/usr/share/yacas/sums.rep/taylor.ys is in yacas 1.3.3-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 | /*
* Taylor(x,a,n) y --- ENTRY POINT
* ~~~~~~~~~~~~~~~
* The n-th degree Taylor polynomial of y around x=a
*
* This function is implemented by doing calculus on power series. For
* instance, the Taylor series of Sin(x)^2 around x=0 is computed as
* follows. First, we look up the series for Sin(x)
* Sin(x) = x - 1/6 x^3 + 1/120 x^5 - 1/5040 x^7 + ...
* and then we compute the square of this series
* Sin(x)^2 = x^2 - x^4/3 + 2/45 x^6 - 1/315 x^8 + ...
*
* An alternative method is to use the formula
* Taylor(x,a,n) y = \sum_{k=0}^n 1/k! a_k x^k,
* where a_k is the k-th order derivative of y with respect to x,
* evaluated at x=a. In fact, the old implementation of "Taylor", which
* is retained in obsolete.ys, uses this method. However, we found out
* that the expressions for the derivatives often grow very large, which
* makes the computation too slow.
*
* The power series are implemented as lazy power series, which means
* that the coefficients are computed on demand. Lazy power series are
* encapsulated in expressions of the form
* Taylor'LPS(order, coeffs, var, expr).
* This represent the power series of "expr", seen as a function of
* "var". "coeffs" is list of coefficients that have been computed thus
* far. The integer "order" is the order of the first coefficient.
*
* For instance, the expression
* Taylor'LPS(1, {1,0,-1/6,0}, x, Sin(x))
* contains the power series of Sin(x), viewed as a function of x, where
* the four coefficients corresponding to x, x^2, x^3, and x^4 have been
* computed. One can view this expression as x - 1/6 x^3 + O(x^5).
*
* "coeffs" is the empty list in the following special cases:
* 1) order = Infinity represents the zero power series
* 2) order = Undefined represents a power series of which no
* coefficients have yet been computed.
* 3) order = n represents a power series of order at least n,
* of which no coefficients have yet been computed.
*
* "expr" may contain subexpressions of the form
* Taylor'LPS'Add(lps1, lps2) = lps1)x) + lps2(x)
* Taylor'LPS'ScalarMult(a, lps) = a*lps(x) (a is scalar)
* Taylor'LPS'Multiply(lps1, lps2) = lps1(x) * lps2(x)
* Taylor'LPS'Inverse(lps) = 1/lps(x)
* Taylor'LPS'Power(lps, n) = lps(x)^n (n is natural number)
* Taylor'LPS'Compose(lps1, lps2) = lps1(lps2(x))
*
* A well-formed LPS is an expression of the form
* Taylor'LPS(order, coeffs, var, expr)
* satisfying the following conditions:
* 1) order is an integer, Infinity, or Undefined;
* 2) coeffs is a list;
* 3) if order is Infinity or Undefined, then coeffs is {};
* 4) if order is an integer, then coeffs is empty
* or its first entry is nonzero;
* 5) var does not appear in coeffs;
* 6) expr is normalized with Taylor'LPS'NormalizeExpr.
*
*/
/* For the moment, the function is called Taylor2. */
/* HELP: Is this the correct mechanism to signal incorrect input? */
/*COMMENT FROM AYAL: Formally, I would do it the other way around, although this is more efficient. This
scheme says: all following rules hold if n>=0. Ideally you'd have a rule "this transformation rule holds
if n>=0". But then you would end up checking that n>=0 for each transformation rule, making things a little
bit slower (but more correct, more elegant).
*/
10 # (Taylor2(_x, _a, _n) _y)
_ (Not(IsPositiveInteger(n) Or IsZero(n)))
<-- Check(False,
"Third argument to Taylor should be a nonnegative integer");
20 # (Taylor2(_x, 0, _n) _y) <--
[
Local(res);
res := Taylor'LPS'PowerSeries(Taylor'LPS'Construct(x, y), n, x);
If (ClearError("singularity"),
Echo(y, "has a singularity at", x, "= 0."));
If (ClearError("dunno"),
Echo("Cannot determine power series of", y));
res;
];
30 # (Taylor2(_x, _a, _n) _y)
<-- Subst(x,x-a) Taylor2(x,0,n) Subst(x,x+a) y;
/**********************************************************************
*
* Parameters
* ~~~~~~~~~~
* The number of coefficients to be computed before concluding that a
* given power series is zero */
/*TODO COMMENT FROM AYAL: This parameter, 15, seems to be a bit arbitrary. This implies that there is an input
with more than 15 zeroes, and then a non-zero coefficient, that this would fail on. Correct? Is there not
a more accurate estimation of this parameter?
*/
Taylor'LPS'Param1() := 15;
/**********************************************************************
*
* Taylor'LPS'Construct(var, expr)
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* construct a LPS
* PRE: var is a name
* POST: returns a well-formed LPS
*/
10 # Taylor'LPS'Construct(_var, _expr)
<-- Taylor'LPS(Undefined, {}, var,
Taylor'LPS'NormalizeExpr(var, expr));
/**********************************************************************
*
* Taylor'LPS'Coeffs(lps, n1, n2)
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* List of coefficients of order n1 up to n2
* PRE: lps is a well-formed LPS, n1 in Z, n2 in Z, n2 >= n1
* POST: returns list of length n2-n1+1,
* or raises "dunno", "div-by-zero", or "maybe-div-by-zero"
* lps may be changed, but it's still a well-formed LPS
*/
Taylor'LPS'Coeffs(_lps, _n1, _n2) <--
[
Local(res, finished, order, j, k, n, tmp, c1, c2);
finished := False;
/* Case 1: Zero power series */
If (lps[1] = Infinity,
[
res := FillList(0, n2-n1+1);
finished := True;
]);
/* Case 2: Coefficients are already computed */
If (Not finished And lps[1] != Undefined And n2 < lps[1]+Length(lps[2]),
[
If (n1 >= lps[1],
res := Take(lps[2], {n1-lps[1]+1, n2-lps[1]+1}),
If (n2 >= lps[1],
res := Concat(FillList(0, lps[1]-n1),
Take(lps[2], n2-lps[1]+1)),
res := FillList(0, n2-n1+1)));
finished := True;
]);
/* Case 3: We need to compute the coefficients */
If (Not finished,
[
/* Subcase 3a: Expression is recognized by Taylor'LPS'CompOrder */
order := Taylor'LPS'CompOrder(lps[3], lps[4]);
If (Not ClearError("dunno"),
[
If (lps[1] = Undefined,
[
lps[1] := order;
If (order <= n2,
[
lps[2] := Table(Taylor'LPS'CompCoeff(lps[3], lps[4], n),
n, order, n2, 1);
]);
],[
tmp := Table(Taylor'LPS'CompCoeff(lps[3], lps[4], n),
n, lps[1]+Length(lps[2]), n2, 1);
lps[2] := Concat(lps[2], tmp);
]);
finished := True;
]);
/* Subcase 3b: Addition */
If (Not finished And lps[4][0] = Taylor'LPS'Add,
[
lps[1] := Min(Taylor'LPS'GetOrder(lps[4][1])[1],
Taylor'LPS'GetOrder(lps[4][2])[1], n2);
If (IsError("dunno"),
[
ClearError("dunno");
ClearError("dunno");
],[
If (lps[1] <= n2,
[
c1 := Taylor'LPS'Coeffs(lps[4][1], lps[1] + Length(lps[2]), n2);
c2 := Taylor'LPS'Coeffs(lps[4][2], lps[1] + Length(lps[2]), n2);
lps[2] := Concat(lps[2], c1 + c2);
]);
finished := True;
]);
]);
/* Subcase 3c: Scalar multiplication */
If (Not finished And lps[4][0] = Taylor'LPS'ScalarMult,
[
lps[1] := Min(Taylor'LPS'GetOrder(lps[4][2])[1], n2);
If (Not ClearError("dunno"),
[
If (lps[1] <= n2,
[
tmp := Taylor'LPS'Coeffs(lps[4][2],
lps[1] + Length(lps[2]), n2);
tmp := lps[4][1] * tmp;
lps[2] := Concat(lps[2], tmp);
]);
finished := True;
]);
]);
/* Subcase 3d: Multiplication */
If (Not finished And lps[4][0] = Taylor'LPS'Multiply,
[
lps[1] := Taylor'LPS'GetOrder(lps[4][1])[1]
+ Taylor'LPS'GetOrder(lps[4][2])[1];
If (IsError("dunno"),
[
ClearError("dunno");
ClearError("dunno");
],[
If (lps[1] <= n2,
[
c1 := Taylor'LPS'Coeffs(lps[4][1], lps[4][1][1],
n2 - lps[4][2][1]);
c2 := Taylor'LPS'Coeffs(lps[4][2], lps[4][2][1],
n2 - lps[4][1][1]);
tmp := lps[2];
ForEach(k, (Length(lps[2])+1) .. Length(c1))
tmp := Append(tmp, Sum(j, 1, k, c1[j]*c2[k+1-j]));
lps[2] := tmp;
]);
finished := True;
]);
]);
/* Subcase 3e: Inversion */
If (Not finished And lps[4][0] = Taylor'LPS'Inverse,
[
If (lps[4][1][1] = Infinity,
[
Assert("div-by-zero") False;
finished := True;
]);
If (Not finished And lps[2] = {},
[
order := Taylor'LPS'GetOrder(lps[4][1])[1];
n := order;
c1 := Taylor'LPS'Coeffs(lps[4][1], n, n)[1];
While (c1 = 0 And n < order + Taylor'LPS'Param1())
[
n := n + 1;
c1 := Taylor'LPS'Coeffs(lps[4][1], n, n)[1];
];
If (c1 = 0,
[
Assert("maybe-div-by-zero") False;
finished := True;
]);
]);
If (Not finished,
[
lps[1] := -lps[4][1][1];
c1 := Taylor'LPS'Coeffs(lps[4][1], lps[4][1][1],
lps[4][1][1]+n2-lps[1]);
tmp := lps[2];
If (tmp = {}, tmp := {1/c1[1]});
If (Length(c1)>1,
[
ForEach(k, (Length(tmp)+1) .. Length(c1))
[
n := -Sum(j, 1, k-1, c1[k+1-j]*tmp[j]) / c1[1];
tmp := Append(tmp, n);
];
]);
lps[2] := tmp;
finished := True;
]);
]);
/* Subcase 3f: Composition */
If (Not finished And lps[4][0] = Taylor'LPS'Compose,
[
j := Taylor'LPS'GetOrder(lps[4][1])[1];
Check(j >= 0, "Expansion of f(g(x)) where f has a"
: "singularity is not implemented");
k := Taylor'LPS'GetOrder(lps[4][2])[1];
c1 := {j, Taylor'LPS'Coeffs(lps[4][1], j, n2)};
c2 := {k, Taylor'LPS'Coeffs(lps[4][2], k, n2)};
c1 := Taylor'TPS'Compose(c1, c2);
lps[1] := c1[1];
lps[2] := c1[2];
finished := True;
]);
/* Case 3: The end */
If (finished,
[
/* normalization: remove initial zeros from lps[2] */
While (lps[2] != {} And lps[2][1] = 0)
[
lps[1] := lps[1] + 1;
lps[2] := Tail(lps[2]);
];
/* get result */
If (Not IsError("dunno") And Not IsError("div-by-zero")
And Not IsError("maybe-div-by-zero"),
[
If (lps[1] <= n1,
res := Take(lps[2], {n1-lps[1]+1, n2-lps[1]+1}),
If (lps[1] <= n2,
res := Concat(FillList(0, lps[1]-n1), lps[2]),
res := FillList(0, n2-n1+1)));
]);
],[
Assert("dunno") False;
res := False;
]);
]);
/* Return res */
res;
];
/**********************************************************************
*
* Truncated power series
* ~~~~~~~~~~~~~~~~~~~~~~
* Here is the start of an implementation of truncated power series.
* This should be cleaned up.
*
* {n, {a0,a1,a2,a3,...}} represents
* a0 x^n + a1 x^(n+1) + a2 x^(n+2) + a3 x^(n+3) + ...
*
* The function Taylor'TPS'Add(tps1, tps2) adds two of such beasts,
* and returns the sum in the same truncated power series form.
* Similar for the other functions.
*/
10 # Taylor'TPS'GetCoeff({_n,_c}, _k) _ (k < n) <-- 0;
10 # Taylor'TPS'GetCoeff({_n,_c}, _k) _ (k >= n+Length(c)) <-- Undefined;
20 # Taylor'TPS'GetCoeff({_n,_c}, _k) <-- c[k-n+1];
10 # Taylor'TPS'Add({_n1,_c1}, {_n2,_c2}) <--
[
Local(n, len, c1b, c2b);
n := Min(n1,n2);
len := Min(n1+Length(c1), n2+Length(c2)) - n;
c1b := Take(Concat(FillList(0, n1-n), c1), len);
c2b := Take(Concat(FillList(0, n2-n), c2), len);
{n, c1b+c2b};
];
10 # Taylor'TPS'ScalarMult(_a, {_n2,_c2}) <-- {n2, a*c2};
10 # Taylor'TPS'Multiply({_n1,_c1}, {_n2,_c2}) <--
[
Local(j,k,c);
c := {};
For (k:=1, k<=Min(Length(c1), Length(c2)), k++)
[
c := c : Sum(j, 1, k, c1[j]*c2[k+1-j]);
];
{n1+n2, c};
];
10 # Taylor'TPS'Compose({_n1,_c1}, {_n2,_c2}) <--
[
Local(res, tps, tps2, k, n);
n := Min(n1+Length(c1)-1, n2+Length(c2)-1);
tps := {0, 1 : FillList(0, n)}; // tps = {n2,c2} ^ k
res := Taylor'TPS'ScalarMult(Taylor'TPS'GetCoeff({n1,c1}, 0), tps);
For (k:=1, k<=n, k++)
[
tps := Taylor'TPS'Multiply(tps, {n2,c2});
tps2 := Taylor'TPS'ScalarMult(Taylor'TPS'GetCoeff({n1,c1}, k), tps);
res := Taylor'TPS'Add(res, tps2);
];
res;
];
/**********************************************************************
*
* Taylor'LPS'NormalizeExpr(var, expr)
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Return expr, with "+" replaced by Taylor'LPS'Add, etc.
* PRE: var is a name
*/
5 # Taylor'LPS'NormalizeExpr(_var, _e1)
_ [Taylor'LPS'CompOrder(var,e1); Not ClearError("dunno");]
<-- e1;
10 # Taylor'LPS'NormalizeExpr(_var, _e1 + _e2)
<-- Taylor'LPS'Add(Taylor'LPS'Construct(var, e1),
Taylor'LPS'Construct(var, e2));
10 # Taylor'LPS'NormalizeExpr(_var, - _e1)
<-- Taylor'LPS'ScalarMult(-1, Taylor'LPS'Construct(var, e1));
10 # Taylor'LPS'NormalizeExpr(_var, _e1 - _e2)
<-- (Taylor'LPS'Add(Taylor'LPS'Construct(var, e1),
Taylor'LPS'Construct(var, e3))
Where e3 == Taylor'LPS'ScalarMult(-1, Taylor'LPS'Construct(var, e2)));
10 # Taylor'LPS'NormalizeExpr(_var, e1_IsFreeOf(var) * _e2)
<-- Taylor'LPS'ScalarMult(e1, Taylor'LPS'Construct(var, e2));
10 # Taylor'LPS'NormalizeExpr(_var, _e1 * e2_IsFreeOf(var))
<-- Taylor'LPS'ScalarMult(e2, Taylor'LPS'Construct(var, e1));
20 # Taylor'LPS'NormalizeExpr(_var, _e1 * _e2)
<-- Taylor'LPS'Multiply(Taylor'LPS'Construct(var, e1),
Taylor'LPS'Construct(var, e2));
10 # Taylor'LPS'NormalizeExpr(_var, _e1 / e2_IsFreeOf(var))
<-- Taylor'LPS'ScalarMult(1/e2, Taylor'LPS'Construct(var, e1));
20 # Taylor'LPS'NormalizeExpr(_var, 1 / _e1)
<-- Taylor'LPS'Inverse(Taylor'LPS'Construct(var, e1));
30 # Taylor'LPS'NormalizeExpr(_var, _e1 / _e2)
<-- (Taylor'LPS'Multiply(Taylor'LPS'Construct(var, e1),
Taylor'LPS'Construct(var, e3))
Where e3 == Taylor'LPS'Inverse(Taylor'LPS'Construct(var, e2)));
/* Implement powers as repeated multiplication,
* which is seriously inefficient.
*/
10 # Taylor'LPS'NormalizeExpr(_var, _e1 ^ (n_IsPositiveInteger))
_ (e1 != var)
<-- Taylor'LPS'Multiply(Taylor'LPS'Construct(var, e1),
Taylor'LPS'Construct(var, e1^(n-1)));
10 # Taylor'LPS'NormalizeExpr(_var, Tan(_x))
<-- (Taylor'LPS'Multiply(Taylor'LPS'Construct(var, Sin(x)),
Taylor'LPS'Construct(var, e3))
Where e3 == Taylor'LPS'Inverse(Taylor'LPS'Construct(var, Cos(x))));
LocalSymbols(res)
[
50 # Taylor'LPS'NormalizeExpr(_var, _e1)
_[
Local(c, lps1, lps2, lps3, success);
success := True;
If (IsAtom(e1), success := False);
If (success And Length(e1) != 1, success := False);
If (success And IsAtom(e1[1]), success := False);
If (success And CanBeUni(var, e1[1]) And Degree(e1[1], var) = 1,
[
success := False;
]);
If (success,
[
lps2 := Taylor'LPS'Construct(var, e1[1]);
c := Taylor'LPS'Coeffs(lps2, 0, 0)[1];
If (IsError(),
[
ClearErrors();
success := False;
]);
If (success And Taylor'LPS'GetOrder(lps2)[1] < 0,
[
success := False;
],[
If (c = 0,
[
lps1 := Taylor'LPS'Construct(var, Apply(e1[0], {var}));
res := Taylor'LPS'Compose(lps1, lps2);
],[
lps1 := Taylor'LPS'Construct(var, Apply(e1[0], {var+c}));
lps3 := Taylor'LPS'Construct(var, -c);
lps2 := Taylor'LPS'Construct(var, Taylor'LPS'Add(lps2, lps3));
res := Taylor'LPS'Compose(lps1, lps2);
]);
]);
]);
success;
] <-- res;
];
60000 # Taylor'LPS'NormalizeExpr(_var, _e1) <-- e1;
/**********************************************************************
*
* Taylor'LPS'CompOrder(var, expr) --- HOOK
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Compute order of expr as a power series in var
* PRE: var is a name
* POST: returns an integer, or raises "dunno"
*
* Taylor'LPS'CompCoeff(var, expr, n) --- HOOK
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Compute n-th coefficient of expr as a power series in var
* PRE: var is a name, n is an integer,
* Taylor'LPS'CompOrder(var, expr) does not raise "dunno"
* POST: returns an expression not containing var
*/
5 # Taylor'LPS'CompCoeff(_var, _expr, _n)
_ (n < Taylor'LPS'CompOrder(var, expr))
<-- 0;
/* Zero */
10 # Taylor'LPS'CompOrder(_x, 0) <-- Infinity;
/* Constant */
20 # Taylor'LPS'CompOrder(_x, e_IsFreeOf(x)) <-- 0;
20 # Taylor'LPS'CompCoeff(_x, e_IsFreeOf(x), 0) <-- e;
21 # Taylor'LPS'CompCoeff(_x, e_IsFreeOf(x), _n) <-- 0;
/* Identity */
30 # Taylor'LPS'CompOrder(_x, _x) <-- 1;
30 # Taylor'LPS'CompCoeff(_x, _x, 1) <-- 1;
31 # Taylor'LPS'CompCoeff(_x, _x, _n) <-- 0;
/* Powers */
40 # Taylor'LPS'CompOrder(_x, _x^(k_IsPositiveInteger)) <-- k;
40 # Taylor'LPS'CompCoeff(_x, _x^(k_IsPositiveInteger), _k) <-- 1;
41 # Taylor'LPS'CompCoeff(_x, _x^(k_IsPositiveInteger), _n) <-- 0;
/* Sqrt */
50 # Taylor'LPS'CompOrder(_x, Sqrt(_y))
_ (CanBeUni(x,y) And Degree(y,x) = 1 And Coef(y,x,0) != 0)
<-- 0;
50 # Taylor'LPS'CompCoeff(_x, Sqrt(_y), 0)
_ (CanBeUni(x,y) And Degree(y,x) = 1 And Coef(y,x,0) != 0)
<-- Sqrt(Coef(y,x,0));
51 # Taylor'LPS'CompCoeff(_x, Sqrt(_y), _n)
_ (CanBeUni(x,y) And Degree(y,x) = 1 And Coef(y,x,0) != 0) <--
[
Local(j);
Coef(y,x,0)^(1/2-n) * Factorize(j,0,n-1,1/2-j) * Coef(y,x,1)^n/n!;
];
/* Exp */
60 # Taylor'LPS'CompOrder(_x, Exp(_x)) <-- 0;
60 # Taylor'LPS'CompCoeff(_x, Exp(_x), _n) <-- 1/n!;
70 # Taylor'LPS'CompOrder(_x, Exp(_y))_(CanBeUni(x,y) And Degree(y,x) = 1)
<-- 0;
70 # Taylor'LPS'CompCoeff(_x, Exp(_y), _n)_(CanBeUni(x,y) And Degree(y,x) = 1)
<-- Exp(Coef(y,x,0)) * Coef(y,x,1)^n / n!;
/* Ln */
80 # Taylor'LPS'CompOrder(_x, Ln(_x+1)) <-- 1;
80 # Taylor'LPS'CompCoeff(_x, Ln(_x+1), _n) <-- (-1)^(n+1)/n;
/* Sin */
90 # Taylor'LPS'CompOrder(_x, Sin(_x)) <-- 1;
90 # Taylor'LPS'CompCoeff(_x, Sin(_x), n_IsOdd) <-- (-1)^((n-1)/2) / n!;
90 # Taylor'LPS'CompCoeff(_x, Sin(_x), n_IsEven) <-- 0;
/* Cos */
100 # Taylor'LPS'CompOrder(_x, Cos(_x)) <-- 0;
100 # Taylor'LPS'CompCoeff(_x, Cos(_x), n_IsOdd) <-- 0;
100 # Taylor'LPS'CompCoeff(_x, Cos(_x), n_IsEven) <-- (-1)^(n/2) / n!;
/* Inverse (not needed but speeds things up) */
110 # Taylor'LPS'CompOrder(_x, 1/_x) <-- -1;
110 # Taylor'LPS'CompCoeff(_x, 1/_x, -1) <-- 1;
111 # Taylor'LPS'CompCoeff(_x, 1/_x, _n) <-- 0;
/*COMMENT FROM AYAL: Jitse, what do you think, fall-through defaulting to calculating the coefficient
the hard way? Worst-case, if people define a taylor series in this module it is faster, otherwise it uses
the old scheme that does explicit derivatives, which is slower, but still better than not returning a result
at all? With this change the new taylor code is at least as good as the old code?
The ugly part is obvious: instead of having a rule here that says "I work for the following input" I had to
find out empirically what the "exclude list" is, eg. the input it will not work on. This because the system
as it works currently yields "dunno", at which moment some other routine picks up.
I think we can refactor this.
*/
Taylor'LPS'AcceptDeriv(_expr) <--
(Contains({"ArcTan"},Type(expr)));
/*
( Type(Deriv(x)(expr)) != "Deriv"
And Not Contains({
"/","+","*","^","-","Sin","Cos","Sqrt","Ln","Exp","Tan"
},Type(expr)));
*/
200 # Taylor'LPS'CompOrder(_x, (_expr))_(Taylor'LPS'AcceptDeriv(expr))
<--
[
//Echo("CompOrder for ",expr);
// 0; //generic case, assume zeroeth coefficient is non-zero.
Local(n);
n:=0;
While ((Limit(x,0)expr) = 0 And n<Taylor'LPS'Param1())
[
expr := Deriv(x)expr;
n++;
];
//Echo(" is ",n);
n;
];
200 # Taylor'LPS'CompCoeff(_x, (_expr), _n)_
(Taylor'LPS'AcceptDeriv(expr) And n>=0 ) <--
[
// This routine is written out for debugging purposes
Local(result);
result:=(Limit(x,0)(Deriv(x,n)expr))/(n!);
Echo(expr," ",n," ",result);
result;
];
/* Default */
60000 # Taylor'LPS'CompOrder(_var, _expr)
<-- Assert("dunno") False;
60000 # Taylor'LPS'CompCoeff(_var, _expr, _n)
<-- Check(False, "Taylor'LPS'CompCoeff'FallThrough"
: ToString() Write({var,expr,n}));
/**********************************************************************
*
* Taylor'LPS'GetOrder(lps)
* ~~~~~~~~~~~~~~~~~~~~~~~~
* Returns a pair {n,flag}. If flag is True, then n is the order of
* the LPS. If flag is False, then n is a lower bound on the order.
* PRE: lps is a well-formed LPS
* POST: returns a pair {n,flag}, where n is an integer or Infinity,
* and flag is True or False, or raises "dunno";
* may update lps.
*/
20 # Taylor'LPS'GetOrder(Taylor'LPS(_order, _coeffs, _var, _expr))
_ (order != Undefined)
<-- {order, coeffs != {}};
40 # Taylor'LPS'GetOrder(_lps) <--
[
Local(res, computed, exact, res1, res2);
computed := False;
res := Taylor'LPS'CompOrder(lps[3], lps[4]);
If (Not ClearError("dunno"),
[
res := {res, True};
computed := True;
]);
If (Not computed And lps[4][0] = Taylor'LPS'Add,
[
res1 := Taylor'LPS'GetOrder(lps[4][1]);
If (Not ClearError("dunno"),
[
res2 := Taylor'LPS'GetOrder(lps[4][2]);
If (Not ClearError("dunno"),
[
res := {Min(res1[1],res2[1]), False};
/* flag = False, since terms may cancel */
computed := True;
]);
]);
]);
If (Not computed And lps[4][0] = Taylor'LPS'ScalarMult,
[
res := Taylor'LPS'GetOrder(lps[4][2]);
If (Not ClearError("dunno"), computed := True);
]);
If (Not computed And lps[4][0] = Taylor'LPS'Multiply,
[
res1 := Taylor'LPS'GetOrder(lps[4][1]);
If (Not ClearError("dunno"),
[
res2 := Taylor'LPS'GetOrder(lps[4][2]);
If (Not ClearError("dunno"),
[
res := {res1[1]+res2[1], res1[1] And res2[1]};
computed := True;
]);
]);
]);
If (Not computed And lps[4][0] = Taylor'LPS'Inverse,
[
res := Taylor'LPS'GetOrder(lps[4][1]);
If (Not ClearError("dunno"),
[
If (res[1] = Infinity,
[
res[1] = Undefined;
Assert("div-by-zero") False;
computed := True;
]);
If (Not computed And res[2] = False,
[
Local(c, n);
n := res[1];
c := Taylor'LPS'Coeffs(lps[4][1], res[1], res[1])[1];
While (c = 0 And res[1] < n + Taylor'LPS'Param1())
[
res[1] := res[1] + 1;
c := Taylor'LPS'Coeffs(lps[4][1], res[1], res[1])[1];
];
If (c = 0,
[
res[1] := Undefined;
Assert("maybe-div-by-zero") False;
computed := True;
]);
]);
If (Not computed,
[
res := {-res[1], True};
computed := True;
]);
]);
]);
If (Not computed And lps[4][0] = Taylor'LPS'Compose,
[
res1 := Taylor'LPS'GetOrder(lps[4][1]);
If (Not ClearError("dunno"),
[
res2 := Taylor'LPS'GetOrder(lps[4][2]);
If (Not ClearError("dunno"),
[
res := {res1[1]*res2[1], res1[1] And res2[1]};
computed := True;
]);
]);
]);
If (computed, lps[1] := res[1]);
Assert("dunno") computed;
res;
];
/**********************************************************************
*
* Taylor'LPS'PowerSeries(lps, n, var)
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Convert the LPS in a power series in var up to order n
* PRE: lps is a well-formed LPS, n is a natural number
* POST: returns an expression, or raises "singularity" or "dunno"
*/
10 # Taylor'LPS'PowerSeries(_lps, _n, _var) <--
[
Local(ord, k, coeffs);
coeffs := Taylor'LPS'Coeffs(lps, 0, n);
If (IsError("dunno"),
[
False;
],[
If (lps[1] < 0,
[
Assert("singularity") False;
Undefined;
],[
Sum(k, 0, n, coeffs[k+1]*var^k);
]);
]);
];
|