This file is indexed.

/usr/share/yacas/specfunc.rep/bessel.ys is in yacas 1.3.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
/// coded by Jonathan Leto

// When x is <= 1, the series is monotonely decreasing from the
// start, so we don't have to worry about loss of precision from the
// series definition. 
// When {n} is an integer, this is fast.
// When {n} is not, it is pretty slow due to Gamma() 

Function("BesselNsmall",{n,x,modified})
[
        Local(term,result,k);
        Local(prec,eps,tmp);
        prec:=Builtin'Precision'Get();
        Builtin'Precision'Set(Ceil(1.2*prec)); // this is a guess
        eps:=5*10^(-prec);

        term:=1;
        k:=0;
        result:=0;
        While( Abs(term) >= eps )[
                term:=x^(2*k+n);
		// The only difference between BesselJ and BesselI
		// is an alternating term
		If( k%2=1 And modified=0 , term:=term*-1 );
		term:=N(term/(2^(2*k+n)* k! * Gamma(k+n+1) ));
                //Echo({"term is ",term});
                result:=result+term;
                k:=k+1;
        ];
        Builtin'Precision'Set(prec);
	// This should not round, only truncate
	// some outputs will be off by one in the last digit
	RoundTo(result,prec);

];

// Seems to get about 8 digits precision for most real numbers
// Only about 2 digits precision for complex
// This is just a temporary implementation, I would not want to
// expose users to it until it is much more robust
// I am still looking for a good arbitrary precision algorithm.
Function("BesselJN0",{x})
[
	Local(ax,z,xx,y,result,res1,res2);
	Local(c1,c2,c3,c4);

	// Coefficients of the rational polynomials to
	// approx J_0  for x < 8
	c1:={57568490574.0,-13362590354.0,651619640.7,
		-11214424.18,77392.33017,-184.9052456};
	c2:={57568490411.0,1029532985.0,9494680.718,
		59272.64853,267.8532712};
	// Coefficients of the rational polynomials to
	// approx J_0 for x >= 8
	c3:={-0.001098628627,0.00002734510407,-0.000002073370639,
		0.0000002093887211};
	c4:={-0.01562499995,0.0001430488765,-0.000006911147651,
		0.0000007621095161,0.0000000934935152};
	ax:=Abs(x);
	
	If( ax < 8.0,[ 
		y:=x^2;
		res1:=c1[1]+y*(c1[2]+y*c1[3]+y*(c1[4]+y*(c1[5]+y*(c1[6]))));
		res2:=c1[1]+y*(c2[2]+y*c2[3]+y*(c2[4]+y*(c2[5]+y*1.0)));
		result:=res1/res2;
	],[
		z:=8/ax;
		y:=z^2;
		xx:=ax-0.785398164;		
		res1:=1.0+y*(c3[1]+y*(c3[2]+y*(c3[3]+y*c4[4])));
		res2:=c4[1]+y*(c4[2]+y*(c4[3]+y*(c4[4]-y*c4[5])));
		result:=Sqrt(2/(Pi*x))*(Cos(xx)*res1-z*Sin(xx)*res2);
	] );
];