This file is indexed.

/usr/include/kj/common.h is in libcapnp-dev 0.5.3-2ubuntu1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

// Header that should be #included by everyone.
//
// This defines very simple utilities that are widely applicable.

#ifndef KJ_COMMON_H_
#define KJ_COMMON_H_

#if defined(__GNUC__) && !KJ_HEADER_WARNINGS
#pragma GCC system_header
#endif

#ifndef KJ_NO_COMPILER_CHECK
#if __cplusplus < 201103L && !__CDT_PARSER__ && !_MSC_VER
  #error "This code requires C++11. Either your compiler does not support it or it is not enabled."
  #ifdef __GNUC__
    // Compiler claims compatibility with GCC, so presumably supports -std.
    #error "Pass -std=c++11 on the compiler command line to enable C++11."
  #endif
#endif

#ifdef __GNUC__
  #if __clang__
    #if __clang_major__ < 3 || (__clang_major__ == 3 && __clang_minor__ < 2)
      #warning "This library requires at least Clang 3.2."
    #elif defined(__apple_build_version__) && __apple_build_version__ <= 4250028
      #warning "This library requires at least Clang 3.2.  XCode 4.6's Clang, which claims to be "\
               "version 4.2 (wat?), is actually built from some random SVN revision between 3.1 "\
               "and 3.2.  Unfortunately, it is insufficient for compiling this library.  You can "\
               "download the real Clang 3.2 (or newer) from the Clang web site.  Step-by-step "\
               "instructions can be found in Cap'n Proto's documentation: "\
               "http://kentonv.github.io/capnproto/install.html#clang_32_on_mac_osx"
    #elif __cplusplus >= 201103L && !__has_include(<initializer_list>)
      #warning "Your compiler supports C++11 but your C++ standard library does not.  If your "\
               "system has libc++ installed (as should be the case on e.g. Mac OSX), try adding "\
               "-stdlib=libc++ to your CXXFLAGS."
    #endif
  #else
    #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 7)
      #warning "This library requires at least GCC 4.7."
    #endif
  #endif
#elif defined(_MSC_VER)
  #if _MSC_VER < 1900
    #error "You need Visual Studio 2015 or better to compile this code."
  #elif !CAPNP_LITE
    // TODO(cleanup): This is KJ, but we're talking about Cap'n Proto.
    #error "As of this writing, Cap'n Proto only supports Visual C++ in 'lite mode'; please #define CAPNP_LITE"
  #endif
#else
  #warning "I don't recognize your compiler.  As of this writing, Clang and GCC are the only "\
           "known compilers with enough C++11 support for this library.  "\
           "#define KJ_NO_COMPILER_CHECK to make this warning go away."
#endif
#endif

#include <stddef.h>
#include <initializer_list>

// =======================================================================================

namespace kj {

typedef unsigned int uint;
typedef unsigned char byte;

// =======================================================================================
// Common macros, especially for common yet compiler-specific features.

// Detect whether RTTI and exceptions are enabled, assuming they are unless we have specific
// evidence to the contrary.  Clients can always define KJ_NO_RTTI or KJ_NO_EXCEPTIONS explicitly
// to override these checks.
#ifdef __GNUC__
  #if !defined(KJ_NO_RTTI) && !__GXX_RTTI
    #define KJ_NO_RTTI 1
  #endif
  #if !defined(KJ_NO_EXCEPTIONS) && !__EXCEPTIONS
    #define KJ_NO_EXCEPTIONS 1
  #endif
#elif defined(_MSC_VER)
  #if !defined(KJ_NO_RTTI) && !defined(_CPPRTTI)
    #define KJ_NO_RTTI 1
  #endif
  #if !defined(KJ_NO_EXCEPTIONS) && !defined(_CPPUNWIND)
    #define KJ_NO_EXCEPTIONS 1
  #endif
#endif

#if !defined(KJ_DEBUG) && !defined(KJ_NDEBUG)
// Heuristically decide whether to enable debug mode.  If DEBUG or NDEBUG is defined, use that.
// Otherwise, fall back to checking whether optimization is enabled.
#if defined(DEBUG) || defined(_DEBUG)
#define KJ_DEBUG
#elif defined(NDEBUG)
#define KJ_NDEBUG
#elif __OPTIMIZE__
#define KJ_NDEBUG
#else
#define KJ_DEBUG
#endif
#endif

#define KJ_DISALLOW_COPY(classname) \
  classname(const classname&) = delete; \
  classname& operator=(const classname&) = delete
// Deletes the implicit copy constructor and assignment operator.

#ifdef __GNUC__
#define KJ_LIKELY(condition) __builtin_expect(condition, true)
#define KJ_UNLIKELY(condition) __builtin_expect(condition, false)
// Branch prediction macros.  Evaluates to the condition given, but also tells the compiler that we
// expect the condition to be true/false enough of the time that it's worth hard-coding branch
// prediction.
#else
#define KJ_LIKELY(condition) (condition)
#define KJ_UNLIKELY(condition) (condition)
#endif

#if defined(KJ_DEBUG) || __NO_INLINE__
#define KJ_ALWAYS_INLINE(prototype) inline prototype
// Don't force inline in debug mode.
#else
#if defined(_MSC_VER)
#define KJ_ALWAYS_INLINE(prototype) __forceinline prototype
#else
#define KJ_ALWAYS_INLINE(prototype) inline prototype __attribute__((always_inline))
#endif
// Force a function to always be inlined.  Apply only to the prototype, not to the definition.
#endif

#if defined(_MSC_VER)
#define KJ_NORETURN(prototype) __declspec(noreturn) prototype
#define KJ_UNUSED
#define KJ_WARN_UNUSED_RESULT
// TODO(msvc): KJ_WARN_UNUSED_RESULT can use _Check_return_ on MSVC, but it's a prefix, so
//   wrapping the whole prototype is needed. http://msdn.microsoft.com/en-us/library/jj159529.aspx
//   Similarly, KJ_UNUSED could use __pragma(warning(suppress:...)), but again that's a prefix.
#else
#define KJ_NORETURN(prototype) prototype __attribute__((noreturn))
#define KJ_UNUSED __attribute__((unused))
#define KJ_WARN_UNUSED_RESULT __attribute__((warn_unused_result))
#endif

#if __clang__
#define KJ_UNUSED_MEMBER __attribute__((unused))
// Inhibits "unused" warning for member variables.  Only Clang produces such a warning, while GCC
// complains if the attribute is set on members.
#else
#define KJ_UNUSED_MEMBER
#endif

#if __clang__
#define KJ_DEPRECATED(reason) \
    __attribute__((deprecated(reason)))
#elif __GNUC__
#define KJ_DEPRECATED(reason) \
    __attribute__((deprecated))
#else
#define KJ_DEPRECATED(reason)
// TODO(msvc): Again, here, MSVC prefers a prefix, __declspec(deprecated).
#endif

namespace _ {  // private

KJ_NORETURN(void inlineRequireFailure(
    const char* file, int line, const char* expectation, const char* macroArgs,
    const char* message = nullptr));

KJ_NORETURN(void unreachable());

}  // namespace _ (private)

#ifdef KJ_DEBUG
#if _MSC_VER
#define KJ_IREQUIRE(condition, ...) \
    if (KJ_LIKELY(condition)); else ::kj::_::inlineRequireFailure( \
        __FILE__, __LINE__, #condition, "" #__VA_ARGS__, __VA_ARGS__)
// Version of KJ_DREQUIRE() which is safe to use in headers that are #included by users.  Used to
// check preconditions inside inline methods.  KJ_IREQUIRE is particularly useful in that
// it will be enabled depending on whether the application is compiled in debug mode rather than
// whether libkj is.
#else
#define KJ_IREQUIRE(condition, ...) \
    if (KJ_LIKELY(condition)); else ::kj::_::inlineRequireFailure( \
        __FILE__, __LINE__, #condition, #__VA_ARGS__, ##__VA_ARGS__)
// Version of KJ_DREQUIRE() which is safe to use in headers that are #included by users.  Used to
// check preconditions inside inline methods.  KJ_IREQUIRE is particularly useful in that
// it will be enabled depending on whether the application is compiled in debug mode rather than
// whether libkj is.
#endif
#else
#define KJ_IREQUIRE(condition, ...)
#endif

#define KJ_IASSERT KJ_IREQUIRE

#define KJ_UNREACHABLE ::kj::_::unreachable();
// Put this on code paths that cannot be reached to suppress compiler warnings about missing
// returns.

#if __clang__
#define KJ_CLANG_KNOWS_THIS_IS_UNREACHABLE_BUT_GCC_DOESNT
#else
#define KJ_CLANG_KNOWS_THIS_IS_UNREACHABLE_BUT_GCC_DOESNT KJ_UNREACHABLE
#endif

// #define KJ_STACK_ARRAY(type, name, size, minStack, maxStack)
//
// Allocate an array, preferably on the stack, unless it is too big.  On GCC this will use
// variable-sized arrays.  For other compilers we could just use a fixed-size array.  `minStack`
// is the stack array size to use if variable-width arrays are not supported.  `maxStack` is the
// maximum stack array size if variable-width arrays *are* supported.
#if __GNUC__ && !__clang__
#define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) \
  size_t name##_size = (size); \
  bool name##_isOnStack = name##_size <= (maxStack); \
  type name##_stack[name##_isOnStack ? size : 0]; \
  ::kj::Array<type> name##_heap = name##_isOnStack ? \
      nullptr : kj::heapArray<type>(name##_size); \
  ::kj::ArrayPtr<type> name = name##_isOnStack ? \
      kj::arrayPtr(name##_stack, name##_size) : name##_heap
#else
#define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) \
  size_t name##_size = (size); \
  bool name##_isOnStack = name##_size <= (minStack); \
  type name##_stack[minStack]; \
  ::kj::Array<type> name##_heap = name##_isOnStack ? \
      nullptr : kj::heapArray<type>(name##_size); \
  ::kj::ArrayPtr<type> name = name##_isOnStack ? \
      kj::arrayPtr(name##_stack, name##_size) : name##_heap
#endif

#define KJ_CONCAT_(x, y) x##y
#define KJ_CONCAT(x, y) KJ_CONCAT_(x, y)
#define KJ_UNIQUE_NAME(prefix) KJ_CONCAT(prefix, __LINE__)
// Create a unique identifier name.  We use concatenate __LINE__ rather than __COUNTER__ so that
// the name can be used multiple times in the same macro.

#if _MSC_VER

#define KJ_CONSTEXPR(...) __VA_ARGS__
// Use in cases where MSVC barfs on constexpr. A replacement keyword (e.g. "const") can be
// provided, or just leave blank to remove the keyword entirely.
//
// TODO(msvc): Remove this hack once MSVC fully supports constexpr.

#ifndef __restrict__
#define __restrict__ __restrict
// TODO(msvc): Would it be better to define a KJ_RESTRICT macro?
#endif

#pragma warning(disable: 4521 4522)
// This warning complains when there are two copy constructors, one for a const reference and
// one for a non-const reference. It is often quite necessary to do this in wrapper templates,
// therefore this warning is dumb and we disable it.

#pragma warning(disable: 4458)
// Warns when a parameter name shadows a class member. Unfortunately my code does this a lot,
// since I don't use a special name format for members.

#else  // _MSC_VER
#define KJ_CONSTEXPR(...) constexpr
#endif

// =======================================================================================
// Template metaprogramming helpers.

template <typename T> struct NoInfer_ { typedef T Type; };
template <typename T> using NoInfer = typename NoInfer_<T>::Type;
// Use NoInfer<T>::Type in place of T for a template function parameter to prevent inference of
// the type based on the parameter value.

template <typename T> struct RemoveConst_ { typedef T Type; };
template <typename T> struct RemoveConst_<const T> { typedef T Type; };
template <typename T> using RemoveConst = typename RemoveConst_<T>::Type;

template <typename> struct IsLvalueReference_ { static constexpr bool value = false; };
template <typename T> struct IsLvalueReference_<T&> { static constexpr bool value = true; };
template <typename T>
inline constexpr bool isLvalueReference() { return IsLvalueReference_<T>::value; }

template <typename T> struct Decay_ { typedef T Type; };
template <typename T> struct Decay_<T&> { typedef typename Decay_<T>::Type Type; };
template <typename T> struct Decay_<T&&> { typedef typename Decay_<T>::Type Type; };
template <typename T> struct Decay_<T[]> { typedef typename Decay_<T*>::Type Type; };
template <typename T> struct Decay_<const T[]> { typedef typename Decay_<const T*>::Type Type; };
template <typename T, size_t s> struct Decay_<T[s]> { typedef typename Decay_<T*>::Type Type; };
template <typename T, size_t s> struct Decay_<const T[s]> { typedef typename Decay_<const T*>::Type Type; };
template <typename T> struct Decay_<const T> { typedef typename Decay_<T>::Type Type; };
template <typename T> struct Decay_<volatile T> { typedef typename Decay_<T>::Type Type; };
template <typename T> using Decay = typename Decay_<T>::Type;

template <bool b> struct EnableIf_;
template <> struct EnableIf_<true> { typedef void Type; };
template <bool b> using EnableIf = typename EnableIf_<b>::Type;
// Use like:
//
//     template <typename T, typename = EnableIf<isValid<T>()>
//     void func(T&& t);

template <typename T>
T instance() noexcept;
// Like std::declval, but doesn't transform T into an rvalue reference.  If you want that, specify
// instance<T&&>().

struct DisallowConstCopy {
  // Inherit from this, or declare a member variable of this type, to prevent the class from being
  // copyable from a const reference -- instead, it will only be copyable from non-const references.
  // This is useful for enforcing transitive constness of contained pointers.
  //
  // For example, say you have a type T which contains a pointer.  T has non-const methods which
  // modify the value at that pointer, but T's const methods are designed to allow reading only.
  // Unfortunately, if T has a regular copy constructor, someone can simply make a copy of T and
  // then use it to modify the pointed-to value.  However, if T inherits DisallowConstCopy, then
  // callers will only be able to copy non-const instances of T.  Ideally, there is some
  // parallel type ImmutableT which is like a version of T that only has const methods, and can
  // be copied from a const T.
  //
  // Note that due to C++ rules about implicit copy constructors and assignment operators, any
  // type that contains or inherits from a type that disallows const copies will also automatically
  // disallow const copies.  Hey, cool, that's exactly what we want.

  DisallowConstCopy() = default;
  DisallowConstCopy(DisallowConstCopy&);
  DisallowConstCopy(DisallowConstCopy&&) = default;
  DisallowConstCopy& operator=(DisallowConstCopy&);
  DisallowConstCopy& operator=(DisallowConstCopy&&) = default;
};

// Apparently these cannot be defaulted inside the class due to some obscure C++ rule.
inline DisallowConstCopy::DisallowConstCopy(DisallowConstCopy&) = default;
inline DisallowConstCopy& DisallowConstCopy::operator=(DisallowConstCopy&) = default;

template <typename T>
struct DisallowConstCopyIfNotConst: public DisallowConstCopy {
  // Inherit from this when implementing a template that contains a pointer to T and which should
  // enforce transitive constness.  If T is a const type, this has no effect.  Otherwise, it is
  // an alias for DisallowConstCopy.
};

template <typename T>
struct DisallowConstCopyIfNotConst<const T> {};

template <typename T> struct IsConst_ { static constexpr bool value = false; };
template <typename T> struct IsConst_<const T> { static constexpr bool value = true; };
template <typename T> constexpr bool isConst() { return IsConst_<T>::value; }

template <typename T> struct EnableIfNotConst_ { typedef T Type; };
template <typename T> struct EnableIfNotConst_<const T>;
template <typename T> using EnableIfNotConst = typename EnableIfNotConst_<T>::Type;

template <typename T> struct EnableIfConst_;
template <typename T> struct EnableIfConst_<const T> { typedef T Type; };
template <typename T> using EnableIfConst = typename EnableIfConst_<T>::Type;

template <typename T> struct RemoveConstOrDisable_ { struct Type; };
template <typename T> struct RemoveConstOrDisable_<const T> { typedef T Type; };
template <typename T> using RemoveConstOrDisable = typename RemoveConstOrDisable_<T>::Type;

template <typename T> struct IsReference_ { static constexpr bool value = false; };
template <typename T> struct IsReference_<T&> { static constexpr bool value = true; };
template <typename T> constexpr bool isReference() { return IsReference_<T>::value; }

template <typename From, typename To>
struct PropagateConst_ { typedef To Type; };
template <typename From, typename To>
struct PropagateConst_<const From, To> { typedef const To Type; };
template <typename From, typename To>
using PropagateConst = typename PropagateConst_<From, To>::Type;

namespace _ {  // private

template <typename T>
T refIfLvalue(T&&);

}  // namespace _ (private)

#define KJ_DECLTYPE_REF(exp) decltype(::kj::_::refIfLvalue(exp))
// Like decltype(exp), but if exp is an lvalue, produces a reference type.
//
//     int i;
//     decltype(i) i1(i);                         // i1 has type int.
//     KJ_DECLTYPE_REF(i + 1) i2(i + 1);          // i2 has type int.
//     KJ_DECLTYPE_REF(i) i3(i);                  // i3 has type int&.
//     KJ_DECLTYPE_REF(kj::mv(i)) i4(kj::mv(i));  // i4 has type int.

template <typename T>
struct CanConvert_ {
  static int sfinae(T);
  static bool sfinae(...);
};

template <typename T, typename U>
constexpr bool canConvert() {
  return sizeof(CanConvert_<U>::sfinae(instance<T>())) == sizeof(int);
}

#if __clang__
template <typename T>
constexpr bool canMemcpy() {
  // Returns true if T can be copied using memcpy instead of using the copy constructor or
  // assignment operator.

  // Clang unhelpfully defines __has_trivial_{copy,assign}(T) to be true if the copy constructor /
  // assign operator are deleted, on the basis that a strict reading of the definition of "trivial"
  // according to the standard says that deleted functions are in fact trivial.  Meanwhile Clang
  // provides these admittedly-better intrinsics, but GCC does not.
  return __is_trivially_constructible(T, const T&) && __is_trivially_assignable(T, const T&);
}
#else
template <typename T>
constexpr bool canMemcpy() {
  // Returns true if T can be copied using memcpy instead of using the copy constructor or
  // assignment operator.

  // GCC defines these to mean what we want them to mean.
  return __has_trivial_copy(T) && __has_trivial_assign(T);
}
#endif

// =======================================================================================
// Equivalents to std::move() and std::forward(), since these are very commonly needed and the
// std header <utility> pulls in lots of other stuff.
//
// We use abbreviated names mv and fwd because these helpers (especially mv) are so commonly used
// that the cost of typing more letters outweighs the cost of being slightly harder to understand
// when first encountered.

template<typename T> constexpr T&& mv(T& t) noexcept { return static_cast<T&&>(t); }
template<typename T> constexpr T&& fwd(NoInfer<T>& t) noexcept { return static_cast<T&&>(t); }

template<typename T> constexpr T cp(T& t) noexcept { return t; }
template<typename T> constexpr T cp(const T& t) noexcept { return t; }
// Useful to force a copy, particularly to pass into a function that expects T&&.

template <typename T, typename U, bool takeT> struct MinType_;
template <typename T, typename U> struct MinType_<T, U, true> { typedef T Type; };
template <typename T, typename U> struct MinType_<T, U, false> { typedef U Type; };

template <typename T, typename U>
using MinType = typename MinType_<T, U, sizeof(T) <= sizeof(U)>::Type;
// Resolves to the smaller of the two input types.

template <typename T, typename U>
inline KJ_CONSTEXPR() auto min(T&& a, U&& b) -> MinType<Decay<T>, Decay<U>> {
  return a < b ? MinType<Decay<T>, Decay<U>>(a) : MinType<Decay<T>, Decay<U>>(b);
}

template <typename T, typename U, bool takeT> struct MaxType_;
template <typename T, typename U> struct MaxType_<T, U, true> { typedef T Type; };
template <typename T, typename U> struct MaxType_<T, U, false> { typedef U Type; };

template <typename T, typename U>
using MaxType = typename MaxType_<T, U, sizeof(T) >= sizeof(U)>::Type;
// Resolves to the larger of the two input types.

template <typename T, typename U>
inline KJ_CONSTEXPR() auto max(T&& a, U&& b) -> MaxType<Decay<T>, Decay<U>> {
  return a > b ? MaxType<Decay<T>, Decay<U>>(a) : MaxType<Decay<T>, Decay<U>>(b);
}

template <typename T, size_t s>
inline constexpr size_t size(T (&arr)[s]) { return s; }
template <typename T>
inline constexpr size_t size(T&& arr) { return arr.size(); }
// Returns the size of the parameter, whether the parameter is a regular C array or a container
// with a `.size()` method.

class MaxValue_ {
private:
  template <typename T>
  inline constexpr T maxSigned() const {
    return (1ull << (sizeof(T) * 8 - 1)) - 1;
  }
  template <typename T>
  inline constexpr T maxUnsigned() const {
    return ~static_cast<T>(0u);
  }

public:
#define _kJ_HANDLE_TYPE(T) \
  inline constexpr operator   signed T() const { return MaxValue_::maxSigned  <  signed T>(); } \
  inline constexpr operator unsigned T() const { return MaxValue_::maxUnsigned<unsigned T>(); }
  _kJ_HANDLE_TYPE(char)
  _kJ_HANDLE_TYPE(short)
  _kJ_HANDLE_TYPE(int)
  _kJ_HANDLE_TYPE(long)
  _kJ_HANDLE_TYPE(long long)
#undef _kJ_HANDLE_TYPE

  inline constexpr operator char() const {
    // `char` is different from both `signed char` and `unsigned char`, and may be signed or
    // unsigned on different platforms.  Ugh.
    return char(-1) < 0 ? MaxValue_::maxSigned<char>()
                        : MaxValue_::maxUnsigned<char>();
  }
};

class MinValue_ {
private:
  template <typename T>
  inline constexpr T minSigned() const {
    return 1ull << (sizeof(T) * 8 - 1);
  }
  template <typename T>
  inline constexpr T minUnsigned() const {
    return 0u;
  }

public:
#define _kJ_HANDLE_TYPE(T) \
  inline constexpr operator   signed T() const { return MinValue_::minSigned  <  signed T>(); } \
  inline constexpr operator unsigned T() const { return MinValue_::minUnsigned<unsigned T>(); }
  _kJ_HANDLE_TYPE(char)
  _kJ_HANDLE_TYPE(short)
  _kJ_HANDLE_TYPE(int)
  _kJ_HANDLE_TYPE(long)
  _kJ_HANDLE_TYPE(long long)
#undef _kJ_HANDLE_TYPE

  inline constexpr operator char() const {
    // `char` is different from both `signed char` and `unsigned char`, and may be signed or
    // unsigned on different platforms.  Ugh.
    return char(-1) < 0 ? MinValue_::minSigned<char>()
                        : MinValue_::minUnsigned<char>();
  }
};

static KJ_CONSTEXPR(const) MaxValue_ maxValue = MaxValue_();
// A special constant which, when cast to an integer type, takes on the maximum possible value of
// that type.  This is useful to use as e.g. a parameter to a function because it will be robust
// in the face of changes to the parameter's type.
//
// `char` is not supported, but `signed char` and `unsigned char` are.

static KJ_CONSTEXPR(const) MinValue_ minValue = MinValue_();
// A special constant which, when cast to an integer type, takes on the minimum possible value
// of that type.  This is useful to use as e.g. a parameter to a function because it will be robust
// in the face of changes to the parameter's type.
//
// `char` is not supported, but `signed char` and `unsigned char` are.

#if __GNUC__
inline constexpr float inf() { return __builtin_huge_valf(); }
inline constexpr float nan() { return __builtin_nanf(""); }

#elif _MSC_VER

// Do what MSVC math.h does
#pragma warning(push)
#pragma warning(disable: 4756)  // "overflow in constant arithmetic"
inline constexpr float inf() { return (float)(1e300 * 1e300); }
#pragma warning(pop)

float nan();
// Unfortunatley, inf() * 0.0f produces a NaN with the sign bit set, whereas our preferred
// canonical NaN should not have the sign bit set. std::numeric_limits<float>::quiet_NaN()
// returns the correct NaN, but we don't want to #include that here. So, we give up and make
// this out-of-line on MSVC.
//
// TODO(msvc): Can we do better?

#else
#error "Not sure how to support your compiler."
#endif

// =======================================================================================
// Useful fake containers

template <typename T>
class Range {
public:
  inline constexpr Range(const T& begin, const T& end): begin_(begin), end_(end) {}

  class Iterator {
  public:
    Iterator() = default;
    inline Iterator(const T& value): value(value) {}

    inline const T&  operator* () const { return value; }
    inline const T&  operator[](size_t index) const { return value + index; }
    inline Iterator& operator++() { ++value; return *this; }
    inline Iterator  operator++(int) { return Iterator(value++); }
    inline Iterator& operator--() { --value; return *this; }
    inline Iterator  operator--(int) { return Iterator(value--); }
    inline Iterator& operator+=(ptrdiff_t amount) { value += amount; return *this; }
    inline Iterator& operator-=(ptrdiff_t amount) { value -= amount; return *this; }
    inline Iterator  operator+ (ptrdiff_t amount) const { return Iterator(value + amount); }
    inline Iterator  operator- (ptrdiff_t amount) const { return Iterator(value - amount); }
    inline ptrdiff_t operator- (const Iterator& other) const { return value - other.value; }

    inline bool operator==(const Iterator& other) const { return value == other.value; }
    inline bool operator!=(const Iterator& other) const { return value != other.value; }
    inline bool operator<=(const Iterator& other) const { return value <= other.value; }
    inline bool operator>=(const Iterator& other) const { return value >= other.value; }
    inline bool operator< (const Iterator& other) const { return value <  other.value; }
    inline bool operator> (const Iterator& other) const { return value >  other.value; }

  private:
    T value;
  };

  inline Iterator begin() const { return Iterator(begin_); }
  inline Iterator end() const { return Iterator(end_); }

  inline auto size() const -> decltype(instance<T>() - instance<T>()) { return end_ - begin_; }

private:
  T begin_;
  T end_;
};

template <typename T>
inline constexpr Range<Decay<T>> range(T begin, T end) { return Range<Decay<T>>(begin, end); }
// Returns a fake iterable container containing all values of T from `begin` (inclusive) to `end`
// (exclusive).  Example:
//
//     // Prints 1, 2, 3, 4, 5, 6, 7, 8, 9.
//     for (int i: kj::range(1, 10)) { print(i); }

template <typename T>
inline constexpr Range<size_t> indices(T&& container) {
  // Shortcut for iterating over the indices of a container:
  //
  //     for (size_t i: kj::indices(myArray)) { handle(myArray[i]); }

  return range<size_t>(0, kj::size(container));
}

template <typename T>
class Repeat {
public:
  inline constexpr Repeat(const T& value, size_t count): value(value), count(count) {}

  class Iterator {
  public:
    Iterator() = default;
    inline Iterator(const T& value, size_t index): value(value), index(index) {}

    inline const T&  operator* () const { return value; }
    inline const T&  operator[](ptrdiff_t index) const { return value; }
    inline Iterator& operator++() { ++index; return *this; }
    inline Iterator  operator++(int) { return Iterator(value, index++); }
    inline Iterator& operator--() { --index; return *this; }
    inline Iterator  operator--(int) { return Iterator(value, index--); }
    inline Iterator& operator+=(ptrdiff_t amount) { index += amount; return *this; }
    inline Iterator& operator-=(ptrdiff_t amount) { index -= amount; return *this; }
    inline Iterator  operator+ (ptrdiff_t amount) const { return Iterator(value, index + amount); }
    inline Iterator  operator- (ptrdiff_t amount) const { return Iterator(value, index - amount); }
    inline ptrdiff_t operator- (const Iterator& other) const { return index - other.index; }

    inline bool operator==(const Iterator& other) const { return index == other.index; }
    inline bool operator!=(const Iterator& other) const { return index != other.index; }
    inline bool operator<=(const Iterator& other) const { return index <= other.index; }
    inline bool operator>=(const Iterator& other) const { return index >= other.index; }
    inline bool operator< (const Iterator& other) const { return index <  other.index; }
    inline bool operator> (const Iterator& other) const { return index >  other.index; }

  private:
    T value;
    size_t index;
  };

  inline Iterator begin() const { return Iterator(value, 0); }
  inline Iterator end() const { return Iterator(value, count); }

  inline size_t size() const { return count; }

private:
  T value;
  size_t count;
};

template <typename T>
inline constexpr Repeat<Decay<T>> repeat(T&& value, size_t count) {
  // Returns a fake iterable which contains `count` repeats of `value`.  Useful for e.g. creating
  // a bunch of spaces:  `kj::repeat(' ', indent * 2)`

  return Repeat<Decay<T>>(value, count);
}

// =======================================================================================
// Manually invoking constructors and destructors
//
// ctor(x, ...) and dtor(x) invoke x's constructor or destructor, respectively.

// We want placement new, but we don't want to #include <new>.  operator new cannot be defined in
// a namespace, and defining it globally conflicts with the definition in <new>.  So we have to
// define a dummy type and an operator new that uses it.

namespace _ {  // private
struct PlacementNew {};
}  // namespace _ (private)
} // namespace kj

inline void* operator new(size_t, kj::_::PlacementNew, void* __p) noexcept {
  return __p;
}

inline void operator delete(void*, kj::_::PlacementNew, void* __p) noexcept {}

namespace kj {

template <typename T, typename... Params>
inline void ctor(T& location, Params&&... params) {
  new (_::PlacementNew(), &location) T(kj::fwd<Params>(params)...);
}

template <typename T>
inline void dtor(T& location) {
  location.~T();
}

// =======================================================================================
// Maybe
//
// Use in cases where you want to indicate that a value may be null.  Using Maybe<T&> instead of T*
// forces the caller to handle the null case in order to satisfy the compiler, thus reliably
// preventing null pointer dereferences at runtime.
//
// Maybe<T> can be implicitly constructed from T and from nullptr.  Additionally, it can be
// implicitly constructed from T*, in which case the pointer is checked for nullness at runtime.
// To read the value of a Maybe<T>, do:
//
//    KJ_IF_MAYBE(value, someFuncReturningMaybe()) {
//      doSomething(*value);
//    } else {
//      maybeWasNull();
//    }
//
// KJ_IF_MAYBE's first parameter is a variable name which will be defined within the following
// block.  The variable will behave like a (guaranteed non-null) pointer to the Maybe's value,
// though it may or may not actually be a pointer.
//
// Note that Maybe<T&> actually just wraps a pointer, whereas Maybe<T> wraps a T and a boolean
// indicating nullness.

template <typename T>
class Maybe;

namespace _ {  // private

template <typename T>
class NullableValue {
  // Class whose interface behaves much like T*, but actually contains an instance of T and a
  // boolean flag indicating nullness.

public:
  inline NullableValue(NullableValue&& other) noexcept(noexcept(T(instance<T&&>())))
      : isSet(other.isSet) {
    if (isSet) {
      ctor(value, kj::mv(other.value));
    }
  }
  inline NullableValue(const NullableValue& other)
      : isSet(other.isSet) {
    if (isSet) {
      ctor(value, other.value);
    }
  }
  inline NullableValue(NullableValue& other)
      : isSet(other.isSet) {
    if (isSet) {
      ctor(value, other.value);
    }
  }
  inline ~NullableValue() noexcept(noexcept(instance<T&>().~T())) {
    if (isSet) {
      dtor(value);
    }
  }

  inline T& operator*() { return value; }
  inline const T& operator*() const { return value; }
  inline T* operator->() { return &value; }
  inline const T* operator->() const { return &value; }
  inline operator T*() { return isSet ? &value : nullptr; }
  inline operator const T*() const { return isSet ? &value : nullptr; }

private:  // internal interface used by friends only
  inline NullableValue() noexcept: isSet(false) {}
  inline NullableValue(T&& t) noexcept(noexcept(T(instance<T&&>())))
      : isSet(true) {
    ctor(value, kj::mv(t));
  }
  inline NullableValue(T& t)
      : isSet(true) {
    ctor(value, t);
  }
  inline NullableValue(const T& t)
      : isSet(true) {
    ctor(value, t);
  }
  inline NullableValue(const T* t)
      : isSet(t != nullptr) {
    if (isSet) ctor(value, *t);
  }
  template <typename U>
  inline NullableValue(NullableValue<U>&& other) noexcept(noexcept(T(instance<U&&>())))
      : isSet(other.isSet) {
    if (isSet) {
      ctor(value, kj::mv(other.value));
    }
  }
  template <typename U>
  inline NullableValue(const NullableValue<U>& other)
      : isSet(other.isSet) {
    if (isSet) {
      ctor(value, other.value);
    }
  }
  template <typename U>
  inline NullableValue(const NullableValue<U&>& other)
      : isSet(other.isSet) {
    if (isSet) {
      ctor(value, *other.ptr);
    }
  }
  inline NullableValue(decltype(nullptr)): isSet(false) {}

  inline NullableValue& operator=(NullableValue&& other) {
    if (&other != this) {
      // Careful about throwing destructors/constructors here.
      if (isSet) {
        isSet = false;
        dtor(value);
      }
      if (other.isSet) {
        ctor(value, kj::mv(other.value));
        isSet = true;
      }
    }
    return *this;
  }

  inline NullableValue& operator=(NullableValue& other) {
    if (&other != this) {
      // Careful about throwing destructors/constructors here.
      if (isSet) {
        isSet = false;
        dtor(value);
      }
      if (other.isSet) {
        ctor(value, other.value);
        isSet = true;
      }
    }
    return *this;
  }

  inline NullableValue& operator=(const NullableValue& other) {
    if (&other != this) {
      // Careful about throwing destructors/constructors here.
      if (isSet) {
        isSet = false;
        dtor(value);
      }
      if (other.isSet) {
        ctor(value, other.value);
        isSet = true;
      }
    }
    return *this;
  }

  inline bool operator==(decltype(nullptr)) const { return !isSet; }
  inline bool operator!=(decltype(nullptr)) const { return isSet; }

private:
  bool isSet;

#if _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4624)
// Warns that the anonymous union has a deleted destructor when T is non-trivial. This warning
// seems broken.
#endif

  union {
    T value;
  };

#if _MSC_VER
#pragma warning(pop)
#endif

  friend class kj::Maybe<T>;
  template <typename U>
  friend NullableValue<U>&& readMaybe(Maybe<U>&& maybe);
};

template <typename T>
inline NullableValue<T>&& readMaybe(Maybe<T>&& maybe) { return kj::mv(maybe.ptr); }
template <typename T>
inline T* readMaybe(Maybe<T>& maybe) { return maybe.ptr; }
template <typename T>
inline const T* readMaybe(const Maybe<T>& maybe) { return maybe.ptr; }
template <typename T>
inline T* readMaybe(Maybe<T&>&& maybe) { return maybe.ptr; }
template <typename T>
inline T* readMaybe(const Maybe<T&>& maybe) { return maybe.ptr; }

template <typename T>
inline T* readMaybe(T* ptr) { return ptr; }
// Allow KJ_IF_MAYBE to work on regular pointers.

}  // namespace _ (private)

#define KJ_IF_MAYBE(name, exp) if (auto name = ::kj::_::readMaybe(exp))

template <typename T>
class Maybe {
  // A T, or nullptr.

  // IF YOU CHANGE THIS CLASS:  Note that there is a specialization of it in memory.h.

public:
  Maybe(): ptr(nullptr) {}
  Maybe(T&& t) noexcept(noexcept(T(instance<T&&>()))): ptr(kj::mv(t)) {}
  Maybe(T& t): ptr(t) {}
  Maybe(const T& t): ptr(t) {}
  Maybe(const T* t) noexcept: ptr(t) {}
  Maybe(Maybe&& other) noexcept(noexcept(T(instance<T&&>()))): ptr(kj::mv(other.ptr)) {}
  Maybe(const Maybe& other): ptr(other.ptr) {}
  Maybe(Maybe& other): ptr(other.ptr) {}

  template <typename U>
  Maybe(Maybe<U>&& other) noexcept(noexcept(T(instance<U&&>()))) {
    KJ_IF_MAYBE(val, kj::mv(other)) {
      ptr = *val;
    }
  }
  template <typename U>
  Maybe(const Maybe<U>& other) {
    KJ_IF_MAYBE(val, other) {
      ptr = *val;
    }
  }

  Maybe(decltype(nullptr)) noexcept: ptr(nullptr) {}

  inline Maybe& operator=(Maybe&& other) { ptr = kj::mv(other.ptr); return *this; }
  inline Maybe& operator=(Maybe& other) { ptr = other.ptr; return *this; }
  inline Maybe& operator=(const Maybe& other) { ptr = other.ptr; return *this; }

  inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; }
  inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; }

  T& orDefault(T& defaultValue) {
    if (ptr == nullptr) {
      return defaultValue;
    } else {
      return *ptr;
    }
  }
  const T& orDefault(const T& defaultValue) const {
    if (ptr == nullptr) {
      return defaultValue;
    } else {
      return *ptr;
    }
  }

  template <typename Func>
  auto map(Func&& f) -> Maybe<decltype(f(instance<T&>()))> {
    if (ptr == nullptr) {
      return nullptr;
    } else {
      return f(*ptr);
    }
  }

  template <typename Func>
  auto map(Func&& f) const -> Maybe<decltype(f(instance<const T&>()))> {
    if (ptr == nullptr) {
      return nullptr;
    } else {
      return f(*ptr);
    }
  }

  // TODO(someday):  Once it's safe to require GCC 4.8, use ref qualifiers to provide a version of
  //   map() that uses move semantics if *this is an rvalue.

private:
  _::NullableValue<T> ptr;

  template <typename U>
  friend class Maybe;
  template <typename U>
  friend _::NullableValue<U>&& _::readMaybe(Maybe<U>&& maybe);
  template <typename U>
  friend U* _::readMaybe(Maybe<U>& maybe);
  template <typename U>
  friend const U* _::readMaybe(const Maybe<U>& maybe);
};

template <typename T>
class Maybe<T&>: public DisallowConstCopyIfNotConst<T> {
public:
  Maybe() noexcept: ptr(nullptr) {}
  Maybe(T& t) noexcept: ptr(&t) {}
  Maybe(T* t) noexcept: ptr(t) {}

  template <typename U>
  inline Maybe(Maybe<U&>& other) noexcept: ptr(other.ptr) {}
  template <typename U>
  inline Maybe(const Maybe<const U&>& other) noexcept: ptr(other.ptr) {}
  inline Maybe(decltype(nullptr)) noexcept: ptr(nullptr) {}

  inline Maybe& operator=(T& other) noexcept { ptr = &other; return *this; }
  inline Maybe& operator=(T* other) noexcept { ptr = other; return *this; }
  template <typename U>
  inline Maybe& operator=(Maybe<U&>& other) noexcept { ptr = other.ptr; return *this; }
  template <typename U>
  inline Maybe& operator=(const Maybe<const U&>& other) noexcept { ptr = other.ptr; return *this; }

  inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; }
  inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; }

  T& orDefault(T& defaultValue) {
    if (ptr == nullptr) {
      return defaultValue;
    } else {
      return *ptr;
    }
  }
  const T& orDefault(const T& defaultValue) const {
    if (ptr == nullptr) {
      return defaultValue;
    } else {
      return *ptr;
    }
  }

  template <typename Func>
  auto map(Func&& f) -> Maybe<decltype(f(instance<T&>()))> {
    if (ptr == nullptr) {
      return nullptr;
    } else {
      return f(*ptr);
    }
  }

private:
  T* ptr;

  template <typename U>
  friend class Maybe;
  template <typename U>
  friend U* _::readMaybe(Maybe<U&>&& maybe);
  template <typename U>
  friend U* _::readMaybe(const Maybe<U&>& maybe);
};

// =======================================================================================
// ArrayPtr
//
// So common that we put it in common.h rather than array.h.

template <typename T>
class ArrayPtr: public DisallowConstCopyIfNotConst<T> {
  // A pointer to an array.  Includes a size.  Like any pointer, it doesn't own the target data,
  // and passing by value only copies the pointer, not the target.

public:
  inline constexpr ArrayPtr(): ptr(nullptr), size_(0) {}
  inline constexpr ArrayPtr(decltype(nullptr)): ptr(nullptr), size_(0) {}
  inline constexpr ArrayPtr(T* ptr, size_t size): ptr(ptr), size_(size) {}
  inline constexpr ArrayPtr(T* begin, T* end): ptr(begin), size_(end - begin) {}
  inline KJ_CONSTEXPR() ArrayPtr(::std::initializer_list<RemoveConstOrDisable<T>> init)
      : ptr(init.begin()), size_(init.size()) {}

  template <size_t size>
  inline constexpr ArrayPtr(T (&native)[size]): ptr(native), size_(size) {}
  // Construct an ArrayPtr from a native C-style array.

  inline operator ArrayPtr<const T>() const {
    return ArrayPtr<const T>(ptr, size_);
  }
  inline ArrayPtr<const T> asConst() const {
    return ArrayPtr<const T>(ptr, size_);
  }

  inline size_t size() const { return size_; }
  inline const T& operator[](size_t index) const {
    KJ_IREQUIRE(index < size_, "Out-of-bounds ArrayPtr access.");
    return ptr[index];
  }
  inline T& operator[](size_t index) {
    KJ_IREQUIRE(index < size_, "Out-of-bounds ArrayPtr access.");
    return ptr[index];
  }

  inline T* begin() { return ptr; }
  inline T* end() { return ptr + size_; }
  inline T& front() { return *ptr; }
  inline T& back() { return *(ptr + size_ - 1); }
  inline const T* begin() const { return ptr; }
  inline const T* end() const { return ptr + size_; }
  inline const T& front() const { return *ptr; }
  inline const T& back() const { return *(ptr + size_ - 1); }

  inline ArrayPtr<const T> slice(size_t start, size_t end) const {
    KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds ArrayPtr::slice().");
    return ArrayPtr<const T>(ptr + start, end - start);
  }
  inline ArrayPtr slice(size_t start, size_t end) {
    KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds ArrayPtr::slice().");
    return ArrayPtr(ptr + start, end - start);
  }

  inline ArrayPtr<PropagateConst<T, byte>> asBytes() const {
    // Reinterpret the array as a byte array. This is explicitly legal under C++ aliasing
    // rules.
    return { reinterpret_cast<PropagateConst<T, byte>*>(ptr), size_ * sizeof(T) };
  }
  inline ArrayPtr<PropagateConst<T, char>> asChars() const {
    // Reinterpret the array as a char array. This is explicitly legal under C++ aliasing
    // rules.
    return { reinterpret_cast<PropagateConst<T, char>*>(ptr), size_ * sizeof(T) };
  }

  inline bool operator==(decltype(nullptr)) const { return size_ == 0; }
  inline bool operator!=(decltype(nullptr)) const { return size_ != 0; }

  inline bool operator==(const ArrayPtr& other) const {
    if (size_ != other.size_) return false;
    for (size_t i = 0; i < size_; i++) {
      if (ptr[i] != other[i]) return false;
    }
    return true;
  }
  inline bool operator!=(const ArrayPtr& other) const { return !(*this == other); }

private:
  T* ptr;
  size_t size_;
};

template <typename T>
inline constexpr ArrayPtr<T> arrayPtr(T* ptr, size_t size) {
  // Use this function to construct ArrayPtrs without writing out the type name.
  return ArrayPtr<T>(ptr, size);
}

template <typename T>
inline constexpr ArrayPtr<T> arrayPtr(T* begin, T* end) {
  // Use this function to construct ArrayPtrs without writing out the type name.
  return ArrayPtr<T>(begin, end);
}

// =======================================================================================
// Casts

template <typename To, typename From>
To implicitCast(From&& from) {
  // `implicitCast<T>(value)` casts `value` to type `T` only if the conversion is implicit.  Useful
  // for e.g. resolving ambiguous overloads without sacrificing type-safety.
  return kj::fwd<From>(from);
}

template <typename To, typename From>
Maybe<To&> dynamicDowncastIfAvailable(From& from) {
  // If RTTI is disabled, always returns nullptr.  Otherwise, works like dynamic_cast.  Useful
  // in situations where dynamic_cast could allow an optimization, but isn't strictly necessary
  // for correctness.  It is highly recommended that you try to arrange all your dynamic_casts
  // this way, as a dynamic_cast that is necessary for correctness implies a flaw in the interface
  // design.

  // Force a compile error if To is not a subtype of From.  Cross-casting is rare; if it is needed
  // we should have a separate cast function like dynamicCrosscastIfAvailable().
  if (false) {
    kj::implicitCast<From*>(kj::implicitCast<To*>(nullptr));
  }

#if KJ_NO_RTTI
  return nullptr;
#else
  return dynamic_cast<To*>(&from);
#endif
}

template <typename To, typename From>
To& downcast(From& from) {
  // Down-cast a value to a sub-type, asserting that the cast is valid.  In opt mode this is a
  // static_cast, but in debug mode (when RTTI is enabled) a dynamic_cast will be used to verify
  // that the value really has the requested type.

  // Force a compile error if To is not a subtype of From.
  if (false) {
    kj::implicitCast<From*>(kj::implicitCast<To*>(nullptr));
  }

#if !KJ_NO_RTTI
  KJ_IREQUIRE(dynamic_cast<To*>(&from) != nullptr, "Value cannot be downcast() to requested type.");
#endif

  return static_cast<To&>(from);
}

// =======================================================================================
// Defer

namespace _ {  // private

template <typename Func>
class Deferred {
public:
  inline Deferred(Func func): func(func), canceled(false) {}
  inline ~Deferred() noexcept(false) { if (!canceled) func(); }
  KJ_DISALLOW_COPY(Deferred);

  // This move constructor is usually optimized away by the compiler.
  inline Deferred(Deferred&& other): func(kj::mv(other.func)), canceled(false) {
    other.canceled = true;
  }
private:
  Func func;
  bool canceled;
};

}  // namespace _ (private)

template <typename Func>
_::Deferred<Decay<Func>> defer(Func&& func) {
  // Returns an object which will invoke the given functor in its destructor.  The object is not
  // copyable but is movable with the semantics you'd expect.  Since the return type is private,
  // you need to assign to an `auto` variable.
  //
  // The KJ_DEFER macro provides slightly more convenient syntax for the common case where you
  // want some code to run at function exit.

  return _::Deferred<Decay<Func>>(kj::fwd<Func>(func));
}

#define KJ_DEFER(code) auto KJ_UNIQUE_NAME(_kjDefer) = ::kj::defer([&](){code;})
// Run the given code when the function exits, whether by return or exception.

}  // namespace kj

#endif  // KJ_COMMON_H_