This file is indexed.

/usr/lib/python3/dist-packages/matplotlib/tests/test_triangulation.py is in python3-matplotlib 1.3.1-1ubuntu5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.tri as mtri
import matplotlib.delaunay as mdel
from nose.tools import assert_equal
from numpy.testing import assert_array_equal, assert_array_almost_equal,\
    assert_array_less
from matplotlib.testing.decorators import image_comparison
import matplotlib.cm as cm


def test_delaunay():
    # No duplicate points.
    x = [0, 1, 1, 0]
    y = [0, 0, 1, 1]
    npoints = 4
    ntriangles = 2
    nedges = 5

    # Without duplicate points, mpl calls delaunay triangulation and
    # does not modify it.
    mpl_triang = mtri.Triangulation(x, y)
    del_triang = mdel.Triangulation(x, y)

    # Points - floating point.
    assert_array_almost_equal(mpl_triang.x, x)
    assert_array_almost_equal(mpl_triang.x, del_triang.x)
    assert_array_almost_equal(mpl_triang.y, y)
    assert_array_almost_equal(mpl_triang.y, del_triang.y)

    # Triangles - integers.
    assert_equal(len(mpl_triang.triangles), ntriangles)
    assert_equal(np.min(mpl_triang.triangles), 0)
    assert_equal(np.max(mpl_triang.triangles), npoints-1)
    assert_array_equal(mpl_triang.triangles, del_triang.triangle_nodes)

    # Edges - integers.
    assert_equal(len(mpl_triang.edges), nedges)
    assert_equal(np.min(mpl_triang.edges), 0)
    assert_equal(np.max(mpl_triang.edges), npoints-1)
    assert_array_equal(mpl_triang.edges, del_triang.edge_db)


def test_delaunay_duplicate_points():
    # Issue 838.
    import warnings

    # Index 2 is the same as index 0.
    x = [0, 1, 0, 1, 0]
    y = [0, 0, 0, 1, 1]
    duplicate_index = 2
    npoints = 4        # Number of non-duplicate points.
    nduplicates = 1
    ntriangles = 2
    nedges = 5

    # With duplicate points, mpl calls delaunay triangulation but
    # modified returned arrays.
    warnings.simplefilter("ignore")   # Ignore DuplicatePointWarning.
    mpl_triang = mtri.Triangulation(x, y)
    del_triang = mdel.Triangulation(x, y)
    warnings.resetwarnings()

    # Points - floating point.
    assert_equal(len(mpl_triang.x), npoints + nduplicates)
    assert_equal(len(del_triang.x), npoints)
    assert_array_almost_equal(mpl_triang.x, x)
    assert_array_almost_equal(del_triang.x[:duplicate_index],
                              x[:duplicate_index])
    assert_array_almost_equal(del_triang.x[duplicate_index:],
                              x[duplicate_index+1:])

    assert_equal(len(mpl_triang.y), npoints + nduplicates)
    assert_equal(len(del_triang.y), npoints)
    assert_array_almost_equal(mpl_triang.y, y)
    assert_array_almost_equal(del_triang.y[:duplicate_index],
                              y[:duplicate_index])
    assert_array_almost_equal(del_triang.y[duplicate_index:],
                              y[duplicate_index+1:])

    # Triangles - integers.
    assert_equal(len(mpl_triang.triangles), ntriangles)
    assert_equal(np.min(mpl_triang.triangles), 0)
    assert_equal(np.max(mpl_triang.triangles), npoints-1 + nduplicates)
    assert_equal(len(del_triang.triangle_nodes), ntriangles)
    assert_equal(np.min(del_triang.triangle_nodes), 0)
    assert_equal(np.max(del_triang.triangle_nodes), npoints-1)
    # Convert mpl triangle point indices to delaunay's.
    converted_indices = np.where(mpl_triang.triangles > duplicate_index,
                                 mpl_triang.triangles - nduplicates,
                                 mpl_triang.triangles)
    assert_array_equal(del_triang.triangle_nodes, converted_indices)

    # Edges - integers.
    assert_equal(len(mpl_triang.edges), nedges)
    assert_equal(np.min(mpl_triang.edges), 0)
    assert_equal(np.max(mpl_triang.edges), npoints-1 + nduplicates)
    assert_equal(len(del_triang.edge_db), nedges)
    assert_equal(np.min(del_triang.edge_db), 0)
    assert_equal(np.max(del_triang.edge_db), npoints-1)
    # Convert mpl edge point indices to delaunay's.
    converted_indices = np.where(mpl_triang.edges > duplicate_index,
                                 mpl_triang.edges - nduplicates,
                                 mpl_triang.edges)
    assert_array_equal(del_triang.edge_db, converted_indices)


@image_comparison(baseline_images=['tripcolor1'])
def test_tripcolor():
    x = np.asarray([0, 0.5, 1, 0,   0.5, 1,   0, 0.5, 1, 0.75])
    y = np.asarray([0, 0,   0, 0.5, 0.5, 0.5, 1, 1,   1, 0.75])
    triangles = np.asarray([
        [0, 1, 3], [1, 4, 3],
        [1, 2, 4], [2, 5, 4],
        [3, 4, 6], [4, 7, 6],
        [4, 5, 9], [7, 4, 9], [8, 7, 9], [5, 8, 9]])

    # Triangulation with same number of points and triangles.
    triang = mtri.Triangulation(x, y, triangles)

    Cpoints = x + 0.5*y

    xmid = x[triang.triangles].mean(axis=1)
    ymid = y[triang.triangles].mean(axis=1)
    Cfaces = 0.5*xmid + ymid

    plt.subplot(121)
    plt.tripcolor(triang, Cpoints, edgecolors='k')
    plt.title('point colors')

    plt.subplot(122)
    plt.tripcolor(triang, facecolors=Cfaces, edgecolors='k')
    plt.title('facecolors')


def test_no_modify():
    triangles = np.array([[3, 2, 0], [3, 1, 0]], dtype=np.int32)
    points = np.array([(0, 0), (0, 1.1), (1, 0), (1, 1)])

    old_triangles = triangles.copy()
    tri = mtri.Triangulation(points[:, 0], points[:, 1], triangles)
    edges = tri.edges
    assert_array_equal(old_triangles, triangles)


def test_trifinder():
    # Test points within triangles of masked triangulation.
    x, y = np.meshgrid(np.arange(4), np.arange(4))
    x = x.ravel()
    y = y.ravel()
    triangles = [[0, 1, 4], [1, 5, 4], [1, 2, 5], [2, 6, 5], [2, 3, 6],
                 [3, 7, 6], [4, 5, 8], [5, 9, 8], [5, 6, 9], [6, 10, 9],
                 [6, 7, 10], [7, 11, 10], [8, 9, 12], [9, 13, 12], [9, 10, 13],
                 [10, 14, 13], [10, 11, 14], [11, 15, 14]]
    mask = np.zeros(len(triangles))
    mask[8:10] = 1
    triang = mtri.Triangulation(x, y, triangles, mask)
    trifinder = triang.get_trifinder()

    xs = [0.25, 1.25, 2.25, 3.25]
    ys = [0.25, 1.25, 2.25, 3.25]
    xs, ys = np.meshgrid(xs, ys)
    xs = xs.ravel()
    ys = ys.ravel()
    tris = trifinder(xs, ys)
    assert_array_equal(tris, [0, 2, 4, -1, 6, -1, 10, -1,
                              12, 14, 16, -1, -1, -1, -1, -1])
    tris = trifinder(xs-0.5, ys-0.5)
    assert_array_equal(tris, [-1, -1, -1, -1, -1, 1, 3, 5,
                              -1, 7, -1, 11, -1, 13, 15, 17])

    # Test points exactly on boundary edges of masked triangulation.
    xs = [0.5, 1.5, 2.5, 0.5, 1.5, 2.5, 1.5, 1.5, 0.0, 1.0, 2.0, 3.0]
    ys = [0.0, 0.0, 0.0, 3.0, 3.0, 3.0, 1.0, 2.0, 1.5, 1.5, 1.5, 1.5]
    tris = trifinder(xs, ys)
    assert_array_equal(tris, [0, 2, 4, 13, 15, 17, 3, 14, 6, 7, 10, 11])

    # Test points exactly on boundary corners of masked triangulation.
    xs = [0.0, 3.0]
    ys = [0.0, 3.0]
    tris = trifinder(xs, ys)
    assert_array_equal(tris, [0, 17])

    # Test triangles with horizontal colinear points.  These are not valid
    # triangulations, but we try to deal with the simplest violations.
    delta = 0.0  # If +ve, triangulation is OK, if -ve triangulation invalid,
                 # if zero have colinear points but should pass tests anyway.
    x = [1.5, 0,  1,  2, 3, 1.5,   1.5]
    y = [-1,  0,  0,  0, 0, delta, 1]
    triangles = [[0, 2, 1], [0, 3, 2], [0, 4, 3], [1, 2, 5], [2, 3, 5],
                 [3, 4, 5], [1, 5, 6], [4, 6, 5]]
    triang = mtri.Triangulation(x, y, triangles)
    trifinder = triang.get_trifinder()

    xs = [-0.1, 0.4, 0.9, 1.4, 1.9, 2.4, 2.9]
    ys = [-0.1, 0.1]
    xs, ys = np.meshgrid(xs, ys)
    tris = trifinder(xs, ys)
    assert_array_equal(tris, [[-1, 0, 0, 1, 1, 2, -1],
                              [-1, 6, 6, 6, 7, 7, -1]])

    # Test triangles with vertical colinear points.  These are not valid
    # triangulations, but we try to deal with the simplest violations.
    delta = 0.0  # If +ve, triangulation is OK, if -ve triangulation invalid,
                # if zero have colinear points but should pass tests anyway.
    x = [-1, -delta, 0,  0,  0, 0, 1]
    y = [1.5, 1.5,   0,  1,  2, 3, 1.5]
    triangles = [[0, 1, 2], [0, 1, 5], [1, 2, 3], [1, 3, 4], [1, 4, 5],
                 [2, 6, 3], [3, 6, 4], [4, 6, 5]]
    triang = mtri.Triangulation(x, y, triangles)
    trifinder = triang.get_trifinder()

    xs = [-0.1, 0.1]
    ys = [-0.1, 0.4, 0.9, 1.4, 1.9, 2.4, 2.9]
    xs, ys = np.meshgrid(xs, ys)
    tris = trifinder(xs, ys)
    assert_array_equal(tris, [[-1, -1], [0, 5], [0, 5], [0, 6], [1, 6], [1, 7],
                              [-1, -1]])

    # Test that changing triangulation by setting a mask causes the trifinder
    # to be reinitialised.
    x = [0, 1, 0, 1]
    y = [0, 0, 1, 1]
    triangles = [[0, 1, 2], [1, 3, 2]]
    triang = mtri.Triangulation(x, y, triangles)
    trifinder = triang.get_trifinder()

    xs = [-0.2, 0.2, 0.8, 1.2]
    ys = [ 0.5, 0.5, 0.5, 0.5]
    tris = trifinder(xs, ys)
    assert_array_equal(tris, [-1, 0, 1, -1])

    triang.set_mask([1, 0])
    assert_equal(trifinder, triang.get_trifinder())
    tris = trifinder(xs, ys)
    assert_array_equal(tris, [-1, -1, 1, -1])


def test_triinterp():
    # Test points within triangles of masked triangulation.
    x, y = np.meshgrid(np.arange(4), np.arange(4))
    x = x.ravel()
    y = y.ravel()
    z = 1.23*x - 4.79*y
    triangles = [[0, 1, 4], [1, 5, 4], [1, 2, 5], [2, 6, 5], [2, 3, 6],
                 [3, 7, 6], [4, 5, 8], [5, 9, 8], [5, 6, 9], [6, 10, 9],
                 [6, 7, 10], [7, 11, 10], [8, 9, 12], [9, 13, 12], [9, 10, 13],
                 [10, 14, 13], [10, 11, 14], [11, 15, 14]]
    mask = np.zeros(len(triangles))
    mask[8:10] = 1
    triang = mtri.Triangulation(x, y, triangles, mask)
    linear_interp = mtri.LinearTriInterpolator(triang, z)
    cubic_min_E = mtri.CubicTriInterpolator(triang, z)
    cubic_geom = mtri.CubicTriInterpolator(triang, z, kind='geom')

    xs = np.linspace(0.25, 2.75, 6)
    ys = [0.25, 0.75, 2.25, 2.75]
    xs, ys = np.meshgrid(xs, ys)  # Testing arrays with array.ndim = 2
    for interp in (linear_interp, cubic_min_E, cubic_geom):
        zs = interp(xs, ys)
        assert_array_almost_equal(zs, (1.23*xs - 4.79*ys))

    # Test points outside triangulation.
    xs = [-0.25, 1.25, 1.75, 3.25]
    ys = xs
    xs, ys = np.meshgrid(xs, ys)
    for interp in (linear_interp, cubic_min_E, cubic_geom):
        zs = linear_interp(xs, ys)
        assert_array_equal(zs.mask, [[True]*4]*4)

    # Test mixed configuration (outside / inside).
    xs = np.linspace(0.25, 1.75, 6)
    ys = [0.25, 0.75, 1.25, 1.75]
    xs, ys = np.meshgrid(xs, ys)
    for interp in (linear_interp, cubic_min_E, cubic_geom):
        zs = interp(xs, ys)
        assert_array_almost_equal(zs, (1.23*xs - 4.79*ys))
        mask = (xs >= 1) * (xs <= 2) * (ys >= 1) * (ys <= 2)
        assert_array_equal(zs.mask, mask)

    # 2nd order patch test: on a grid with an 'arbitrary shaped' triangle,
    # patch test shall be exact for quadratic functions and cubic
    # interpolator if *kind* = user
    (a, b, c) = (1.23, -4.79, 0.6)

    def quad(x, y):
        return a*(x-0.5)**2 + b*(y-0.5)**2 + c*x*y

    def gradient_quad(x, y):
        return (2*a*(x-0.5) + c*y, 2*b*(y-0.5) + c*x)

    x = np.array([0.2, 0.33367, 0.669, 0., 1., 1., 0.])
    y = np.array([0.3, 0.80755, 0.4335, 0., 0., 1., 1.])
    triangles = np.array([[0, 1, 2], [3, 0, 4], [4, 0, 2], [4, 2, 5],
                          [1, 5, 2], [6, 5, 1], [6, 1, 0], [6, 0, 3]])
    triang = mtri.Triangulation(x, y, triangles)
    z = quad(x, y)
    dz = gradient_quad(x, y)
    # test points for 2nd order patch test
    xs = np.linspace(0., 1., 5)
    ys = np.linspace(0., 1., 5)
    xs, ys = np.meshgrid(xs, ys)
    cubic_user = mtri.CubicTriInterpolator(triang, z, kind='user', dz=dz)
    interp_zs = cubic_user(xs, ys)
    assert_array_almost_equal(interp_zs, quad(xs, ys))
    (interp_dzsdx, interp_dzsdy) = cubic_user.gradient(x, y)
    (dzsdx, dzsdy) = gradient_quad(x, y)
    assert_array_almost_equal(interp_dzsdx, dzsdx)
    assert_array_almost_equal(interp_dzsdy, dzsdy)

    # Cubic improvement: cubic interpolation shall perform better than linear
    # on a sufficiently dense mesh for a quadratic function.
    n = 11
    x, y = np.meshgrid(np.linspace(0., 1., n+1), np.linspace(0., 1., n+1))
    x = x.ravel()
    y = y.ravel()
    z = quad(x, y)
    triang = mtri.Triangulation(x, y, triangles=meshgrid_triangles(n+1))
    xs, ys = np.meshgrid(np.linspace(0.1, 0.9, 5), np.linspace(0.1, 0.9, 5))
    xs = xs.ravel()
    ys = ys.ravel()
    linear_interp = mtri.LinearTriInterpolator(triang, z)
    cubic_min_E = mtri.CubicTriInterpolator(triang, z)
    cubic_geom = mtri.CubicTriInterpolator(triang, z, kind='geom')
    zs = quad(xs, ys)
    diff_lin = np.abs(linear_interp(xs, ys) - zs)
    for interp in (cubic_min_E, cubic_geom):
        diff_cubic = np.abs(interp(xs, ys) - zs)
        assert(np.max(diff_lin) >= 10.*np.max(diff_cubic))
        assert(np.dot(diff_lin, diff_lin) >=
               100.*np.dot(diff_cubic, diff_cubic))


def test_triinterpcubic_C1_continuity():
    # Below the 4 tests which demonstrate C1 continuity of the
    # TriCubicInterpolator (testing the cubic shape functions on arbitrary
    # triangle):
    #
    # 1) Testing continuity of function & derivatives at corner for all 9
    #    shape functions. Testing also function values at same location.
    # 2) Testing C1 continuity along each edge (as gradient is polynomial of
    #    2nd order, it is sufficient to test at the middle).
    # 3) Testing C1 continuity at triangle barycenter (where the 3 subtriangles
    #    meet)
    # 4) Testing C1 continuity at median 1/3 points (midside between 2
    #    subtriangles)

    # Utility test function check_continuity
    def check_continuity(interpolator, loc, values=None):
        """
        Checks the continuity of interpolator (and its derivatives) near
        location loc. Can check the value at loc itself if *values* is
        provided.

        *interpolator* TriInterpolator
        *loc* location to test (x0, y0)
        *values* (optional) array [z0, dzx0, dzy0] to check the value at *loc*
        """
        n_star = 24       # Number of continuity points in a boundary of loc
        epsilon = 1.e-10  # Distance for loc boundary
        k = 100.          # Continuity coefficient
        (loc_x, loc_y) = loc
        star_x = loc_x + epsilon*np.cos(np.linspace(0., 2*np.pi, n_star))
        star_y = loc_y + epsilon*np.sin(np.linspace(0., 2*np.pi, n_star))
        z = interpolator([loc_x], [loc_y])[0]
        (dzx, dzy) = interpolator.gradient([loc_x], [loc_y])
        if values is not None:
            assert_array_almost_equal(z, values[0])
            assert_array_almost_equal(dzx[0], values[1])
            assert_array_almost_equal(dzy[0], values[2])
        diff_z = interpolator(star_x, star_y) - z
        (tab_dzx, tab_dzy) = interpolator.gradient(star_x, star_y)
        diff_dzx = tab_dzx - dzx
        diff_dzy = tab_dzy - dzy
        assert_array_less(diff_z, epsilon*k)
        assert_array_less(diff_dzx, epsilon*k)
        assert_array_less(diff_dzy, epsilon*k)

    # Drawing arbitrary triangle (a, b, c) inside a unit square.
    (ax, ay) = (0.2, 0.3)
    (bx, by) = (0.33367, 0.80755)
    (cx, cy) = (0.669, 0.4335)
    x = np.array([ax, bx, cx, 0., 1., 1., 0.])
    y = np.array([ay, by, cy, 0., 0., 1., 1.])
    triangles = np.array([[0, 1, 2], [3, 0, 4], [4, 0, 2], [4, 2, 5],
                          [1, 5, 2], [6, 5, 1], [6, 1, 0], [6, 0, 3]])
    triang = mtri.Triangulation(x, y, triangles)

    for idof in range(9):
        z = np.zeros(7, dtype=np.float64)
        dzx = np.zeros(7, dtype=np.float64)
        dzy = np.zeros(7, dtype=np.float64)
        values = np.zeros([3, 3], dtype=np.float64)
        case = idof//3
        values[case, idof % 3] = 1.0
        if case == 0:
            z[idof] = 1.0
        elif case == 1:
            dzx[idof % 3] = 1.0
        elif case == 2:
            dzy[idof % 3] = 1.0
        interp = mtri.CubicTriInterpolator(triang, z, kind='user',
                                           dz=(dzx, dzy))
        # Test 1) Checking values and continuity at nodes
        check_continuity(interp, (ax, ay), values[:, 0])
        check_continuity(interp, (bx, by), values[:, 1])
        check_continuity(interp, (cx, cy), values[:, 2])
        # Test 2) Checking continuity at midside nodes
        check_continuity(interp, ((ax+bx)*0.5, (ay+by)*0.5))
        check_continuity(interp, ((ax+cx)*0.5, (ay+cy)*0.5))
        check_continuity(interp, ((cx+bx)*0.5, (cy+by)*0.5))
        # Test 3) Checking continuity at barycenter
        check_continuity(interp, ((ax+bx+cx)/3., (ay+by+cy)/3.))
        # Test 4) Checking continuity at median 1/3-point
        check_continuity(interp, ((4.*ax+bx+cx)/6., (4.*ay+by+cy)/6.))
        check_continuity(interp, ((ax+4.*bx+cx)/6., (ay+4.*by+cy)/6.))
        check_continuity(interp, ((ax+bx+4.*cx)/6., (ay+by+4.*cy)/6.))


def test_triinterpcubic_cg_solver():
    # Now 3 basic tests of the Sparse CG solver, used for
    # TriCubicInterpolator with *kind* = 'min_E'
    # 1) A commonly used test involves a 2d Poisson matrix.
    def poisson_sparse_matrix(n, m):
        """
        Sparse Poisson matrix.

        Returns the sparse matrix in coo format resulting from the
        discretisation of the 2-dimensional Poisson equation according to a
        finite difference numerical scheme on a uniform (n, m) grid.
        Size of the matrix: (n*m, n*m)
        """
        l = m*n
        rows = np.concatenate([
            np.arange(l, dtype=np.int32),
            np.arange(l-1, dtype=np.int32), np.arange(1, l, dtype=np.int32),
            np.arange(l-n, dtype=np.int32), np.arange(n, l, dtype=np.int32)])
        cols = np.concatenate([
            np.arange(l, dtype=np.int32),
            np.arange(1, l, dtype=np.int32), np.arange(l-1, dtype=np.int32),
            np.arange(n, l, dtype=np.int32), np.arange(l-n, dtype=np.int32)])
        vals = np.concatenate([
            4*np.ones(l, dtype=np.float64),
            -np.ones(l-1, dtype=np.float64), -np.ones(l-1, dtype=np.float64),
            -np.ones(l-n, dtype=np.float64), -np.ones(l-n, dtype=np.float64)])
        # In fact +1 and -1 diags have some zeros
        vals[l:2*l-1][m-1::m] = 0.
        vals[2*l-1:3*l-2][m-1::m] = 0.
        return vals, rows, cols, (n*m, n*m)

    # Instantiating a sparse Poisson matrix of size 48 x 48:
    (n, m) = (12, 4)
    mat = mtri.triinterpolate._Sparse_Matrix_coo(*poisson_sparse_matrix(n, m))
    mat.compress_csc()
    mat_dense = mat.to_dense()
    # Testing a sparse solve for all 48 basis vector
    for itest in range(n*m):
        b = np.zeros(n*m, dtype=np.float64)
        b[itest] = 1.
        x, _ = mtri.triinterpolate._cg(A=mat, b=b, x0=np.zeros(n*m),
                                       tol=1.e-10)
        assert_array_almost_equal(np.dot(mat_dense, x), b)

    # 2) Same matrix with inserting 2 rows - cols with null diag terms
    # (but still linked with the rest of the matrix by extra-diag terms)
    (i_zero, j_zero) = (12, 49)
    vals, rows, cols, _ = poisson_sparse_matrix(n, m)
    rows = rows + 1*(rows >= i_zero) + 1*(rows >= j_zero)
    cols = cols + 1*(cols >= i_zero) + 1*(cols >= j_zero)
    # adding extra-diag terms
    rows = np.concatenate([rows, [i_zero, i_zero-1, j_zero, j_zero-1]])
    cols = np.concatenate([cols, [i_zero-1, i_zero, j_zero-1, j_zero]])
    vals = np.concatenate([vals, [1., 1., 1., 1.]])
    mat = mtri.triinterpolate._Sparse_Matrix_coo(vals, rows, cols,
                                                 (n*m + 2, n*m + 2))
    mat.compress_csc()
    mat_dense = mat.to_dense()
    # Testing a sparse solve for all 50 basis vec
    for itest in range(n*m + 2):
        b = np.zeros(n*m + 2, dtype=np.float64)
        b[itest] = 1.
        x, _ = mtri.triinterpolate._cg(A=mat, b=b, x0=np.ones(n*m + 2),
                                       tol=1.e-10)
        assert_array_almost_equal(np.dot(mat_dense, x), b)

    # 3) Now a simple test that summation of duplicate (i.e. with same rows,
    # same cols) entries occurs when compressed.
    vals = np.ones(17, dtype=np.float64)
    rows = np.array([0, 1, 2, 0, 0, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1],
                    dtype=np.int32)
    cols = np.array([0, 1, 2, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2],
                    dtype=np.int32)
    dim = (3, 3)
    mat = mtri.triinterpolate._Sparse_Matrix_coo(vals, rows, cols, dim)
    mat.compress_csc()
    mat_dense = mat.to_dense()
    assert_array_almost_equal(mat_dense, np.array([
        [1., 2., 0.], [2., 1., 5.], [0., 5., 1.]], dtype=np.float64))


def test_triinterpcubic_geom_weights():
    # Tests to check computation of weights for _DOF_estimator_geom:
    # The weight sum per triangle can be 1. (in case all angles < 90 degrees)
    # or (2*w_i) where w_i = 1-alpha_i/np.pi is the weight of apex i ; alpha_i
    # is the apex angle > 90 degrees.
    (ax, ay) = (0., 1.687)
    x = np.array([ax, 0.5*ax, 0., 1.])
    y = np.array([ay, -ay, 0., 0.])
    z = np.zeros(4, dtype=np.float64)
    triangles = [[0, 2, 3], [1, 3, 2]]
    sum_w = np.zeros([4, 2])  # 4 possibilities ; 2 triangles
    for theta in np.linspace(0., 2*np.pi, 14):  # rotating the figure...
        x_rot = np.cos(theta)*x + np.sin(theta)*y
        y_rot = -np.sin(theta)*x + np.cos(theta)*y
        triang = mtri.Triangulation(x_rot, y_rot, triangles)
        cubic_geom = mtri.CubicTriInterpolator(triang, z, kind='geom')
        dof_estimator = mtri.triinterpolate._DOF_estimator_geom(cubic_geom)
        weights = dof_estimator.compute_geom_weights()
        # Testing for the 4 possibilities...
        sum_w[0, :] = np.sum(weights, 1) - 1
        for itri in range(3):
            sum_w[itri+1, :] = np.sum(weights, 1) - 2*weights[:, itri]
        assert_array_almost_equal(np.min(np.abs(sum_w), axis=0),
                                  np.array([0., 0.], dtype=np.float64))


def test_triinterp_colinear():
    # Tests interpolating inside a triangulation with horizontal colinear
    # points (refer also to the tests :func:`test_trifinder` ).
    #
    # These are not valid triangulations, but we try to deal with the
    # simplest violations (i. e. those handled by default TriFinder).
    #
    # Note that the LinearTriInterpolator and the CubicTriInterpolator with
    # kind='min_E' or 'geom' still pass a linear patch test.
    # We also test interpolation inside a  flat triangle, by forcing
    # *tri_index* in a call to :meth:`_interpolate_multikeys`.

    delta = 0.  # If +ve, triangulation is OK, if -ve triangulation invalid,
                # if zero have colinear points but should pass tests anyway.
    x0 = np.array([1.5, 0,  1,  2, 3, 1.5,   1.5])
    y0 = np.array([-1,  0,  0,  0, 0, delta, 1])

    # We test different affine transformations of the initial figure ; to
    # avoid issues related to round-off errors we only use integer
    # coefficients (otherwise the Triangulation might become invalid even with
    # delta == 0).
    transformations = [[1, 0], [0, 1], [1, 1], [1, 2], [-2, -1], [-2, 1]]
    for transformation in transformations:
        x_rot = transformation[0]*x0 + transformation[1]*y0
        y_rot = -transformation[1]*x0 + transformation[0]*y0
        (x, y) = (x_rot, y_rot)
        z = 1.23*x - 4.79*y
        triangles = [[0, 2, 1], [0, 3, 2], [0, 4, 3], [1, 2, 5], [2, 3, 5],
                     [3, 4, 5], [1, 5, 6], [4, 6, 5]]
        triang = mtri.Triangulation(x, y, triangles)
        xs = np.linspace(np.min(triang.x), np.max(triang.x), 20)
        ys = np.linspace(np.min(triang.y), np.max(triang.y), 20)
        xs, ys = np.meshgrid(xs, ys)
        xs = xs.ravel()
        ys = ys.ravel()
        mask_out = (triang.get_trifinder()(xs, ys) == -1)
        zs_target = np.ma.array(1.23*xs - 4.79*ys, mask=mask_out)

        linear_interp = mtri.LinearTriInterpolator(triang, z)
        cubic_min_E = mtri.CubicTriInterpolator(triang, z)
        cubic_geom = mtri.CubicTriInterpolator(triang, z, kind='geom')

        for interp in (linear_interp, cubic_min_E, cubic_geom):
            zs = interp(xs, ys)
            assert_array_almost_equal(zs_target, zs)

        # Testing interpolation inside the flat triangle number 4: [2, 3, 5]
        # by imposing *tri_index* in a call to :meth:`_interpolate_multikeys`
        itri = 4
        pt1 = triang.triangles[itri, 0]
        pt2 = triang.triangles[itri, 1]
        xs = np.linspace(triang.x[pt1], triang.x[pt2], 10)
        ys = np.linspace(triang.y[pt1], triang.y[pt2], 10)
        zs_target = 1.23*xs - 4.79*ys
        for interp in (linear_interp, cubic_min_E, cubic_geom):
            zs, = interp._interpolate_multikeys(
                xs, ys, tri_index=itri*np.ones(10, dtype=np.int32))
            assert_array_almost_equal(zs_target, zs)


def test_triinterp_transformations():
    # 1) Testing that the interpolation scheme is invariant by rotation of the
    # whole figure.
    # Note: This test is non-trivial for a CubicTriInterpolator with
    # kind='min_E'. It does fail for a non-isotropic stiffness matrix E of
    # :class:`_ReducedHCT_Element` (tested with E=np.diag([1., 1., 1.])), and
    # provides a good test for :meth:`get_Kff_and_Ff`of the same class.
    #
    # 2) Also testing that the interpolation scheme is invariant by expansion
    # of the whole figure along one axis.
    n_angles = 20
    n_radii = 10
    min_radius = 0.15

    def z(x, y):
        r1 = np.sqrt((0.5-x)**2 + (0.5-y)**2)
        theta1 = np.arctan2(0.5-x, 0.5-y)
        r2 = np.sqrt((-x-0.2)**2 + (-y-0.2)**2)
        theta2 = np.arctan2(-x-0.2, -y-0.2)
        z = -(2*(np.exp((r1/10)**2)-1)*30. * np.cos(7.*theta1) +
              (np.exp((r2/10)**2)-1)*30. * np.cos(11.*theta2) +
              0.7*(x**2 + y**2))
        return (np.max(z)-z)/(np.max(z)-np.min(z))

    # First create the x and y coordinates of the points.
    radii = np.linspace(min_radius, 0.95, n_radii)
    angles = np.linspace(0 + n_angles, 2*np.pi + n_angles,
                         n_angles, endpoint=False)
    angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
    angles[:, 1::2] += np.pi/n_angles
    x0 = (radii*np.cos(angles)).flatten()
    y0 = (radii*np.sin(angles)).flatten()
    triang0 = mtri.Triangulation(x0, y0)  # Delaunay triangulation
    z0 = z(x0, y0)

    # Then create the test points
    xs0 = np.linspace(-1., 1., 23)
    ys0 = np.linspace(-1., 1., 23)
    xs0, ys0 = np.meshgrid(xs0, ys0)
    xs0 = xs0.ravel()
    ys0 = ys0.ravel()

    interp_z0 = {}
    for i_angle in range(2):
        # Rotating everything
        theta = 2*np.pi / n_angles * i_angle
        x = np.cos(theta)*x0 + np.sin(theta)*y0
        y = -np.sin(theta)*x0 + np.cos(theta)*y0
        xs = np.cos(theta)*xs0 + np.sin(theta)*ys0
        ys = -np.sin(theta)*xs0 + np.cos(theta)*ys0
        triang = mtri.Triangulation(x, y, triang0.triangles)
        linear_interp = mtri.LinearTriInterpolator(triang, z0)
        cubic_min_E = mtri.CubicTriInterpolator(triang, z0)
        cubic_geom = mtri.CubicTriInterpolator(triang, z0, kind='geom')
        dic_interp = {'lin': linear_interp,
                      'min_E': cubic_min_E,
                      'geom': cubic_geom}
        # Testing that the interpolation is invariant by rotation...
        for interp_key in ['lin', 'min_E', 'geom']:
            interp = dic_interp[interp_key]
            if i_angle == 0:
                interp_z0[interp_key] = interp(xs0, ys0)  # storage
            else:
                interpz = interp(xs, ys)
                assert_array_almost_equal(interpz, interp_z0[interp_key])

    scale_factor = 987654.3210
    for scaled_axis in ('x', 'y'):
        # Scaling everything (expansion along scaled_axis)
        if scaled_axis == 'x':
            x = scale_factor * x0
            y = y0
            xs = scale_factor * xs0
            ys = ys0
        else:
            x = x0
            y = scale_factor * y0
            xs = xs0
            ys = scale_factor * ys0
        triang = mtri.Triangulation(x, y, triang0.triangles)
        linear_interp = mtri.LinearTriInterpolator(triang, z0)
        cubic_min_E = mtri.CubicTriInterpolator(triang, z0)
        cubic_geom = mtri.CubicTriInterpolator(triang, z0, kind='geom')
        dic_interp = {'lin': linear_interp,
                      'min_E': cubic_min_E,
                      'geom': cubic_geom}
        # Testing that the interpolation is invariant by expansion along
        # 1 axis...
        for interp_key in ['lin', 'min_E', 'geom']:
            interpz = dic_interp[interp_key](xs, ys)
            assert_array_almost_equal(interpz, interp_z0[interp_key])


@image_comparison(baseline_images=['tri_smooth_contouring'],
                  extensions=['png'], remove_text=True)
def test_tri_smooth_contouring():
    # Image comparison based on example tricontour_smooth_user.
    n_angles = 20
    n_radii = 10
    min_radius = 0.15

    def z(x, y):
        r1 = np.sqrt((0.5-x)**2 + (0.5-y)**2)
        theta1 = np.arctan2(0.5-x, 0.5-y)
        r2 = np.sqrt((-x-0.2)**2 + (-y-0.2)**2)
        theta2 = np.arctan2(-x-0.2, -y-0.2)
        z = -(2*(np.exp((r1/10)**2)-1)*30. * np.cos(7.*theta1) +
              (np.exp((r2/10)**2)-1)*30. * np.cos(11.*theta2) +
              0.7*(x**2 + y**2))
        return (np.max(z)-z)/(np.max(z)-np.min(z))

    # First create the x and y coordinates of the points.
    radii = np.linspace(min_radius, 0.95, n_radii)
    angles = np.linspace(0 + n_angles, 2*np.pi + n_angles,
                         n_angles, endpoint=False)
    angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
    angles[:, 1::2] += np.pi/n_angles
    x0 = (radii*np.cos(angles)).flatten()
    y0 = (radii*np.sin(angles)).flatten()
    triang0 = mtri.Triangulation(x0, y0)  # Delaunay triangulation
    z0 = z(x0, y0)
    xmid = x0[triang0.triangles].mean(axis=1)
    ymid = y0[triang0.triangles].mean(axis=1)
    mask = np.where(xmid*xmid + ymid*ymid < min_radius*min_radius, 1, 0)
    triang0.set_mask(mask)

    # Then the plot
    refiner = mtri.UniformTriRefiner(triang0)
    tri_refi, z_test_refi = refiner.refine_field(z0, subdiv=4)
    levels = np.arange(0., 1., 0.025)
    plt.triplot(triang0, lw=0.5, color='0.5')
    plt.tricontour(tri_refi, z_test_refi, levels=levels, colors="black")


@image_comparison(baseline_images=['tri_smooth_gradient'],
                  extensions=['png'], remove_text=True)
def test_tri_smooth_gradient():
    # Image comparison based on example trigradient_demo.

    def dipole_potential(x, y):
        """ An electric dipole potential V """
        r_sq = x**2 + y**2
        theta = np.arctan2(y, x)
        z = np.cos(theta)/r_sq
        return (np.max(z)-z) / (np.max(z)-np.min(z))

    # Creating a Triangulation
    n_angles = 30
    n_radii = 10
    min_radius = 0.2
    radii = np.linspace(min_radius, 0.95, n_radii)
    angles = np.linspace(0, 2*np.pi, n_angles, endpoint=False)
    angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
    angles[:, 1::2] += np.pi/n_angles
    x = (radii*np.cos(angles)).flatten()
    y = (radii*np.sin(angles)).flatten()
    V = dipole_potential(x, y)
    triang = mtri.Triangulation(x, y)
    xmid = x[triang.triangles].mean(axis=1)
    ymid = y[triang.triangles].mean(axis=1)
    mask = np.where(xmid*xmid + ymid*ymid < min_radius*min_radius, 1, 0)
    triang.set_mask(mask)

    # Refine data - interpolates the electrical potential V
    refiner = mtri.UniformTriRefiner(triang)
    tri_refi, z_test_refi = refiner.refine_field(V, subdiv=3)

    # Computes the electrical field (Ex, Ey) as gradient of -V
    tci = mtri.CubicTriInterpolator(triang, -V)
    (Ex, Ey) = tci.gradient(triang.x, triang.y)
    E_norm = np.sqrt(Ex**2 + Ey**2)

    # Plot the triangulation, the potential iso-contours and the vector field
    plt.figure()
    plt.gca().set_aspect('equal')
    plt.triplot(triang, color='0.8')

    levels = np.arange(0., 1., 0.01)
    cmap = cm.get_cmap(name='hot', lut=None)
    plt.tricontour(tri_refi, z_test_refi, levels=levels, cmap=cmap,
                   linewidths=[2.0, 1.0, 1.0, 1.0])
    # Plots direction of the electrical vector field
    plt.quiver(triang.x, triang.y, Ex/E_norm, Ey/E_norm,
               units='xy', scale=10., zorder=3, color='blue',
               width=0.007, headwidth=3., headlength=4.)


def test_tritools():
    # Tests TriAnalyzer.scale_factors on masked triangulation
    # Tests circle_ratios on equilateral and right-angled triangle.
    x = np.array([0., 1., 0.5, 0., 2.])
    y = np.array([0., 0., 0.5*np.sqrt(3.), -1., 1.])
    triangles = np.array([[0, 1, 2], [0, 1, 3], [1, 2, 4]], dtype=np.int32)
    mask = np.array([False, False, True], dtype=np.bool)
    triang = mtri.Triangulation(x, y, triangles, mask=mask)
    analyser = mtri.TriAnalyzer(triang)
    assert_array_almost_equal(analyser.scale_factors,
                              np.array([1., 1./(1.+0.5*np.sqrt(3.))]))
    assert_array_almost_equal(
        analyser.circle_ratios(rescale=False),
        np.ma.masked_array([0.5, 1./(1.+np.sqrt(2.)), np.nan], mask))

    # Tests circle ratio of a flat triangle
    x = np.array([0., 1., 2.])
    y = np.array([1., 1.+3., 1.+6.])
    triangles = np.array([[0, 1, 2]], dtype=np.int32)
    triang = mtri.Triangulation(x, y, triangles)
    analyser = mtri.TriAnalyzer(triang)
    assert_array_almost_equal(analyser.circle_ratios(), np.array([0.]))

    # Tests TriAnalyzer.get_flat_tri_mask
    # Creates a triangulation of [-1, 1] x [-1, 1] with contiguous groups of
    # 'flat' triangles at the 4 corners and at the center. Checks that only
    # those at the borders are eliminated by TriAnalyzer.get_flat_tri_mask
    n = 9

    def power(x, a):
        return np.abs(x)**a*np.sign(x)

    x = np.linspace(-1., 1., n+1)
    x, y = np.meshgrid(power(x, 2.), power(x, 0.25))
    x = x.ravel()
    y = y.ravel()

    triang = mtri.Triangulation(x, y, triangles=meshgrid_triangles(n+1))
    analyser = mtri.TriAnalyzer(triang)
    mask_flat = analyser.get_flat_tri_mask(0.2)
    verif_mask = np.zeros(162, dtype=np.bool)
    corners_index = [0, 1, 2, 3, 14, 15, 16, 17, 18, 19, 34, 35, 126, 127,
                     142, 143, 144, 145, 146, 147, 158, 159, 160, 161]
    verif_mask[corners_index] = True
    assert_array_equal(mask_flat, verif_mask)

    # Now including a hole (masked triangle) at the center. The center also
    # shall be eliminated by get_flat_tri_mask.
    mask = np.zeros(162, dtype=np.bool)
    mask[80] = True
    triang.set_mask(mask)
    mask_flat = analyser.get_flat_tri_mask(0.2)
    center_index = [44, 45, 62, 63, 78, 79, 80, 81, 82, 83, 98, 99, 116, 117]
    verif_mask[center_index] = True
    assert_array_equal(mask_flat, verif_mask)


def test_trirefine():
    # Testing subdiv=2 refinement
    n = 3
    subdiv = 2
    x = np.linspace(-1., 1., n+1)
    x, y = np.meshgrid(x, x)
    x = x.ravel()
    y = y.ravel()
    mask = np.zeros(2*n**2, dtype=np.bool)
    mask[n**2:] = True
    triang = mtri.Triangulation(x, y, triangles=meshgrid_triangles(n+1),
                                mask=mask)
    refiner = mtri.UniformTriRefiner(triang)
    refi_triang = refiner.refine_triangulation(subdiv=subdiv)
    x_refi = refi_triang.x
    y_refi = refi_triang.y

    n_refi = n * subdiv**2
    x_verif = np.linspace(-1., 1., n_refi+1)
    x_verif, y_verif = np.meshgrid(x_verif, x_verif)
    x_verif = x_verif.ravel()
    y_verif = y_verif.ravel()
    ind1d = np.in1d(np.around(x_verif*(2.5+y_verif), 8),
                    np.around(x_refi*(2.5+y_refi), 8))
    assert_array_equal(ind1d, True)

    # Testing the mask of the refined triangulation
    refi_mask = refi_triang.mask
    refi_tri_barycenter_x = np.sum(refi_triang.x[refi_triang.triangles],
                                   axis=1)/3.
    refi_tri_barycenter_y = np.sum(refi_triang.y[refi_triang.triangles],
                                   axis=1)/3.
    tri_finder = triang.get_trifinder()
    refi_tri_indices = tri_finder(refi_tri_barycenter_x,
                                  refi_tri_barycenter_y)
    refi_tri_mask = triang.mask[refi_tri_indices]
    assert_array_equal(refi_mask, refi_tri_mask)

    # Testing that the numbering of triangles does not change the
    # interpolation result.
    x = np.asarray([0.0, 1.0, 0.0, 1.0])
    y = np.asarray([0.0, 0.0, 1.0, 1.0])
    triang = [mtri.Triangulation(x, y, [[0, 1, 3], [3, 2, 0]]),
              mtri.Triangulation(x, y, [[0, 1, 3], [2, 0, 3]])]
    z = np.sqrt((x-0.3)*(x-0.3) + (y-0.4)*(y-0.4))
    # Refining the 2 triangulations and reordering the points
    xyz_data = []
    for i in range(2):
        refiner = mtri.UniformTriRefiner(triang[i])
        refined_triang, refined_z = refiner.refine_field(z, subdiv=1)
        xyz = np.dstack((refined_triang.x, refined_triang.y, refined_z))[0]
        xyz = xyz[np.lexsort((xyz[:, 1], xyz[:, 0]))]
        xyz_data += [xyz]
    assert_array_almost_equal(xyz_data[0], xyz_data[1])


def meshgrid_triangles(n):
    """
    Utility function.
    Returns triangles to mesh a np.meshgrid of n x n points
    """
    tri = []
    for i in range(n-1):
        for j in range(n-1):
            a = i + j*(n)
            b = (i+1) + j*n
            c = i + (j+1)*n
            d = (i+1) + (j+1)*n
            tri += [[a, b, d], [a, d, c]]
    return np.array(tri, dtype=np.int32)