This file is indexed.

/usr/include/wx-3.0/wx/matrix.h is in wx3.0-headers 3.0.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/////////////////////////////////////////////////////////////////////////////
// Name:         wx/matrix.h
// Purpose:      wxTransformMatrix class. NOT YET USED
// Author:       Chris Breeze, Julian Smart
// Modified by:  Klaas Holwerda
// Created:      01/02/97
// Copyright:    (c) Julian Smart, Chris Breeze
// Licence:      wxWindows licence
/////////////////////////////////////////////////////////////////////////////

#ifndef _WX_MATRIXH__
#define _WX_MATRIXH__

//! headerfiles="matrix.h wx/object.h"
#include "wx/object.h"
#include "wx/math.h"

//! codefiles="matrix.cpp"

// A simple 3x3 matrix. This may be replaced by a more general matrix
// class some day.
//
// Note: this is intended to be used in wxDC at some point to replace
// the current system of scaling/translation. It is not yet used.

//:definition
//  A 3x3 matrix to do 2D transformations.
//  It can be used to map data to window coordinates,
//  and also for manipulating your own data.
//  For example drawing a picture (composed of several primitives)
//  at a certain coordinate and angle within another parent picture.
//  At all times m_isIdentity is set if the matrix itself is an Identity matrix.
//  It is used where possible to optimize calculations.
class WXDLLIMPEXP_CORE wxTransformMatrix: public wxObject
{
public:
    wxTransformMatrix(void);
    wxTransformMatrix(const wxTransformMatrix& mat);

    //get the value in the matrix at col,row
    //rows are horizontal (second index of m_matrix member)
    //columns are vertical (first index of m_matrix member)
    double GetValue(int col, int row) const;

    //set the value in the matrix at col,row
    //rows are horizontal (second index of m_matrix member)
    //columns are vertical (first index of m_matrix member)
    void SetValue(int col, int row, double value);

    void operator = (const wxTransformMatrix& mat);
    bool operator == (const wxTransformMatrix& mat) const;
    bool operator != (const wxTransformMatrix& mat) const;

    //multiply every element by t
    wxTransformMatrix&          operator*=(const double& t);
    //divide every element by t
    wxTransformMatrix&          operator/=(const double& t);
    //add matrix m to this t
    wxTransformMatrix&          operator+=(const wxTransformMatrix& m);
    //subtract matrix m from this
    wxTransformMatrix&          operator-=(const wxTransformMatrix& m);
    //multiply matrix m with this
    wxTransformMatrix&          operator*=(const wxTransformMatrix& m);

    // constant operators

    //multiply every element by t  and return result
    wxTransformMatrix           operator*(const double& t) const;
    //divide this matrix by t and return result
    wxTransformMatrix           operator/(const double& t) const;
    //add matrix m to this and return result
    wxTransformMatrix           operator+(const wxTransformMatrix& m) const;
    //subtract matrix m from this and return result
    wxTransformMatrix           operator-(const wxTransformMatrix& m) const;
    //multiply this by matrix m and return result
    wxTransformMatrix           operator*(const wxTransformMatrix& m) const;
    wxTransformMatrix           operator-() const;

    //rows are horizontal (second index of m_matrix member)
    //columns are vertical (first index of m_matrix member)
    double& operator()(int col, int row);

    //rows are horizontal (second index of m_matrix member)
    //columns are vertical (first index of m_matrix member)
    double operator()(int col, int row) const;

    // Invert matrix
    bool Invert(void);

    // Make into identity matrix
    bool Identity(void);

    // Is the matrix the identity matrix?
    // Only returns a flag, which is set whenever an operation
    // is done.
    inline bool IsIdentity(void) const { return m_isIdentity; }

    // This does an actual check.
    inline bool IsIdentity1(void) const ;

    //Scale by scale (isotropic scaling i.e. the same in x and y):
    //!ex:
    //!code:           | scale  0      0      |
    //!code: matrix' = |  0     scale  0      | x matrix
    //!code:           |  0     0      scale  |
    bool Scale(double scale);

    //Scale with center point and x/y scale
    //
    //!ex:
    //!code:           |  xs    0      xc(1-xs) |
    //!code: matrix' = |  0    ys      yc(1-ys) | x matrix
    //!code:           |  0     0      1        |
    wxTransformMatrix&  Scale(const double &xs, const double &ys,const double &xc, const double &yc);

    // mirror a matrix in x, y
    //!ex:
    //!code:           | -1     0      0 |
    //!code: matrix' = |  0    -1      0 | x matrix
    //!code:           |  0     0      1 |
    wxTransformMatrix&  Mirror(bool x=true, bool y=false);
    // Translate by dx, dy:
    //!ex:
    //!code:           | 1  0 dx |
    //!code: matrix' = | 0  1 dy | x matrix
    //!code:           | 0  0  1 |
    bool Translate(double x, double y);

    // Rotate clockwise by the given number of degrees:
    //!ex:
    //!code:           |  cos sin 0 |
    //!code: matrix' = | -sin cos 0 | x matrix
    //!code:           |   0   0  1 |
    bool Rotate(double angle);

    //Rotate counter clockwise with point of rotation
    //
    //!ex:
    //!code:           |  cos(r) -sin(r)    x(1-cos(r))+y(sin(r)|
    //!code: matrix' = |  sin(r)  cos(r)    y(1-cos(r))-x(sin(r)| x matrix
    //!code:           |   0          0                       1 |
    wxTransformMatrix&  Rotate(const double &r, const double &x, const double &y);

    // Transform X value from logical to device
    inline double TransformX(double x) const;

    // Transform Y value from logical to device
    inline double TransformY(double y) const;

    // Transform a point from logical to device coordinates
    bool TransformPoint(double x, double y, double& tx, double& ty) const;

    // Transform a point from device to logical coordinates.
    // Example of use:
    //   wxTransformMatrix mat = dc.GetTransformation();
    //   mat.Invert();
    //   mat.InverseTransformPoint(x, y, x1, y1);
    // OR (shorthand:)
    //   dc.LogicalToDevice(x, y, x1, y1);
    // The latter is slightly less efficient if we're doing several
    // conversions, since the matrix is inverted several times.
    // N.B. 'this' matrix is the inverse at this point
    bool InverseTransformPoint(double x, double y, double& tx, double& ty) const;

    double Get_scaleX();
    double Get_scaleY();
    double GetRotation();
    void   SetRotation(double rotation);


public:
    double  m_matrix[3][3];
    bool    m_isIdentity;
};


/*
Chris Breeze reported, that
some functions of wxTransformMatrix cannot work because it is not
known if he matrix has been inverted. Be careful when using it.
*/

// Transform X value from logical to device
// warning: this function can only be used for this purpose
// because no rotation is involved when mapping logical to device coordinates
// mirror and scaling for x and y will be part of the matrix
// if you have a matrix that is rotated, eg a shape containing a matrix to place
// it in the logical coordinate system, use TransformPoint
inline double wxTransformMatrix::TransformX(double x) const
{
    //normally like this, but since no rotation is involved (only mirror and scale)
    //we can do without Y -> m_matrix[1]{0] is -sin(rotation angle) and therefore zero
    //(x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0]))
    return (m_isIdentity ? x : (x * m_matrix[0][0] +  m_matrix[2][0]));
}

// Transform Y value from logical to device
// warning: this function can only be used for this purpose
// because no rotation is involved when mapping logical to device coordinates
// mirror and scaling for x and y will be part of the matrix
// if you have a matrix that is rotated, eg a shape containing a matrix to place
// it in the logical coordinate system, use TransformPoint
inline double wxTransformMatrix::TransformY(double y) const
{
    //normally like this, but since no rotation is involved (only mirror and scale)
    //we can do without X -> m_matrix[0]{1] is sin(rotation angle) and therefore zero
    //(x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1]))
    return (m_isIdentity ? y : (y * m_matrix[1][1] + m_matrix[2][1]));
}


// Is the matrix the identity matrix?
// Each operation checks whether the result is still the identity matrix and sets a flag.
inline bool wxTransformMatrix::IsIdentity1(void) const
{
    return
    ( wxIsSameDouble(m_matrix[0][0], 1.0) &&
      wxIsSameDouble(m_matrix[1][1], 1.0) &&
      wxIsSameDouble(m_matrix[2][2], 1.0) &&
      wxIsSameDouble(m_matrix[1][0], 0.0) &&
      wxIsSameDouble(m_matrix[2][0], 0.0) &&
      wxIsSameDouble(m_matrix[0][1], 0.0) &&
      wxIsSameDouble(m_matrix[2][1], 0.0) &&
      wxIsSameDouble(m_matrix[0][2], 0.0) &&
      wxIsSameDouble(m_matrix[1][2], 0.0) );
}

// Calculates the determinant of a 2 x 2 matrix
inline double wxCalculateDet(double a11, double a21, double a12, double a22)
{
    return a11 * a22 - a12 * a21;
}

#endif // _WX_MATRIXH__