/usr/include/kj/function.h is in libcapnp-dev 0.5.3-2ubuntu1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 | // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef KJ_FUNCTION_H_
#define KJ_FUNCTION_H_
#if defined(__GNUC__) && !KJ_HEADER_WARNINGS
#pragma GCC system_header
#endif
#include "memory.h"
namespace kj {
template <typename Signature>
class Function;
// Function wrapper using virtual-based polymorphism. Use this when template polymorphism is
// not possible. You can, for example, accept a Function as a parameter:
//
// void setFilter(Function<bool(const Widget&)> filter);
//
// The caller of `setFilter()` may then pass any callable object as the parameter. The callable
// object does not have to have the exact signature specified, just one that is "compatible" --
// i.e. the return type is covariant and the parameters are contravariant.
//
// Unlike `std::function`, `kj::Function`s are movable but not copyable, just like `kj::Own`. This
// is to avoid unexpected heap allocation or slow atomic reference counting.
//
// When a `Function` is constructed from an lvalue, it captures only a reference to the value.
// When constructed from an rvalue, it invokes the value's move constructor. So, for example:
//
// struct AddN {
// int n;
// int operator(int i) { return i + n; }
// }
//
// Function<int(int, int)> f1 = AddN{2};
// // f1 owns an instance of AddN. It may safely be moved out
// // of the local scope.
//
// AddN adder(2);
// Function<int(int, int)> f2 = adder;
// // f2 contains a reference to `adder`. Thus, it becomes invalid
// // when `adder` goes out-of-scope.
//
// AddN adder2(2);
// Function<int(int, int)> f3 = kj::mv(adder2);
// // f3 owns an insatnce of AddN moved from `adder2`. f3 may safely
// // be moved out of the local scope.
//
// Additionally, a Function may be bound to a class method using KJ_BIND_METHOD(object, methodName).
// For example:
//
// class Printer {
// public:
// void print(int i);
// void print(kj::StringPtr s);
// };
//
// Printer p;
//
// Function<void(uint)> intPrinter = KJ_BIND_METHOD(p, print);
// // Will call Printer::print(int).
//
// Function<void(const char*)> strPrinter = KJ_BIND_METHOD(p, print);
// // Will call Printer::print(kj::StringPtr).
//
// Notice how KJ_BIND_METHOD is able to figure out which overload to use depending on the kind of
// Function it is binding to.
template <typename Signature>
class ConstFunction;
// Like Function, but wraps a "const" (i.e. thread-safe) call.
template <typename Return, typename... Params>
class Function<Return(Params...)> {
public:
template <typename F>
inline Function(F&& f): impl(heap<Impl<F>>(kj::fwd<F>(f))) {}
Function() = default;
// Make sure people don't accidentally end up wrapping a reference when they meant to return
// a function.
KJ_DISALLOW_COPY(Function);
Function(Function&) = delete;
Function& operator=(Function&) = delete;
template <typename T> Function(const Function<T>&) = delete;
template <typename T> Function& operator=(const Function<T>&) = delete;
template <typename T> Function(const ConstFunction<T>&) = delete;
template <typename T> Function& operator=(const ConstFunction<T>&) = delete;
Function(Function&&) = default;
Function& operator=(Function&&) = default;
inline Return operator()(Params... params) {
return (*impl)(kj::fwd<Params>(params)...);
}
Function reference() {
// Forms a new Function of the same type that delegates to this Function by reference.
// Therefore, this Function must outlive the returned Function, but otherwise they behave
// exactly the same.
return *impl;
}
private:
class Iface {
public:
virtual Return operator()(Params... params) = 0;
};
template <typename F>
class Impl final: public Iface {
public:
explicit Impl(F&& f): f(kj::fwd<F>(f)) {}
Return operator()(Params... params) override {
return f(kj::fwd<Params>(params)...);
}
private:
F f;
};
Own<Iface> impl;
};
template <typename Return, typename... Params>
class ConstFunction<Return(Params...)> {
public:
template <typename F>
inline ConstFunction(F&& f): impl(heap<Impl<F>>(kj::fwd<F>(f))) {}
ConstFunction() = default;
// Make sure people don't accidentally end up wrapping a reference when they meant to return
// a function.
KJ_DISALLOW_COPY(ConstFunction);
ConstFunction(ConstFunction&) = delete;
ConstFunction& operator=(ConstFunction&) = delete;
template <typename T> ConstFunction(const ConstFunction<T>&) = delete;
template <typename T> ConstFunction& operator=(const ConstFunction<T>&) = delete;
template <typename T> ConstFunction(const Function<T>&) = delete;
template <typename T> ConstFunction& operator=(const Function<T>&) = delete;
ConstFunction(ConstFunction&&) = default;
ConstFunction& operator=(ConstFunction&&) = default;
inline Return operator()(Params... params) const {
return (*impl)(kj::fwd<Params>(params)...);
}
ConstFunction reference() const {
// Forms a new ConstFunction of the same type that delegates to this ConstFunction by reference.
// Therefore, this ConstFunction must outlive the returned ConstFunction, but otherwise they
// behave exactly the same.
return *impl;
}
private:
class Iface {
public:
virtual Return operator()(Params... params) const = 0;
};
template <typename F>
class Impl final: public Iface {
public:
explicit Impl(F&& f): f(kj::fwd<F>(f)) {}
Return operator()(Params... params) const override {
return f(kj::fwd<Params>(params)...);
}
private:
F f;
};
Own<Iface> impl;
};
#if 1
namespace _ { // private
template <typename T, typename Signature, Signature method>
class BoundMethod;
template <typename T, typename Return, typename... Params, Return (Decay<T>::*method)(Params...)>
class BoundMethod<T, Return (Decay<T>::*)(Params...), method> {
public:
BoundMethod(T&& t): t(kj::fwd<T>(t)) {}
Return operator()(Params&&... params) {
return (t.*method)(kj::fwd<Params>(params)...);
}
private:
T t;
};
template <typename T, typename Return, typename... Params,
Return (Decay<T>::*method)(Params...) const>
class BoundMethod<T, Return (Decay<T>::*)(Params...) const, method> {
public:
BoundMethod(T&& t): t(kj::fwd<T>(t)) {}
Return operator()(Params&&... params) const {
return (t.*method)(kj::fwd<Params>(params)...);
}
private:
T t;
};
} // namespace _ (private)
#define KJ_BIND_METHOD(obj, method) \
::kj::_::BoundMethod<KJ_DECLTYPE_REF(obj), \
decltype(&::kj::Decay<decltype(obj)>::method), \
&::kj::Decay<decltype(obj)>::method>(obj)
// Macro that produces a functor object which forwards to the method `obj.name`. If `obj` is an
// lvalue, the functor will hold a reference to it. If `obj` is an rvalue, the functor will
// contain a copy (by move) of it.
//
// The current implementation requires that the method is not overloaded.
//
// TODO(someday): C++14's generic lambdas may be able to simplify this code considerably, and
// probably make it work with overloaded methods.
#else
// Here's a better implementation of the above that doesn't work with GCC (but does with Clang)
// because it uses a local class with a template method. Sigh. This implementation supports
// overloaded methods.
#define KJ_BIND_METHOD(obj, method) \
({ \
typedef KJ_DECLTYPE_REF(obj) T; \
class F { \
public: \
inline F(T&& t): t(::kj::fwd<T>(t)) {} \
template <typename... Params> \
auto operator()(Params&&... params) \
-> decltype(::kj::instance<T>().method(::kj::fwd<Params>(params)...)) { \
return t.method(::kj::fwd<Params>(params)...); \
} \
private: \
T t; \
}; \
(F(obj)); \
})
// Macro that produces a functor object which forwards to the method `obj.name`. If `obj` is an
// lvalue, the functor will hold a reference to it. If `obj` is an rvalue, the functor will
// contain a copy (by move) of it.
#endif
} // namespace kj
#endif // KJ_FUNCTION_H_
|