This file is indexed.

/usr/include/capnp/common.h is in libcapnp-dev 0.5.3-2ubuntu1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

// This file contains types which are intended to help detect incorrect usage at compile
// time, but should then be optimized down to basic primitives (usually, integers) by the
// compiler.

#ifndef CAPNP_COMMON_H_
#define CAPNP_COMMON_H_

#if defined(__GNUC__) && !CAPNP_HEADER_WARNINGS
#pragma GCC system_header
#endif

#include <kj/units.h>
#include <inttypes.h>

namespace capnp {

#define CAPNP_VERSION_MAJOR 0
#define CAPNP_VERSION_MINOR 5
#define CAPNP_VERSION_MICRO 3

#define CAPNP_VERSION \
  (CAPNP_VERSION_MAJOR * 1000000 + CAPNP_VERSION_MINOR * 1000 + CAPNP_VERSION_MICRO)

#ifdef _MSC_VER
#define CAPNP_LITE 1
// MSVC only supports "lite" mode for now, due to missing C++11 features.
#endif

#ifndef CAPNP_LITE
#define CAPNP_LITE 0
#endif

typedef unsigned int uint;

struct Void {
  // Type used for Void fields.  Using C++'s "void" type creates a bunch of issues since it behaves
  // differently from other types.

  inline constexpr bool operator==(Void other) const { return true; }
  inline constexpr bool operator!=(Void other) const { return false; }
};

static KJ_CONSTEXPR(const) Void VOID = Void();
// Constant value for `Void`,  which is an empty struct.

template <typename T>
inline T& operator<<(T& os, Void) { return os << "void"; }

struct Text;
struct Data;

enum class Kind: uint8_t {
  PRIMITIVE,
  BLOB,
  ENUM,
  STRUCT,
  UNION,
  INTERFACE,
  LIST,

  OTHER
  // Some other type which is often a type parameter to Cap'n Proto templates, but which needs
  // special handling. This includes types like AnyPointer, Dynamic*, etc.
};

enum class ElementSize: uint8_t {
  // Size of a list element.

  VOID = 0,
  BIT = 1,
  BYTE = 2,
  TWO_BYTES = 3,
  FOUR_BYTES = 4,
  EIGHT_BYTES = 5,

  POINTER = 6,

  INLINE_COMPOSITE = 7
};

namespace schemas {

template <typename T>
struct EnumInfo;

}  // namespace schemas

namespace _ {  // private

template <typename T, typename = typename T::_capnpPrivate::IsStruct> uint8_t kindSfinae(int);
template <typename T, typename = typename T::_capnpPrivate::IsInterface> uint16_t kindSfinae(int);
template <typename T, typename = typename schemas::EnumInfo<T>::IsEnum> uint32_t kindSfinae(int);
template <typename T> uint64_t kindSfinae(...);

template <typename T>
struct MsvcWorkaround {
  // TODO(msvc): Remove this once MSVC supports expression SFINAE.
  enum { value = sizeof(kindSfinae<T>(0)) };
};

template <typename T, size_t s = MsvcWorkaround<T>::value> struct Kind_;

template <> struct Kind_<Void> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<bool> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int8_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int16_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int32_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int64_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint8_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint16_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint32_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint64_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<float> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<double> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<Text> { static constexpr Kind kind = Kind::BLOB; };
template <> struct Kind_<Data> { static constexpr Kind kind = Kind::BLOB; };

template <typename T> struct Kind_<T, sizeof(uint8_t)> { static constexpr Kind kind = Kind::STRUCT; };
template <typename T> struct Kind_<T, sizeof(uint16_t)> { static constexpr Kind kind = Kind::INTERFACE; };
template <typename T> struct Kind_<T, sizeof(uint32_t)> { static constexpr Kind kind = Kind::ENUM; };

}  // namespace _ (private)

#if CAPNP_LITE

#define CAPNP_KIND(T) ::capnp::_::Kind_<T>::kind
// Avoid constexpr methods in lite mode (MSVC is bad at constexpr).

#else  // CAPNP_LITE

template <typename T, Kind k = _::Kind_<T>::kind>
inline constexpr Kind kind() {
  // This overload of kind() matches types which have a Kind_ specialization.

  return k;
}

#define CAPNP_KIND(T) ::capnp::kind<T>()
// Use this macro rather than kind<T>() in any code which must work in lite mode.

#endif  // CAPNP_LITE, else

template <typename T, Kind k = CAPNP_KIND(T)>
struct List;

#if _MSC_VER

template <typename T, Kind k>
struct List {};
// For some reason, without this declaration, MSVC will error out on some uses of List
// claiming that "T" -- as used in the default initializer for the second template param, "k" --
// is not defined. I do not understand this error, but adding this empty default declaration fixes
// it.

#endif

template <typename T> struct ListElementType_;
template <typename T> struct ListElementType_<List<T>> { typedef T Type; };
template <typename T> using ListElementType = typename ListElementType_<T>::Type;

namespace _ {  // private
template <typename T, Kind k> struct Kind_<List<T, k>, sizeof(uint64_t)> {
  static constexpr Kind kind = Kind::LIST;
};
}  // namespace _ (private)

template <typename T, Kind k = CAPNP_KIND(T)> struct ReaderFor_ { typedef typename T::Reader Type; };
template <typename T> struct ReaderFor_<T, Kind::PRIMITIVE> { typedef T Type; };
template <typename T> struct ReaderFor_<T, Kind::ENUM> { typedef T Type; };
template <typename T> struct ReaderFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
template <typename T> using ReaderFor = typename ReaderFor_<T>::Type;
// The type returned by List<T>::Reader::operator[].

template <typename T, Kind k = CAPNP_KIND(T)> struct BuilderFor_ { typedef typename T::Builder Type; };
template <typename T> struct BuilderFor_<T, Kind::PRIMITIVE> { typedef T Type; };
template <typename T> struct BuilderFor_<T, Kind::ENUM> { typedef T Type; };
template <typename T> struct BuilderFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
template <typename T> using BuilderFor = typename BuilderFor_<T>::Type;
// The type returned by List<T>::Builder::operator[].

template <typename T, Kind k = CAPNP_KIND(T)> struct PipelineFor_ { typedef typename T::Pipeline Type;};
template <typename T> struct PipelineFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
template <typename T> using PipelineFor = typename PipelineFor_<T>::Type;

template <typename T, Kind k = CAPNP_KIND(T)> struct TypeIfEnum_;
template <typename T> struct TypeIfEnum_<T, Kind::ENUM> { typedef T Type; };

template <typename T>
using TypeIfEnum = typename TypeIfEnum_<kj::Decay<T>>::Type;

template <typename T>
using FromReader = typename kj::Decay<T>::Reads;
// FromReader<MyType::Reader> = MyType (for any Cap'n Proto type).

template <typename T>
using FromBuilder = typename kj::Decay<T>::Builds;
// FromBuilder<MyType::Builder> = MyType (for any Cap'n Proto type).

template <typename T>
using FromPipeline = typename kj::Decay<T>::Pipelines;
// FromBuilder<MyType::Pipeline> = MyType (for any Cap'n Proto type).

template <typename T>
using FromClient = typename kj::Decay<T>::Calls;
// FromReader<MyType::Client> = MyType (for any Cap'n Proto interface type).

template <typename T>
using FromServer = typename kj::Decay<T>::Serves;
// FromBuilder<MyType::Server> = MyType (for any Cap'n Proto interface type).

namespace _ {  // private

template <typename T, Kind k = CAPNP_KIND(T)>
struct PointerHelpers;

#if _MSC_VER

template <typename T, Kind k>
struct PointerHelpers {};
// For some reason, without this declaration, MSVC will error out on some uses of PointerHelpers
// claiming that "T" -- as used in the default initializer for the second template param, "k" --
// is not defined. I do not understand this error, but adding this empty default declaration fixes
// it.

#endif

}  // namespace _ (private)

struct MessageSize {
  // Size of a message.  Every struct type has a method `.totalSize()` that returns this.
  uint64_t wordCount;
  uint capCount;
};

// =======================================================================================
// Raw memory types and measures

using kj::byte;

class word { uint64_t content KJ_UNUSED_MEMBER; KJ_DISALLOW_COPY(word); public: word() = default; };
// word is an opaque type with size of 64 bits.  This type is useful only to make pointer
// arithmetic clearer.  Since the contents are private, the only way to access them is to first
// reinterpret_cast to some other pointer type.
//
// Copying is disallowed because you should always use memcpy().  Otherwise, you may run afoul of
// aliasing rules.
//
// A pointer of type word* should always be word-aligned even if won't actually be dereferenced as
// that type.

static_assert(sizeof(byte) == 1, "uint8_t is not one byte?");
static_assert(sizeof(word) == 8, "uint64_t is not 8 bytes?");

#if CAPNP_DEBUG_TYPES
// Set CAPNP_DEBUG_TYPES to 1 to use kj::Quantity for "count" types.  Otherwise, plain integers are
// used.  All the code should still operate exactly the same, we just lose compile-time checking.
// Note that this will also change symbol names, so it's important that the library and any clients
// be compiled with the same setting here.
//
// We disable this by default to reduce symbol name size and avoid any possibility of the compiler
// failing to fully-optimize the types, but anyone modifying Cap'n Proto itself should enable this
// during development and testing.

namespace _ { class BitLabel; class ElementLabel; struct WirePointer; }

typedef kj::Quantity<uint, _::BitLabel> BitCount;
typedef kj::Quantity<uint8_t, _::BitLabel> BitCount8;
typedef kj::Quantity<uint16_t, _::BitLabel> BitCount16;
typedef kj::Quantity<uint32_t, _::BitLabel> BitCount32;
typedef kj::Quantity<uint64_t, _::BitLabel> BitCount64;

typedef kj::Quantity<uint, byte> ByteCount;
typedef kj::Quantity<uint8_t, byte> ByteCount8;
typedef kj::Quantity<uint16_t, byte> ByteCount16;
typedef kj::Quantity<uint32_t, byte> ByteCount32;
typedef kj::Quantity<uint64_t, byte> ByteCount64;

typedef kj::Quantity<uint, word> WordCount;
typedef kj::Quantity<uint8_t, word> WordCount8;
typedef kj::Quantity<uint16_t, word> WordCount16;
typedef kj::Quantity<uint32_t, word> WordCount32;
typedef kj::Quantity<uint64_t, word> WordCount64;

typedef kj::Quantity<uint, _::ElementLabel> ElementCount;
typedef kj::Quantity<uint8_t, _::ElementLabel> ElementCount8;
typedef kj::Quantity<uint16_t, _::ElementLabel> ElementCount16;
typedef kj::Quantity<uint32_t, _::ElementLabel> ElementCount32;
typedef kj::Quantity<uint64_t, _::ElementLabel> ElementCount64;

typedef kj::Quantity<uint, _::WirePointer> WirePointerCount;
typedef kj::Quantity<uint8_t, _::WirePointer> WirePointerCount8;
typedef kj::Quantity<uint16_t, _::WirePointer> WirePointerCount16;
typedef kj::Quantity<uint32_t, _::WirePointer> WirePointerCount32;
typedef kj::Quantity<uint64_t, _::WirePointer> WirePointerCount64;

template <typename T, typename U>
inline constexpr U* operator+(U* ptr, kj::Quantity<T, U> offset) {
  return ptr + offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr const U* operator+(const U* ptr, kj::Quantity<T, U> offset) {
  return ptr + offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr U* operator+=(U*& ptr, kj::Quantity<T, U> offset) {
  return ptr = ptr + offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr const U* operator+=(const U*& ptr, kj::Quantity<T, U> offset) {
  return ptr = ptr + offset / kj::unit<kj::Quantity<T, U>>();
}

template <typename T, typename U>
inline constexpr U* operator-(U* ptr, kj::Quantity<T, U> offset) {
  return ptr - offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr const U* operator-(const U* ptr, kj::Quantity<T, U> offset) {
  return ptr - offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr U* operator-=(U*& ptr, kj::Quantity<T, U> offset) {
  return ptr = ptr - offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr const U* operator-=(const U*& ptr, kj::Quantity<T, U> offset) {
  return ptr = ptr - offset / kj::unit<kj::Quantity<T, U>>();
}

#else

typedef uint BitCount;
typedef uint8_t BitCount8;
typedef uint16_t BitCount16;
typedef uint32_t BitCount32;
typedef uint64_t BitCount64;

typedef uint ByteCount;
typedef uint8_t ByteCount8;
typedef uint16_t ByteCount16;
typedef uint32_t ByteCount32;
typedef uint64_t ByteCount64;

typedef uint WordCount;
typedef uint8_t WordCount8;
typedef uint16_t WordCount16;
typedef uint32_t WordCount32;
typedef uint64_t WordCount64;

typedef uint ElementCount;
typedef uint8_t ElementCount8;
typedef uint16_t ElementCount16;
typedef uint32_t ElementCount32;
typedef uint64_t ElementCount64;

typedef uint WirePointerCount;
typedef uint8_t WirePointerCount8;
typedef uint16_t WirePointerCount16;
typedef uint32_t WirePointerCount32;
typedef uint64_t WirePointerCount64;

#endif

constexpr BitCount BITS = kj::unit<BitCount>();
constexpr ByteCount BYTES = kj::unit<ByteCount>();
constexpr WordCount WORDS = kj::unit<WordCount>();
constexpr ElementCount ELEMENTS = kj::unit<ElementCount>();
constexpr WirePointerCount POINTERS = kj::unit<WirePointerCount>();

// GCC 4.7 actually gives unused warnings on these constants in opt mode...
constexpr auto BITS_PER_BYTE KJ_UNUSED = 8 * BITS / BYTES;
constexpr auto BITS_PER_WORD KJ_UNUSED = 64 * BITS / WORDS;
constexpr auto BYTES_PER_WORD KJ_UNUSED = 8 * BYTES / WORDS;

constexpr auto BITS_PER_POINTER KJ_UNUSED = 64 * BITS / POINTERS;
constexpr auto BYTES_PER_POINTER KJ_UNUSED = 8 * BYTES / POINTERS;
constexpr auto WORDS_PER_POINTER KJ_UNUSED = 1 * WORDS / POINTERS;

constexpr WordCount POINTER_SIZE_IN_WORDS = 1 * POINTERS * WORDS_PER_POINTER;

template <typename T>
inline KJ_CONSTEXPR() decltype(BYTES / ELEMENTS) bytesPerElement() {
  return sizeof(T) * BYTES / ELEMENTS;
}

template <typename T>
inline KJ_CONSTEXPR() decltype(BITS / ELEMENTS) bitsPerElement() {
  return sizeof(T) * 8 * BITS / ELEMENTS;
}

inline constexpr ByteCount intervalLength(const byte* a, const byte* b) {
  return uint(b - a) * BYTES;
}
inline constexpr WordCount intervalLength(const word* a, const word* b) {
  return uint(b - a) * WORDS;
}

}  // namespace capnp

#endif  // CAPNP_COMMON_H_