/usr/include/wx-3.0/wx/matrix.h is in wx3.0-headers 3.0.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 | /////////////////////////////////////////////////////////////////////////////
// Name: wx/matrix.h
// Purpose: wxTransformMatrix class. NOT YET USED
// Author: Chris Breeze, Julian Smart
// Modified by: Klaas Holwerda
// Created: 01/02/97
// Copyright: (c) Julian Smart, Chris Breeze
// Licence: wxWindows licence
/////////////////////////////////////////////////////////////////////////////
#ifndef _WX_MATRIXH__
#define _WX_MATRIXH__
//! headerfiles="matrix.h wx/object.h"
#include "wx/object.h"
#include "wx/math.h"
//! codefiles="matrix.cpp"
// A simple 3x3 matrix. This may be replaced by a more general matrix
// class some day.
//
// Note: this is intended to be used in wxDC at some point to replace
// the current system of scaling/translation. It is not yet used.
//:definition
// A 3x3 matrix to do 2D transformations.
// It can be used to map data to window coordinates,
// and also for manipulating your own data.
// For example drawing a picture (composed of several primitives)
// at a certain coordinate and angle within another parent picture.
// At all times m_isIdentity is set if the matrix itself is an Identity matrix.
// It is used where possible to optimize calculations.
class WXDLLIMPEXP_CORE wxTransformMatrix: public wxObject
{
public:
wxTransformMatrix(void);
wxTransformMatrix(const wxTransformMatrix& mat);
//get the value in the matrix at col,row
//rows are horizontal (second index of m_matrix member)
//columns are vertical (first index of m_matrix member)
double GetValue(int col, int row) const;
//set the value in the matrix at col,row
//rows are horizontal (second index of m_matrix member)
//columns are vertical (first index of m_matrix member)
void SetValue(int col, int row, double value);
void operator = (const wxTransformMatrix& mat);
bool operator == (const wxTransformMatrix& mat) const;
bool operator != (const wxTransformMatrix& mat) const;
//multiply every element by t
wxTransformMatrix& operator*=(const double& t);
//divide every element by t
wxTransformMatrix& operator/=(const double& t);
//add matrix m to this t
wxTransformMatrix& operator+=(const wxTransformMatrix& m);
//subtract matrix m from this
wxTransformMatrix& operator-=(const wxTransformMatrix& m);
//multiply matrix m with this
wxTransformMatrix& operator*=(const wxTransformMatrix& m);
// constant operators
//multiply every element by t and return result
wxTransformMatrix operator*(const double& t) const;
//divide this matrix by t and return result
wxTransformMatrix operator/(const double& t) const;
//add matrix m to this and return result
wxTransformMatrix operator+(const wxTransformMatrix& m) const;
//subtract matrix m from this and return result
wxTransformMatrix operator-(const wxTransformMatrix& m) const;
//multiply this by matrix m and return result
wxTransformMatrix operator*(const wxTransformMatrix& m) const;
wxTransformMatrix operator-() const;
//rows are horizontal (second index of m_matrix member)
//columns are vertical (first index of m_matrix member)
double& operator()(int col, int row);
//rows are horizontal (second index of m_matrix member)
//columns are vertical (first index of m_matrix member)
double operator()(int col, int row) const;
// Invert matrix
bool Invert(void);
// Make into identity matrix
bool Identity(void);
// Is the matrix the identity matrix?
// Only returns a flag, which is set whenever an operation
// is done.
inline bool IsIdentity(void) const { return m_isIdentity; }
// This does an actual check.
inline bool IsIdentity1(void) const ;
//Scale by scale (isotropic scaling i.e. the same in x and y):
//!ex:
//!code: | scale 0 0 |
//!code: matrix' = | 0 scale 0 | x matrix
//!code: | 0 0 scale |
bool Scale(double scale);
//Scale with center point and x/y scale
//
//!ex:
//!code: | xs 0 xc(1-xs) |
//!code: matrix' = | 0 ys yc(1-ys) | x matrix
//!code: | 0 0 1 |
wxTransformMatrix& Scale(const double &xs, const double &ys,const double &xc, const double &yc);
// mirror a matrix in x, y
//!ex:
//!code: | -1 0 0 |
//!code: matrix' = | 0 -1 0 | x matrix
//!code: | 0 0 1 |
wxTransformMatrix& Mirror(bool x=true, bool y=false);
// Translate by dx, dy:
//!ex:
//!code: | 1 0 dx |
//!code: matrix' = | 0 1 dy | x matrix
//!code: | 0 0 1 |
bool Translate(double x, double y);
// Rotate clockwise by the given number of degrees:
//!ex:
//!code: | cos sin 0 |
//!code: matrix' = | -sin cos 0 | x matrix
//!code: | 0 0 1 |
bool Rotate(double angle);
//Rotate counter clockwise with point of rotation
//
//!ex:
//!code: | cos(r) -sin(r) x(1-cos(r))+y(sin(r)|
//!code: matrix' = | sin(r) cos(r) y(1-cos(r))-x(sin(r)| x matrix
//!code: | 0 0 1 |
wxTransformMatrix& Rotate(const double &r, const double &x, const double &y);
// Transform X value from logical to device
inline double TransformX(double x) const;
// Transform Y value from logical to device
inline double TransformY(double y) const;
// Transform a point from logical to device coordinates
bool TransformPoint(double x, double y, double& tx, double& ty) const;
// Transform a point from device to logical coordinates.
// Example of use:
// wxTransformMatrix mat = dc.GetTransformation();
// mat.Invert();
// mat.InverseTransformPoint(x, y, x1, y1);
// OR (shorthand:)
// dc.LogicalToDevice(x, y, x1, y1);
// The latter is slightly less efficient if we're doing several
// conversions, since the matrix is inverted several times.
// N.B. 'this' matrix is the inverse at this point
bool InverseTransformPoint(double x, double y, double& tx, double& ty) const;
double Get_scaleX();
double Get_scaleY();
double GetRotation();
void SetRotation(double rotation);
public:
double m_matrix[3][3];
bool m_isIdentity;
};
/*
Chris Breeze reported, that
some functions of wxTransformMatrix cannot work because it is not
known if he matrix has been inverted. Be careful when using it.
*/
// Transform X value from logical to device
// warning: this function can only be used for this purpose
// because no rotation is involved when mapping logical to device coordinates
// mirror and scaling for x and y will be part of the matrix
// if you have a matrix that is rotated, eg a shape containing a matrix to place
// it in the logical coordinate system, use TransformPoint
inline double wxTransformMatrix::TransformX(double x) const
{
//normally like this, but since no rotation is involved (only mirror and scale)
//we can do without Y -> m_matrix[1]{0] is -sin(rotation angle) and therefore zero
//(x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0]))
return (m_isIdentity ? x : (x * m_matrix[0][0] + m_matrix[2][0]));
}
// Transform Y value from logical to device
// warning: this function can only be used for this purpose
// because no rotation is involved when mapping logical to device coordinates
// mirror and scaling for x and y will be part of the matrix
// if you have a matrix that is rotated, eg a shape containing a matrix to place
// it in the logical coordinate system, use TransformPoint
inline double wxTransformMatrix::TransformY(double y) const
{
//normally like this, but since no rotation is involved (only mirror and scale)
//we can do without X -> m_matrix[0]{1] is sin(rotation angle) and therefore zero
//(x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1]))
return (m_isIdentity ? y : (y * m_matrix[1][1] + m_matrix[2][1]));
}
// Is the matrix the identity matrix?
// Each operation checks whether the result is still the identity matrix and sets a flag.
inline bool wxTransformMatrix::IsIdentity1(void) const
{
return
( wxIsSameDouble(m_matrix[0][0], 1.0) &&
wxIsSameDouble(m_matrix[1][1], 1.0) &&
wxIsSameDouble(m_matrix[2][2], 1.0) &&
wxIsSameDouble(m_matrix[1][0], 0.0) &&
wxIsSameDouble(m_matrix[2][0], 0.0) &&
wxIsSameDouble(m_matrix[0][1], 0.0) &&
wxIsSameDouble(m_matrix[2][1], 0.0) &&
wxIsSameDouble(m_matrix[0][2], 0.0) &&
wxIsSameDouble(m_matrix[1][2], 0.0) );
}
// Calculates the determinant of a 2 x 2 matrix
inline double wxCalculateDet(double a11, double a21, double a12, double a22)
{
return a11 * a22 - a12 * a21;
}
#endif // _WX_MATRIXH__
|