Params&&... params) {
// Concatenate a bunch of containers into a single Array. The containers can be anything that
// is iterable and whose elements can be converted to `char`.
String result = heapString(sum({params.size()...}));
fill(result.begin(), kj::fwd<Params>(params)...);
return result;
}
inline String concat(String&& arr) {
return kj::mv(arr);
}
struct Stringifier {
// This is a dummy type with only one instance: STR (below). To make an arbitrary type
// stringifiable, define `operator*(Stringifier, T)` to return an iterable container of `char`.
// The container type must have a `size()` method. Be sure to declare the operator in the same
// namespace as `T` **or** in the global scope.
//
// A more usual way to accomplish what we're doing here would be to require that you define
// a function like `toString(T)` and then rely on argument-dependent lookup. However, this has
// the problem that it pollutes other people's namespaces and even the global namespace. For
// example, some other project may already have functions called `toString` which do something
// different. Declaring `operator*` with `Stringifier` as the left operand cannot conflict with
// anything.
inline ArrayPtr<const char> operator*(ArrayPtr<const char> s) const { return s; }
inline ArrayPtr<const char> operator*(const Array<const char>& s) const { return s; }
inline ArrayPtr<const char> operator*(const Array<char>& s) const { return s; }
template<size_t n>
inline ArrayPtr<const char> operator*(const CappedArray<char, n>& s) const { return s; }
inline ArrayPtr<const char> operator*(const char* s) const { return arrayPtr(s, strlen(s)); }
inline ArrayPtr<const char> operator*(const String& s) const { return s.asArray(); }
inline ArrayPtr<const char> operator*(const StringPtr& s) const { return s.asArray(); }
inline Range<char> operator*(const Range<char>& r) const { return r; }
inline Repeat<char> operator*(const Repeat<char>& r) const { return r; }
inline FixedArray<char, 1> operator*(char c) const {
FixedArray<char, 1> result;
result[0] = c;
return result;
}
StringPtr operator*(bool b) const;
CappedArray<char, 5> operator*(signed char i) const;
CappedArray<char, 5> operator*(unsigned char i) const;
CappedArray<char, sizeof(short) * 3 + 2> operator*(short i) const;
CappedArray<char, sizeof(unsigned short) * 3 + 2> operator*(unsigned short i) const;
CappedArray<char, sizeof(int) * 3 + 2> operator*(int i) const;
CappedArray<char, sizeof(unsigned int) * 3 + 2> operator*(unsigned int i) const;
CappedArray<char, sizeof(long) * 3 + 2> operator*(long i) const;
CappedArray<char, sizeof(unsigned long) * 3 + 2> operator*(unsigned long i) const;
CappedArray<char, sizeof(long long) * 3 + 2> operator*(long long i) const;
CappedArray<char, sizeof(unsigned long long) * 3 + 2> operator*(unsigned long long i) const;
CappedArray<char, 24> operator*(float f) const;
CappedArray<char, 32> operator*(double f) const;
CappedArray<char, sizeof(const void*) * 3 + 2> operator*(const void* s) const;
template <typename T>
String operator*(ArrayPtr<T> arr) const;
template <typename T>
String operator*(const Array<T>& arr) const;
#if KJ_COMPILER_SUPPORTS_STL_STRING_INTEROP // supports expression SFINAE?
template <typename T, typename Result = decltype(instance<T>().toString())>
inline Result operator*(T&& value) const { return kj::fwd<T>(value).toString(); }
#endif
};
static KJ_CONSTEXPR(const) Stringifier STR = Stringifier();
} // namespace _ (private)
template <typename T>
auto toCharSequence(T&& value) -> decltype(_::STR * kj::fwd<T>(value)) {
// Returns an iterable of chars that represent a textual representation of the value, suitable
// for debugging.
//
// Most users should use str() instead, but toCharSequence() may occasionally be useful to avoid
// heap allocation overhead that str() implies.
//
// To specialize this function for your type, see KJ_STRINGIFY.
return _::STR * kj::fwd<T>(value);
}
CappedArray<char, sizeof(unsigned char) * 2 + 1> hex(unsigned char i);
CappedArray<char, sizeof(unsigned short) * 2 + 1> hex(unsigned short i);
CappedArray<char, sizeof(unsigned int) * 2 + 1> hex(unsigned int i);
CappedArray<char, sizeof(unsigned long) * 2 + 1> hex(unsigned long i);
CappedArray<char, sizeof(unsigned long long) * 2 + 1> hex(unsigned long long i);
template <typename... Params>
String str(Params&&... params) {
// Magic function which builds a string from a bunch of arbitrary values. Example:
// str(1, " / ", 2, " = ", 0.5)
// returns:
// "1 / 2 = 0.5"
// To teach `str` how to stringify a type, see `Stringifier`.
return _::concat(toCharSequence(kj::fwd<Params>(params))...);
}
inline String str(String&& s) { return mv(s); }
// Overload to prevent redundant allocation.
template <typename T>
String strArray(T&& arr, const char* delim) {
size_t delimLen = strlen(delim);
KJ_STACK_ARRAY(decltype(_::STR * arr[0]), pieces, arr.size(), 8, 32);
size_t size = 0;
for (size_t i = 0; i < arr.size(); i++) {
if (i > 0) size += delimLen;
pieces[i] = _::STR * arr[i];
size += pieces[i].size();
}
String result = heapString(size);
char* pos = result.begin();
for (size_t i = 0; i < arr.size(); i++) {
if (i > 0) {
memcpy(pos, delim, delimLen);
pos += delimLen;
}
pos = _::fill(pos, pieces[i]);
}
return result;
}
namespace _ { // private
template <typename T>
inline String Stringifier::operator*(ArrayPtr<T> arr) const {
return strArray(arr, ", ");
}
template <typename T>
inline String Stringifier::operator*(const Array<T>& arr) const {
return strArray(arr, ", ");
}
} // namespace _ (private)
#define KJ_STRINGIFY(...) operator*(::kj::_::Stringifier, __VA_ARGS__)
// Defines a stringifier for a custom type. Example:
//
// class Foo {...};
// inline StringPtr KJ_STRINGIFY(const Foo& foo) { return foo.name(); }
//
// This allows Foo to be passed to str().
//
// The function should be declared either in the same namespace as the target type or in the global
// namespace. It can return any type which is an iterable container of chars.
// =======================================================================================
// Inline implementation details.
inline StringPtr::StringPtr(const String& value): content(value.begin(), value.size() + 1) {}
inline StringPtr::operator ArrayPtr<const char>() const {
return content.slice(0, content.size() - 1);
}
inline ArrayPtr<const char> StringPtr::asArray() const {
return content.slice(0, content.size() - 1);
}
inline bool StringPtr::operator==(const StringPtr& other) const {
return content.size() == other.content.size() &&
memcmp(content.begin(), other.content.begin(), content.size() - 1) == 0;
}
inline bool StringPtr::operator<(const StringPtr& other) const {
bool shorter = content.size() < other.content.size();
int cmp = memcmp(content.begin(), other.content.begin(),
shorter ? content.size() : other.content.size());
return cmp < 0 || (cmp == 0 && shorter);
}
inline StringPtr StringPtr::slice(size_t start) const {
return StringPtr(content.slice(start, content.size()));
}
inline ArrayPtr<const char> StringPtr::slice(size_t start, size_t end) const {
return content.slice(start, end);
}
inline bool StringPtr::startsWith(const StringPtr& other) const {
return other.content.size() <= content.size() &&
memcmp(content.begin(), other.content.begin(), other.size()) == 0;
}
inline bool StringPtr::endsWith(const StringPtr& other) const {
return other.content.size() <= content.size() &&
memcmp(end() - other.size(), other.content.begin(), other.size()) == 0;
}
inline Maybe<size_t> StringPtr::findFirst(char c) const {
const char* pos = reinterpret_cast<const char*>(memchr(content.begin(), c, size()));
if (pos == nullptr) {
return nullptr;
} else {
return pos - content.begin();
}
}
inline Maybe<size_t> StringPtr::findLast(char c) const {
for (size_t i = size(); i > 0; --i) {
if (content[i-1] == c) {
return i-1;
}
}
return nullptr;
}
inline String::operator ArrayPtr<char>() {
return content == nullptr ? ArrayPtr<char>(nullptr) : content.slice(0, content.size() - 1);
}
inline String::operator ArrayPtr<const char>() const {
return content == nullptr ? ArrayPtr<const char>(nullptr) : content.slice(0, content.size() - 1);
}
inline ArrayPtr<char> String::asArray() {
return content == nullptr ? ArrayPtr<char>(nullptr) : content.slice(0, content.size() - 1);
}
inline ArrayPtr<const char> String::asArray() const {
return content == nullptr ? ArrayPtr<const char>(nullptr) : content.slice(0, content.size() - 1);
}
inline const char* String::cStr() const { return content == nullptr ? "" : content.begin(); }
inline size_t String::size() const { return content == nullptr ? 0 : content.size() - 1; }
inline char String::operator[](size_t index) const { return content[index]; }
inline char& String::operator[](size_t index) { return content[index]; }
inline char* String::begin() { return content == nullptr ? nullptr : content.begin(); }
inline char* String::end() { return content == nullptr ? nullptr : content.end() - 1; }
inline const char* String::begin() const { return content == nullptr ? nullptr : content.begin(); }
inline const char* String::end() const { return content == nullptr ? nullptr : content.end() - 1; }
inline String::String(char* value, size_t size, const ArrayDisposer& disposer)
: content(value, size + 1, disposer) {
KJ_IREQUIRE(value[size] == '\0', "String must be NUL-terminated.");
}
inline String::String(Array<char> buffer): content(kj::mv(buffer)) {
KJ_IREQUIRE(content.size() > 0 && content.back() == '\0', "String must be NUL-terminated.");
}
inline String heapString(const char* value) {
return heapString(value, strlen(value));
}
inline String heapString(StringPtr value) {
return heapString(value.begin(), value.size());
}
inline String heapString(const String& value) {
return heapString(value.begin(), value.size());
}
inline String heapString(ArrayPtr<const char> value) {
return heapString(value.begin(), value.size());
}
} // namespace kj
#endif // KJ_STRING_H_
|