This file is indexed.

/usr/share/pyshared/tifffile.py is in python-tifffile 20131103-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# tifffile.py
# Copyright (c) 2008-2013, Christoph Gohlke
# Copyright (c) 2008-2013, The Regents of the University of California
# Produced at the Laboratory for Fluorescence Dynamics
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright
#   notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
#   notice, this list of conditions and the following disclaimer in the
#   documentation and/or other materials provided with the distribution.
# * Neither the name of the copyright holders nor the names of any
#   contributors may be used to endorse or promote products derived
#   from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
"""Read and write image data from and to TIFF files.
Image and meta-data can be read from TIFF, BigTIFF, OME-TIFF, STK, LSM, NIH,
ImageJ, MicroManager, FluoView, SEQ and GEL files.
Only a subset of the TIFF specification is supported, mainly uncompressed
and losslessly compressed 2**(0 to 6) bit integer, 16, 32 and 64-bit float,
grayscale and RGB(A) images, which are commonly used in bio-scientific imaging.
Specifically, reading JPEG/CCITT compressed image data or EXIF/IPTC/GPS/XMP
meta-data is not implemented. Only primary info records are read for STK,
FluoView, MicroManager, and NIH image formats.
TIFF, the Tagged Image File Format, is under the control of Adobe Systems.
BigTIFF allows for files greater than 4 GB. STK, LSM, FluoView, SEQ, GEL,
and OME-TIFF, are custom extensions defined by MetaMorph, Carl Zeiss
MicroImaging, Olympus, Media Cybernetics, Molecular Dynamics, and the Open
Microscopy Environment consortium respectively.
For command line usage run ``python tifffile.py --help``
:Author:
  `Christoph Gohlke <http://www.lfd.uci.edu/~gohlke/>`_
:Organization:
  Laboratory for Fluorescence Dynamics, University of California, Irvine
:Version: 2013.11.03
Requirements
------------
* `CPython 2.7 or 3.3 <http://www.python.org>`_
* `Numpy 1.7 <http://www.numpy.org>`_
* `Matplotlib 1.3 <http://www.matplotlib.org>`_  (optional for plotting)
* `Tifffile.c 2013.01.18 <http://www.lfd.uci.edu/~gohlke/>`_
  (recommended for faster decoding of PackBits and LZW encoded strings)
Notes
-----
The API is not stable yet and might change between revisions.
Tested on little-endian platforms only.
Other Python packages and modules for reading bio-scientific TIFF files:
* `Imread <http://luispedro.org/software/imread>`_
* `PyLibTiff <http://code.google.com/p/pylibtiff>`_
* `SimpleITK <http://www.simpleitk.org>`_
* `PyLSM <https://launchpad.net/pylsm>`_
* `PyMca.TiffIO.py <http://pymca.sourceforge.net/>`_
* `BioImageXD.Readers <http://www.bioimagexd.net/>`_
* `Cellcognition.io <http://cellcognition.org/>`_
* `CellProfiler.bioformats <http://www.cellprofiler.org/>`_
Acknowledgements
----------------
*  Egor Zindy, University of Manchester, for cz_lsm_scan_info specifics.
*  Wim Lewis for a bug fix and some read_cz_lsm functions.
*  Hadrien Mary for help on reading MicroManager files.
References
----------
(1) TIFF 6.0 Specification and Supplements. Adobe Systems Incorporated.
    http://partners.adobe.com/public/developer/tiff/
(2) TIFF File Format FAQ. http://www.awaresystems.be/imaging/tiff/faq.html
(3) MetaMorph Stack (STK) Image File Format.
    http://support.meta.moleculardevices.com/docs/t10243.pdf
(4) File Format Description - LSM 5xx Release 2.0.
    http://ibb.gsf.de/homepage/karsten.rodenacker/IDL/Lsmfile.doc
(5) BioFormats. http://www.loci.wisc.edu/ome/formats.html
(6) The OME-TIFF format.
    http://www.openmicroscopy.org/site/support/file-formats/ome-tiff
(7) TiffDecoder.java
    http://rsbweb.nih.gov/ij/developer/source/ij/io/TiffDecoder.java.html
(8) UltraQuant(r) Version 6.0 for Windows Start-Up Guide.
    http://www.ultralum.com/images%20ultralum/pdf/UQStart%20Up%20Guide.pdf
(9) Micro-Manager File Formats.
    http://www.micro-manager.org/wiki/Micro-Manager_File_Formats
Examples
--------
>>> data = numpy.random.rand(301, 219)
>>> imsave('temp.tif', data)
>>> image = imread('temp.tif')
>>> assert numpy.all(image == data)
>>> tif = TiffFile('test.tif')
>>> images = tif.asarray()
>>> image0 = tif[0].asarray()
>>> for page in tif:
...     for tag in page.tags.values():
...         t = tag.name, tag.value
...     image = page.asarray()
...     if page.is_rgb: pass
...     if page.is_palette:
...         t = page.color_map
...     if page.is_stk:
...         t = page.mm_uic_tags.number_planes
...     if page.is_lsm:
...         t = page.cz_lsm_info
>>> tif.close()
"""
from __future__ import division, print_function
import sys
import os
import re
import glob
import math
import zlib
import time
import json
import struct
import warnings
import datetime
import collections
from fractions import Fraction
from xml.etree import cElementTree as ElementTree
import numpy
__version__ = '2013.11.03'
__docformat__ = 'restructuredtext en'
__all__ = ['imsave', 'imread', 'imshow', 'TiffFile', 'TiffSequence']
def imsave(filename, data, photometric=None, planarconfig=None,
           resolution=None, description=None, software='tifffile.py',
           byteorder=None, bigtiff=False, compress=0, extratags=()):
    """Write image data to TIFF file.
    Image data are written in one stripe per plane.
    Dimensions larger than 2 or 3 (depending on photometric mode and
    planar configuration) are flattened and saved as separate pages.
    The 'sample_format' and 'bits_per_sample' TIFF tags are derived from
    the data type.
    Parameters
    ----------
    filename : str
        Name of file to write.
    data : array_like
        Input image. The last dimensions are assumed to be image height,
        width, and samples.
    photometric : {'minisblack', 'miniswhite', 'rgb'}
        The color space of the image data.
        By default this setting is inferred from the data shape.
    planarconfig : {'contig', 'planar'}
        Specifies if samples are stored contiguous or in separate planes.
        By default this setting is inferred from the data shape.
        'contig': last dimension contains samples.
        'planar': third last dimension contains samples.
    resolution : (float, float) or ((int, int), (int, int))
        X and Y resolution in dots per inch as float or rational numbers.
    description : str
        The subject of the image. Saved with the first page only.
    software : str
        Name of the software used to create the image.
        Saved with the first page only.
    byteorder : {'<', '>'}
        The endianness of the data in the file.
        By default this is the system's native byte order.
    bigtiff : bool
        If True, the BigTIFF format is used.
        By default the standard TIFF format is used for data less than 2000 MB.
    compress : int
        Values from 0 to 9 controlling the level of zlib compression.
        If 0, data are written uncompressed (default).
    extratags: sequence of tuples
        Additional tags as [(code, dtype, count, value, writeonce)].
        code : int
            The TIFF tag Id.
        dtype : str
            Data type of items in `value` in Python struct format.
            One of B, s, H, I, 2I, b, h, i, f, d, Q, or q.
        count : int
            Number of data values. Not used for string values.
        value : sequence
            `Count` values compatible with `dtype`.
        writeonce : bool
            If True, the tag is written to the first page only.
    Examples
    --------
    >>> data = numpy.ones((2, 5, 3, 301, 219), 'float32') * 0.5
    >>> imsave('temp.tif', data, compress=6)
    >>> data = numpy.ones((5, 301, 219, 3), 'uint8') + 127
    >>> value = u'{"shape": %s}' % str(list(data.shape))
    >>> imsave('temp.tif', data, extratags=[(270, 's', 0, value, True)])
    """
    assert(photometric in (None, 'minisblack', 'miniswhite', 'rgb'))
    assert(planarconfig in (None, 'contig', 'planar'))
    assert(byteorder in (None, '<', '>'))
    assert(0 <= compress <= 9)
    if byteorder is None:
        byteorder = '<' if sys.byteorder == 'little' else '>'
    data = numpy.asarray(data, dtype=byteorder+data.dtype.char, order='C')
    data_shape = shape = data.shape
    data = numpy.atleast_2d(data)
    if not bigtiff and data.size * data.dtype.itemsize < 2000*2**20:
        bigtiff = False
        offset_size = 4
        tag_size = 12
        numtag_format = 'H'
        offset_format = 'I'
        val_format = '4s'
    else:
        bigtiff = True
        offset_size = 8
        tag_size = 20
        numtag_format = 'Q'
        offset_format = 'Q'
        val_format = '8s'
    # unify shape of data
    samplesperpixel = 1
    extrasamples = 0
    if photometric is None:
        if data.ndim > 2 and (shape[-3] in (3, 4) or shape[-1] in (3, 4)):
            photometric = 'rgb'
        else:
            photometric = 'minisblack'
    if photometric == 'rgb':
        if len(shape) < 3:
            raise ValueError("not a RGB(A) image")
        if planarconfig is None:
            planarconfig = 'planar' if shape[-3] in (3, 4) else 'contig'
        if planarconfig == 'contig':
            if shape[-1] not in (3, 4):
                raise ValueError("not a contiguous RGB(A) image")
            data = data.reshape((-1, 1) + shape[-3:])
            samplesperpixel = shape[-1]
        else:
            if shape[-3] not in (3, 4):
                raise ValueError("not a planar RGB(A) image")
            data = data.reshape((-1, ) + shape[-3:] + (1, ))
            samplesperpixel = shape[-3]
        if samplesperpixel == 4:
            extrasamples = 1
    elif planarconfig and len(shape) > 2:
        if planarconfig == 'contig':
            data = data.reshape((-1, 1) + shape[-3:])
            samplesperpixel = shape[-1]
        else:
            data = data.reshape((-1, ) + shape[-3:] + (1, ))
            samplesperpixel = shape[-3]
        extrasamples = samplesperpixel - 1
    else:
        planarconfig = None
        # remove trailing 1s
        while len(shape) > 2 and shape[-1] == 1:
            shape = shape[:-1]
        data = data.reshape((-1, 1) + shape[-2:] + (1, ))
    shape = data.shape  # (pages, planes, height, width, contig samples)
    bytestr = bytes if sys.version[0] == '2' else (
        lambda x: bytes(x, 'utf-8') if isinstance(x, str) else x)
    tifftypes = {'B': 1, 's': 2, 'H': 3, 'I': 4, '2I': 5, 'b': 6,
                 'h': 8, 'i': 9, 'f': 11, 'd': 12, 'Q': 16, 'q': 17}
    tifftags = {
        'new_subfile_type': 254, 'subfile_type': 255,
        'image_width': 256, 'image_length': 257, 'bits_per_sample': 258,
        'compression': 259, 'photometric': 262, 'fill_order': 266,
        'document_name': 269, 'image_description': 270, 'strip_offsets': 273,
        'orientation': 274, 'samples_per_pixel': 277, 'rows_per_strip': 278,
        'strip_byte_counts': 279, 'x_resolution': 282, 'y_resolution': 283,
        'planar_configuration': 284, 'page_name': 285, 'resolution_unit': 296,
        'software': 305, 'datetime': 306, 'predictor': 317, 'color_map': 320,
        'extra_samples': 338, 'sample_format': 339}
    tags = []  # list of (code, ifdentry, ifdvalue, writeonce)
    def pack(fmt, *val):
        return struct.pack(byteorder+fmt, *val)
    def addtag(code, dtype, count, value, writeonce=False):
        # compute ifdentry and ifdvalue bytes from code, dtype, count, value
        # append (code, ifdentry, ifdvalue, writeonce) to tags list
        code = tifftags[code] if code in tifftags else int(code)
        if dtype not in tifftypes:
            raise ValueError("unknown dtype %s" % dtype)
        if dtype == 's':
            value = bytestr(value) + b'\0'
            count = len(value)
            value = (value, )
        if len(dtype) > 1:
            count *= int(dtype[:-1])
            dtype = dtype[-1]
        ifdentry = [pack('HH', code, tifftypes[dtype]),
                    pack(offset_format, count)]
        ifdvalue = None
        if count == 1:
            if isinstance(value, (tuple, list)):
                value = value[0]
            ifdentry.append(pack(val_format, pack(dtype, value)))
        elif struct.calcsize(dtype) * count <= offset_size:
            ifdentry.append(pack(val_format, pack(str(count)+dtype, *value)))
        else:
            ifdentry.append(pack(offset_format, 0))
            ifdvalue = pack(str(count)+dtype, *value)
        tags.append((code, b''.join(ifdentry), ifdvalue, writeonce))
    def rational(arg, max_denominator=1000000):
        # return nominator and denominator from float or two integers
        try:
            f = Fraction.from_float(arg)
        except TypeError:
            f = Fraction(arg[0], arg[1])
        f = f.limit_denominator(max_denominator)
        return f.numerator, f.denominator
    if software:
        addtag('software', 's', 0, software, writeonce=True)
    if description:
        addtag('image_description', 's', 0, description, writeonce=True)
    elif shape != data_shape:
        addtag('image_description', 's', 0,
               "shape=(%s)" % (",".join('%i' % i for i in data_shape)),
               writeonce=True)
    addtag('datetime', 's', 0,
           datetime.datetime.now().strftime("%Y:%m:%d %H:%M:%S"),
           writeonce=True)
    addtag('compression', 'H', 1, 32946 if compress else 1)
    addtag('orientation', 'H', 1, 1)
    addtag('image_width', 'I', 1, shape[-2])
    addtag('image_length', 'I', 1, shape[-3])
    addtag('new_subfile_type', 'I', 1, 0 if shape[0] == 1 else 2)
    addtag('sample_format', 'H', 1,
           {'u': 1, 'i': 2, 'f': 3, 'c': 6}[data.dtype.kind])
    addtag('photometric', 'H', 1,
           {'miniswhite': 0, 'minisblack': 1, 'rgb': 2}[photometric])
    addtag('samples_per_pixel', 'H', 1, samplesperpixel)
    if planarconfig:
        addtag('planar_configuration', 'H', 1, 1 if planarconfig=='contig'
               else 2)
        addtag('bits_per_sample', 'H', samplesperpixel,
               (data.dtype.itemsize * 8, ) * samplesperpixel)
    else:
        addtag('bits_per_sample', 'H', 1, data.dtype.itemsize * 8)
    if extrasamples:
        if photometric == 'rgb':
            addtag('extra_samples', 'H', 1, 1)  # alpha channel
        else:
            addtag('extra_samples', 'H', extrasamples, (0, ) * extrasamples)
    if resolution:
        addtag('x_resolution', '2I', 1, rational(resolution[0]))
        addtag('y_resolution', '2I', 1, rational(resolution[1]))
        addtag('resolution_unit', 'H', 1, 2)
    addtag('rows_per_strip', 'I', 1, shape[-3])
    # use one strip per plane
    strip_byte_counts = (data[0, 0].size * data.dtype.itemsize, ) * shape[1]
    addtag('strip_byte_counts', offset_format, shape[1], strip_byte_counts)
    addtag('strip_offsets', offset_format, shape[1], (0, ) * shape[1])
    # add extra tags from users
    for t in extratags:
        addtag(*t)
    # the entries in an IFD must be sorted in ascending order by tag code
    tags = sorted(tags, key=lambda x: x[0])
    with open(filename, 'wb') as fh:
        seek = fh.seek
        tell = fh.tell
        def write(arg, *args):
            fh.write(pack(arg, *args) if args else arg)
        write({'<': b'II', '>': b'MM'}[byteorder])
        if bigtiff:
            write('HHH', 43, 8, 0)
        else:
            write('H', 42)
        ifd_offset = tell()
        write(offset_format, 0)  # first IFD
        for pageindex in range(shape[0]):
            # update pointer at ifd_offset
            pos = tell()
            seek(ifd_offset)
            write(offset_format, pos)
            seek(pos)
            # write ifdentries
            write(numtag_format, len(tags))
            tag_offset = tell()
            write(b''.join(t[1] for t in tags))
            ifd_offset = tell()
            write(offset_format, 0)  # offset to next IFD
            # write tag values and patch offsets in ifdentries, if necessary
            for tagindex, tag in enumerate(tags):
                if tag[2]:
                    pos = tell()
                    seek(tag_offset + tagindex*tag_size + offset_size + 4)
                    write(offset_format, pos)
                    seek(pos)
                    if tag[0] == 273:
                        strip_offsets_offset = pos
                    elif tag[0] == 279:
                        strip_byte_counts_offset = pos
                    write(tag[2])
            # write image data
            data_offset = tell()
            if compress:
                strip_byte_counts = []
                for plane in data[pageindex]:
                    plane = zlib.compress(plane, compress)
                    strip_byte_counts.append(len(plane))
                    fh.write(plane)
            else:
                # if this fails try update Python/numpy
                data[pageindex].tofile(fh)
                fh.flush()
            # update strip_offsets and strip_byte_counts if necessary
            pos = tell()
            for tagindex, tag in enumerate(tags):
                if tag[0] == 273:  # strip_offsets
                    if tag[2]:
                        seek(strip_offsets_offset)
                        strip_offset = data_offset
                        for size in strip_byte_counts:
                            write(offset_format, strip_offset)
                            strip_offset += size
                    else:
                        seek(tag_offset + tagindex*tag_size + offset_size + 4)
                        write(offset_format, data_offset)
                elif tag[0] == 279:  # strip_byte_counts
                    if compress:
                        if tag[2]:
                            seek(strip_byte_counts_offset)
                            for size in strip_byte_counts:
                                write(offset_format, size)
                        else:
                            seek(tag_offset + tagindex*tag_size +
                                 offset_size + 4)
                            write(offset_format, strip_byte_counts[0])
                    break
            seek(pos)
            fh.flush()
            # remove tags that should be written only once
            if pageindex == 0:
                tags = [t for t in tags if not t[-1]]
def imread(files, *args, **kwargs):
    """Return image data from TIFF file(s) as numpy array.
    The first image series is returned if no arguments are provided.
    Parameters
    ----------
    files : str or list
        File name, glob pattern, or list of file names.
    key : int, slice, or sequence of page indices
        Defines which pages to return as array.
    series : int
        Defines which series of pages in file to return as array.
    multifile : bool
        If True (default), OME-TIFF data may include pages from multiple files.
    pattern : str
        Regular expression pattern that matches axes names and indices in
        file names.
    Examples
    --------
    >>> im = imread('test.tif', 0)
    >>> im.shape
    (256, 256, 4)
    >>> ims = imread(['test.tif', 'test.tif'])
    >>> ims.shape
    (2, 256, 256, 4)
    """
    kwargs_file = {}
    if 'multifile' in kwargs:
        kwargs_file['multifile'] = kwargs['multifile']
        del kwargs['multifile']
    else:
        kwargs_file['multifile'] = True
    kwargs_seq = {}
    if 'pattern' in kwargs:
        kwargs_seq['pattern'] = kwargs['pattern']
        del kwargs['pattern']
    if isinstance(files, basestring) and any(i in files for i in '?*'):
        files = glob.glob(files)
    if not files:
        raise ValueError('no files found')
    if len(files) == 1:
        files = files[0]
    if isinstance(files, basestring):
        with TiffFile(files, **kwargs_file) as tif:
            return tif.asarray(*args, **kwargs)
    else:
        with TiffSequence(files, **kwargs_seq) as imseq:
            return imseq.asarray(*args, **kwargs)
class lazyattr(object):
    """Lazy object attribute whose value is computed on first access."""
    __slots__ = ('func', )
    def __init__(self, func):
        self.func = func
    def __get__(self, instance, owner):
        if instance is None:
            return self
        value = self.func(instance)
        if value is NotImplemented:
            return getattr(super(owner, instance), self.func.__name__)
        setattr(instance, self.func.__name__, value)
        return value
class TiffFile(object):
    """Read image and meta-data from TIFF, STK, LSM, and FluoView files.
    TiffFile instances must be closed using the close method, which is
    automatically called when using the 'with' statement.
    Attributes
    ----------
    pages : list
        All TIFF pages in file.
    series : list of Records(shape, dtype, axes, TiffPages)
        TIFF pages with compatible shapes and types.
    micromanager_metadata: dict
        Extra MicroManager non-TIFF metadata in the file, if exists.
    All attributes are read-only.
    Examples
    --------
    >>> tif = TiffFile('test.tif')
    ... try:
    ...     images = tif.asarray()
    ... except Exception as e:
    ...     print(e)
    ... finally:
    ...     tif.close()
    """
    def __init__(self, arg, name=None, multifile=False):
        """Initialize instance from file.
        Parameters
        ----------
        arg : str or open file
            Name of file or open file object.
            The file objects are closed in TiffFile.close().
        name : str
            Human readable label of open file.
        multifile : bool
            If True, series may include pages from multiple files.
        """
        if isinstance(arg, basestring):
            filename = os.path.abspath(arg)
            self._fh = open(filename, 'rb')
        else:
            filename = str(name)
            self._fh = arg
        self._fh.seek(0, 2)
        self._fsize = self._fh.tell()
        self._fh.seek(0)
        self.fname = os.path.basename(filename)
        self.fpath = os.path.dirname(filename)
        self._tiffs = {self.fname: self}  # cache of TiffFiles
        self.offset_size = None
        self.pages = []
        self._multifile = bool(multifile)
        try:
            self._fromfile()
        except Exception:
            self._fh.close()
            raise
    def close(self):
        """Close open file handle(s)."""
        for tif in self._tiffs.values():
            if tif._fh:
                tif._fh.close()
                tif._fh = None
        self._tiffs = {}
    def _fromfile(self):
        """Read TIFF header and all page records from file."""
        self._fh.seek(0)
        try:
            self.byteorder = {b'II': '<', b'MM': '>'}[self._fh.read(2)]
        except KeyError:
            raise ValueError("not a valid TIFF file")
        version = struct.unpack(self.byteorder+'H', self._fh.read(2))[0]
        if version == 43:  # BigTiff
            self.offset_size, zero = struct.unpack(self.byteorder+'HH',
                                                   self._fh.read(4))
            if zero or self.offset_size != 8:
                raise ValueError("not a valid BigTIFF file")
        elif version == 42:
            self.offset_size = 4
        else:
            raise ValueError("not a TIFF file")
        self.pages = []
        while True:
            try:
                page = TiffPage(self)
                self.pages.append(page)
            except StopIteration:
                break
        if not self.pages:
            raise ValueError("empty TIFF file")
        if self.is_micromanager:
            # MicroManager files contain metadata not stored in TIFF tags.
            self.micromanager_metadata = read_micromanager_metadata(self._fh)
    @lazyattr
    def series(self):
        """Return series of TiffPage with compatible shape and properties."""
        series = []
        if self.is_ome:
            series = self._omeseries()
        elif self.is_fluoview:
            dims = {b'X': 'X', b'Y': 'Y', b'Z': 'Z', b'T': 'T',
                    b'WAVELENGTH': 'C', b'TIME': 'T', b'XY': 'R',
                    b'EVENT': 'V', b'EXPOSURE': 'L'}
            mmhd = list(reversed(self.pages[0].mm_header.dimensions))
            series = [Record(
                axes=''.join(dims.get(i[0].strip().upper(), 'Q')
                             for i in mmhd if i[1] > 1),
                shape=tuple(int(i[1]) for i in mmhd if i[1] > 1),
                pages=self.pages, dtype=numpy.dtype(self.pages[0].dtype))]
        elif self.is_lsm:
            lsmi = self.pages[0].cz_lsm_info
            axes = CZ_SCAN_TYPES[lsmi.scan_type]
            if self.pages[0].is_rgb:
                axes = axes.replace('C', '').replace('XY', 'XYC')
            axes = axes[::-1]
            shape = [getattr(lsmi, CZ_DIMENSIONS[i]) for i in axes]
            pages = [p for p in self.pages if not p.is_reduced]
            series = [Record(axes=axes, shape=shape, pages=pages,
                             dtype=numpy.dtype(pages[0].dtype))]
            if len(pages) != len(self.pages):  # reduced RGB pages
                pages = [p for p in self.pages if p.is_reduced]
                cp = 1
                i = 0
                while cp < len(pages) and i < len(shape)-2:
                    cp *= shape[i]
                    i += 1
                shape = shape[:i] + list(pages[0].shape)
                axes = axes[:i] + 'CYX'
                series.append(Record(axes=axes, shape=shape, pages=pages,
                                     dtype=numpy.dtype(pages[0].dtype)))
        elif self.is_imagej:
            shape = []
            axes = []
            ij = self.pages[0].imagej_tags
            if 'frames' in ij:
                shape.append(ij['frames'])
                axes.append('T')
            if 'slices' in ij:
                shape.append(ij['slices'])
                axes.append('Z')
            if 'channels' in ij and not self.is_rgb:
                shape.append(ij['channels'])
                axes.append('C')
            remain = len(self.pages) // (numpy.prod(shape) if shape else 1)
            if remain > 1:
                shape.append(remain)
                axes.append('I')
            shape.extend(self.pages[0].shape)
            axes.extend(self.pages[0].axes)
            axes = ''.join(axes)
            series = [Record(pages=self.pages, shape=shape, axes=axes,
                             dtype=numpy.dtype(self.pages[0].dtype))]
        elif self.is_nih:
            series = [Record(pages=self.pages,
                             shape=(len(self.pages),) + self.pages[0].shape,
                             axes='I' + self.pages[0].axes,
                             dtype=numpy.dtype(self.pages[0].dtype))]
        elif self.pages[0].is_shaped:
            shape = self.pages[0].tags['image_description'].value[7:-1]
            shape = tuple(int(i) for i in shape.split(b','))
            series = [Record(pages=self.pages, shape=shape,
                             axes='Q' * len(shape),
                             dtype=numpy.dtype(self.pages[0].dtype))]
        if not series:
            shapes = []
            pages = {}
            for page in self.pages:
                if not page.shape:
                    continue
                shape = page.shape + (page.axes,
                                      page.compression in TIFF_DECOMPESSORS)
                if not shape in pages:
                    shapes.append(shape)
                    pages[shape] = [page]
                else:
                    pages[shape].append(page)
            series = [Record(pages=pages[s],
                             axes=(('I' + s[-2])
                                   if len(pages[s]) > 1 else s[-2]),
                             dtype=numpy.dtype(pages[s][0].dtype),
                             shape=((len(pages[s]), ) + s[:-2]
                                    if len(pages[s]) > 1 else s[:-2]))
                      for s in shapes]
        return series
    def asarray(self, key=None, series=None, memmap=False):
        """Return image data of multiple TIFF pages as numpy array.
        By default the first image series is returned.
        Parameters
        ----------
        key : int, slice, or sequence of page indices
            Defines which pages to return as array.
        series : int
            Defines which series of pages to return as array.
        memmap : bool
            If True, use numpy.memmap to read arrays from file if possible.
        """
        if key is None and series is None:
            series = 0
        if series is not None:
            pages = self.series[series].pages
        else:
            pages = self.pages
        if key is None:
            pass
        elif isinstance(key, int):
            pages = [pages[key]]
        elif isinstance(key, slice):
            pages = pages[key]
        elif isinstance(key, collections.Iterable):
            pages = [pages[k] for k in key]
        else:
            raise TypeError("key must be an int, slice, or sequence")
        if len(pages) == 1:
            return pages[0].asarray(memmap=memmap)
        elif self.is_nih:
            result = numpy.vstack(
                p.asarray(colormapped=False, squeeze=False, memmap=memmap)
                for p in pages)
            if pages[0].is_palette:
                result = numpy.take(pages[0].color_map, result, axis=1)
                result = numpy.swapaxes(result, 0, 1)
        else:
            if self.is_ome and any(p is None for p in pages):
                firstpage = next(p for p in pages if p)
                nopage = numpy.zeros_like(firstpage.asarray(memmap=memmap))
            result = numpy.vstack((p.asarray(memmap=memmap) if p else nopage)
                                  for p in pages)
        if key is None:
            try:
                result.shape = self.series[series].shape
            except ValueError:
                warnings.warn("failed to reshape %s to %s" % (
                              result.shape, self.series[series].shape))
                result.shape = (-1,) + pages[0].shape
        else:
            result.shape = (-1,) + pages[0].shape
        return result
    def _omeseries(self):
        """Return image series in OME-TIFF file(s)."""
        root = ElementTree.XML(self.pages[0].tags['image_description'].value)
        uuid = root.attrib.get('UUID', None)
        self._tiffs = {uuid: self}
        modulo = {}
        result = []
        for element in root:
            if element.tag.endswith('BinaryOnly'):
                warnings.warn("not an OME-TIFF master file")
                break
            if element.tag.endswith('StructuredAnnotations'):
                for annot in element:
                    if not annot.attrib.get('Namespace',
                                            '').endswith('modulo'):
                        continue
                    for value in annot:
                        for modul in value:
                            for along in modul:
                                if not along.tag[:-1].endswith('Along'):
                                    continue
                                axis = along.tag[-1]
                                newaxis = along.attrib.get('Type', 'other')
                                newaxis = AXES_LABELS[newaxis]
                                if 'Start' in along.attrib:
                                    labels = range(
                                        int(along.attrib['Start']),
                                        int(along.attrib['End']) + 1,
                                        int(along.attrib.get('Step', 1)))
                                else:
                                    labels = [label.text for label in along
                                              if label.tag.endswith('Label')]
                                modulo[axis] = (newaxis, labels)
            if not element.tag.endswith('Image'):
                continue
            for pixels in element:
                if not pixels.tag.endswith('Pixels'):
                    continue
                atr = pixels.attrib
                axes = "".join(reversed(atr['DimensionOrder']))
                shape = list(int(atr['Size'+ax]) for ax in axes)
                size = numpy.prod(shape[:-2])
                ifds = [None] * size
                for data in pixels:
                    if not data.tag.endswith('TiffData'):
                        continue
                    atr = data.attrib
                    ifd = int(atr.get('IFD', 0))
                    num = int(atr.get('NumPlanes', 1 if 'IFD' in atr else 0))
                    num = int(atr.get('PlaneCount', num))
                    idx = [int(atr.get('First'+ax, 0)) for ax in axes[:-2]]
                    idx = numpy.ravel_multi_index(idx, shape[:-2])
                    for uuid in data:
                        if uuid.tag.endswith('UUID'):
                            if uuid.text not in self._tiffs:
                                if not self._multifile:
                                    # abort reading multi file OME series
                                    return []
                                fn = uuid.attrib['FileName']
                                try:
                                    tf = TiffFile(os.path.join(self.fpath, fn))
                                except (IOError, ValueError):
                                    warnings.warn("failed to read %s" % fn)
                                    break
                                self._tiffs[uuid.text] = tf
                            pages = self._tiffs[uuid.text].pages
                            try:
                                for i in range(num if num else len(pages)):
                                    ifds[idx + i] = pages[ifd + i]
                            except IndexError:
                                warnings.warn("ome-xml: index out of range")
                            break
                    else:
                        pages = self.pages
                        try:
                            for i in range(num if num else len(pages)):
                                ifds[idx + i] = pages[ifd + i]
                        except IndexError:
                            warnings.warn("ome-xml: index out of range")
                result.append(Record(axes=axes, shape=shape, pages=ifds,
                                     dtype=numpy.dtype(ifds[0].dtype)))
        for record in result:
            for axis, (newaxis, labels) in modulo.items():
                i = record.axes.index(axis)
                size = len(labels)
                if record.shape[i] == size:
                    record.axes = record.axes.replace(axis, newaxis, 1)
                else:
                    record.shape[i] //= size
                    record.shape.insert(i+1, size)
                    record.axes = record.axes.replace(axis, axis+newaxis, 1)
        return result
    def __len__(self):
        """Return number of image pages in file."""
        return len(self.pages)
    def __getitem__(self, key):
        """Return specified page."""
        return self.pages[key]
    def __iter__(self):
        """Return iterator over pages."""
        return iter(self.pages)
    def __str__(self):
        """Return string containing information about file."""
        result = [
            self.fname.capitalize(),
            format_size(self._fsize),
            {'<': 'little endian', '>': 'big endian'}[self.byteorder]]
        if self.is_bigtiff:
            result.append("bigtiff")
        if len(self.pages) > 1:
            result.append("%i pages" % len(self.pages))
        if len(self.series) > 1:
            result.append("%i series" % len(self.series))
        if len(self._tiffs) > 1:
            result.append("%i files" % (len(self._tiffs)))
        return ", ".join(result)
    def __enter__(self):
        return self
    def __exit__(self, exc_type, exc_value, traceback):
        self.close()
    @lazyattr
    def fstat(self):
        try:
            return os.fstat(self._fh.fileno())
        except Exception:  # io.UnsupportedOperation
            return None
    @lazyattr
    def is_bigtiff(self):
        return self.offset_size != 4
    @lazyattr
    def is_rgb(self):
        return all(p.is_rgb for p in self.pages)
    @lazyattr
    def is_palette(self):
        return all(p.is_palette for p in self.pages)
    @lazyattr
    def is_mdgel(self):
        return any(p.is_mdgel for p in self.pages)
    @lazyattr
    def is_mediacy(self):
        return any(p.is_mediacy for p in self.pages)
    @lazyattr
    def is_stk(self):
        return all(p.is_stk for p in self.pages)
    @lazyattr
    def is_lsm(self):
        return self.pages[0].is_lsm
    @lazyattr
    def is_imagej(self):
        return self.pages[0].is_imagej
    @lazyattr
    def is_micromanager(self):
        return self.pages[0].is_micromanager
    @lazyattr
    def is_nih(self):
        return self.pages[0].is_nih
    @lazyattr
    def is_fluoview(self):
        return self.pages[0].is_fluoview
    @lazyattr
    def is_ome(self):
        return self.pages[0].is_ome
class TiffPage(object):
    """A TIFF image file directory (IFD).
    Attributes
    ----------
    index : int
        Index of page in file.
    dtype : str {TIFF_SAMPLE_DTYPES}
        Data type of image, colormapped if applicable.
    shape : tuple
        Dimensions of the image array in TIFF page,
        colormapped and with one alpha channel if applicable.
    axes : str
        Axes label codes:
        'X' width, 'Y' height, 'S' sample, 'P' plane, 'I' image series,
        'Z' depth, 'C' color|em-wavelength|channel, 'E' ex-wavelength|lambda,
        'T' time, 'R' region|tile, 'A' angle, 'F' phase, 'H' lifetime,
        'L' exposure, 'V' event, 'Q' unknown, '_' missing
    tags : TiffTags
        Dictionary of tags in page.
        Tag values are also directly accessible as attributes.
    color_map : numpy array
        Color look up table, if exists.
    mm_uic_tags: Record(dict)
        Consolidated MetaMorph mm_uic# tags, if exists.
    cz_lsm_scan_info: Record(dict)
        LSM scan info attributes, if exists.
    imagej_tags: Record(dict)
        Consolidated ImageJ description and metadata tags, if exists.
    All attributes are read-only.
    """
    def __init__(self, parent):
        """Initialize instance from file."""
        self.parent = parent
        self.index = len(parent.pages)
        self.shape = self._shape = ()
        self.dtype = self._dtype = None
        self.axes = ""
        self.tags = TiffTags()
        self._fromfile()
        self._process_tags()
    def _fromfile(self):
        """Read TIFF IFD structure and its tags from file.
        File cursor must be at storage position of IFD offset and is left at
        offset to next IFD.
        Raises StopIteration if offset (first bytes read) is 0.
        """
        fh = self.parent._fh
        byteorder = self.parent.byteorder
        offset_size = self.parent.offset_size
        fmt = {4: 'I', 8: 'Q'}[offset_size]
        offset = struct.unpack(byteorder + fmt, fh.read(offset_size))[0]
        if not offset:
            raise StopIteration()
        # read standard tags
        tags = self.tags
        fh.seek(offset)
        fmt, size = {4: ('H', 2), 8: ('Q', 8)}[offset_size]
        try:
            numtags = struct.unpack(byteorder + fmt, fh.read(size))[0]
        except Exception:
            warnings.warn("corrupted page list")
            raise StopIteration()
        tagcode = 0
        for _ in range(numtags):
            try:
                tag = TiffTag(self.parent)
            except TiffTag.Error as e:
                warnings.warn(str(e))
            finally:
                if tagcode > tag.code:
                    warnings.warn("tags are not ordered by code")
                tagcode = tag.code
                if not tag.name in tags:
                    tags[tag.name] = tag
                else:
                    # some files contain multiple IFD with same code
                    # e.g. MicroManager files contain two image_description
                    for ext in ('_1', '_2', '_3'):
                        name = tag.name + ext
                        if not name in tags:
                            tags[name] = tag
                            break
        # read LSM info subrecords
        if self.is_lsm:
            pos = fh.tell()
            for name, reader in CZ_LSM_INFO_READERS.items():
                try:
                    offset = self.cz_lsm_info['offset_'+name]
                except KeyError:
                    continue
                if not offset:
                    continue
                fh.seek(offset)
                try:
                    setattr(self, 'cz_lsm_'+name, reader(fh, byteorder))
                except ValueError:
                    pass
            fh.seek(pos)
    def _process_tags(self):
        """Validate standard tags and initialize attributes.
        Raise ValueError if tag values are not supported.
        """
        tags = self.tags
        for code, (name, default, dtype, count, validate) in TIFF_TAGS.items():
            if not (name in tags or default is None):
                tags[name] = TiffTag(code, dtype=dtype, count=count,
                                     value=default, name=name)
            if name in tags and validate:
                try:
                    if tags[name].count == 1:
                        setattr(self, name, validate[tags[name].value])
                    else:
                        setattr(self, name, tuple(
                            validate[value] for value in tags[name].value))
                except KeyError:
                    raise ValueError("%s.value (%s) not supported" %
                                     (name, tags[name].value))
        tag = tags['bits_per_sample']
        if tag.count == 1:
            self.bits_per_sample = tag.value
        else:
            value = tag.value[:self.samples_per_pixel]
            if any((v-value[0] for v in value)):
                self.bits_per_sample = value
            else:
                self.bits_per_sample = value[0]
        tag = tags['sample_format']
        if tag.count == 1:
            self.sample_format = TIFF_SAMPLE_FORMATS[tag.value]
        else:
            value = tag.value[:self.samples_per_pixel]
            if any((v-value[0] for v in value)):
                self.sample_format = [TIFF_SAMPLE_FORMATS[v] for v in value]
            else:
                self.sample_format = TIFF_SAMPLE_FORMATS[value[0]]
        if not 'photometric' in tags:
            self.photometric = None
        if 'image_length' in tags:
            self.strips_per_image = int(math.floor(
                float(self.image_length + self.rows_per_strip - 1) /
                self.rows_per_strip))
        else:
            self.strips_per_image = 0
        key = (self.sample_format, self.bits_per_sample)
        self.dtype = self._dtype = TIFF_SAMPLE_DTYPES.get(key, None)
        if self.is_imagej:
            # consolidate imagej meta data
            if 'image_description_1' in self.tags:  # MicroManager
                adict = imagej_description(tags['image_description_1'].value)
            else:
                adict = imagej_description(tags['image_description'].value)
            if 'imagej_metadata' in tags:
                try:
                    adict.update(imagej_metadata(
                        tags['imagej_metadata'].value,
                        tags['imagej_byte_counts'].value,
                        self.parent.byteorder))
                except Exception as e:
                    warnings.warn(str(e))
            self.imagej_tags = Record(adict)
        if not 'image_length' in self.tags or not 'image_width' in self.tags:
            # some GEL file pages are missing image data
            self.image_length = 0
            self.image_width = 0
            self.strip_offsets = 0
            self._shape = ()
            self.shape = ()
            self.axes = ''
        if self.is_palette:
            self.dtype = self.tags['color_map'].dtype[1]
            self.color_map = numpy.array(self.color_map, self.dtype)
            dmax = self.color_map.max()
            if dmax < 256:
                self.dtype = numpy.uint8
                self.color_map = self.color_map.astype(self.dtype)
            #else:
            #    self.dtype = numpy.uint8
            #    self.color_map >>= 8
            #    self.color_map = self.color_map.astype(self.dtype)
            self.color_map.shape = (3, -1)
        if self.is_stk:
            # consolidate mm_uci tags
            planes = tags['mm_uic2'].count
            self.mm_uic_tags = Record(tags['mm_uic2'].value)
            for key in ('mm_uic3', 'mm_uic4', 'mm_uic1'):
                if key in tags:
                    self.mm_uic_tags.update(tags[key].value)
            if self.planar_configuration == 'contig':
                self._shape = (planes, 1, self.image_length, self.image_width,
                               self.samples_per_pixel)
                self.shape = tuple(self._shape[i] for i in (0, 2, 3, 4))
                self.axes = 'PYXS'
            else:
                self._shape = (planes, self.samples_per_pixel,
                               self.image_length, self.image_width, 1)
                self.shape = self._shape[:4]
                self.axes = 'PSYX'
            if self.is_palette and (self.color_map.shape[1]
                                    >= 2**self.bits_per_sample):
                self.shape = (3, planes, self.image_length, self.image_width)
                self.axes = 'CPYX'
            else:
                warnings.warn("palette cannot be applied")
                self.is_palette = False
        elif self.is_palette:
            samples = 1
            if 'extra_samples' in self.tags:
                samples += len(self.extra_samples)
            if self.planar_configuration == 'contig':
                self._shape = (
                    1, 1, self.image_length, self.image_width, samples)
            else:
                self._shape = (
                    1, samples, self.image_length, self.image_width, 1)
            if self.color_map.shape[1] >= 2**self.bits_per_sample:
                self.shape = (3, self.image_length, self.image_width)
                self.axes = 'CYX'
            else:
                warnings.warn("palette cannot be applied")
                self.is_palette = False
                self.shape = (self.image_length, self.image_width)
                self.axes = 'YX'
        elif self.is_rgb or self.samples_per_pixel > 1:
            if self.planar_configuration == 'contig':
                self._shape = (1, 1, self.image_length, self.image_width,
                               self.samples_per_pixel)
                self.shape = (self.image_length, self.image_width,
                              self.samples_per_pixel)
                self.axes = 'YXS'
            else:
                self._shape = (1, self.samples_per_pixel, self.image_length,
                               self.image_width, 1)
                self.shape = self._shape[1:-1]
                self.axes = 'SYX'
            if self.is_rgb and 'extra_samples' in self.tags:
                extra_samples = self.extra_samples
                if self.tags['extra_samples'].count == 1:
                    extra_samples = (extra_samples, )
                for exs in extra_samples:
                    if exs in ('unassalpha', 'assocalpha', 'unspecified'):
                        if self.planar_configuration == 'contig':
                            self.shape = self.shape[:2] + (4,)
                        else:
                            self.shape = (4,) + self.shape[1:]
                        break
        else:
            self._shape = (1, 1, self.image_length, self.image_width, 1)
            self.shape = self._shape[2:4]
            self.axes = 'YX'
        if not self.compression and not 'strip_byte_counts' in tags:
            self.strip_byte_counts = numpy.prod(self.shape) * (
                self.bits_per_sample // 8)
    def asarray(self, squeeze=True, colormapped=True, rgbonly=True,
                memmap=False):
        """Read image data from file and return as numpy array.
        Raise ValueError if format is unsupported.
        If any argument is False, the shape of the returned array might be
        different from the page shape.
        Parameters
        ----------
        squeeze : bool
            If True, all length-1 dimensions (except X and Y) are
            squeezed out from result.
        colormapped : bool
            If True, color mapping is applied for palette-indexed images.
        rgbonly : bool
            If True, return RGB(A) image without additional extra samples.
        memmap : bool
            If True, use numpy.memmap to read array if possible.
        """
        fh = self.parent._fh
        if not fh:
            raise IOError("TIFF file is not open")
        if self.dtype is None:
            raise ValueError("data type not supported: %s%i" % (
                self.sample_format, self.bits_per_sample))
        if self.compression not in TIFF_DECOMPESSORS:
            raise ValueError("cannot decompress %s" % self.compression)
        if ('ycbcr_subsampling' in self.tags
                and self.tags['ycbcr_subsampling'].value not in (1, (1, 1))):
            raise ValueError("YCbCr subsampling not supported")
        tag = self.tags['sample_format']
        if tag.count != 1 and any((i-tag.value[0] for i in tag.value)):
            raise ValueError("sample formats don't match %s" % str(tag.value))
        dtype = self._dtype
        shape = self._shape
        if not shape:
            return None
        image_width = self.image_width
        image_length = self.image_length
        typecode = self.parent.byteorder + dtype
        bits_per_sample = self.bits_per_sample
        byteorder_is_native = ({'big': '>', 'little': '<'}[sys.byteorder] ==
                               self.parent.byteorder)
        if self.is_tiled:
            if 'tile_offsets' in self.tags:
                byte_counts = self.tile_byte_counts
                offsets = self.tile_offsets
            else:
                byte_counts = self.strip_byte_counts
                offsets = self.strip_offsets
            tile_width = self.tile_width
            tile_length = self.tile_length
            tw = (image_width + tile_width - 1) // tile_width
            tl = (image_length + tile_length - 1) // tile_length
            shape = shape[:-3] + (tl*tile_length, tw*tile_width, shape[-1])
            tile_shape = (tile_length, tile_width, shape[-1])
            runlen = tile_width
        else:
            byte_counts = self.strip_byte_counts
            offsets = self.strip_offsets
            runlen = image_width
        try:
            offsets[0]
        except TypeError:
            offsets = (offsets, )
            byte_counts = (byte_counts, )
        if any(o < 2 for o in offsets):
            raise ValueError("corrupted page")
        if (not self.is_tiled and (self.is_stk or (not self.compression
            and bits_per_sample in (8, 16, 32, 64)
            and all(offsets[i] == offsets[i+1] - byte_counts[i]
                    for i in range(len(offsets)-1))))):
            # contiguous data
            if (memmap and not (self.is_tiled or self.predictor or
                                ('extra_samples' in self.tags) or
                                (colormapped and self.is_palette) or
                                (not byteorder_is_native))):
                result = numpy.memmap(fh, typecode, 'r', offsets[0], shape)
            else:
                fh.seek(offsets[0])
                result = numpy_fromfile(fh, typecode, numpy.prod(shape))
                result = result.astype('=' + dtype)
        else:
            if self.planar_configuration == 'contig':
                runlen *= self.samples_per_pixel
            if bits_per_sample in (8, 16, 32, 64, 128):
                if (bits_per_sample * runlen) % 8:
                    raise ValueError("data and sample size mismatch")
                def unpack(x):
                    return numpy.fromstring(x, typecode)
            elif isinstance(bits_per_sample, tuple):
                def unpack(x):
                    return unpackrgb(x, typecode, bits_per_sample)
            else:
                def unpack(x):
                    return unpackints(x, typecode, bits_per_sample, runlen)
            decompress = TIFF_DECOMPESSORS[self.compression]
            if self.is_tiled:
                result = numpy.empty(shape, dtype)
                tw, tl, pl = 0, 0, 0
                for offset, bytecount in zip(offsets, byte_counts):
                    fh.seek(offset)
                    tile = unpack(decompress(fh.read(bytecount)))
                    tile.shape = tile_shape
                    if self.predictor == 'horizontal':
                        numpy.cumsum(tile, axis=-2, dtype=dtype, out=tile)
                    result[0, pl, tl:tl+tile_length,
                           tw:tw+tile_width, :] = tile
                    del tile
                    tw += tile_width
                    if tw >= shape[-2]:
                        tw, tl = 0, tl + tile_length
                        if tl >= shape[-3]:
                            tl, pl = 0, pl + 1
                result = result[..., :image_length, :image_width, :]
            else:
                strip_size = (self.rows_per_strip * self.image_width *
                              self.samples_per_pixel)
                result = numpy.empty(shape, dtype).reshape(-1)
                index = 0
                for offset, bytecount in zip(offsets, byte_counts):
                    fh.seek(offset)
                    strip = fh.read(bytecount)
                    strip = unpack(decompress(strip))
                    size = min(result.size, strip.size, strip_size,
                               result.size - index)
                    result[index:index+size] = strip[:size]
                    del strip
                    index += size
        result.shape = self._shape
        if self.predictor == 'horizontal' and not self.is_tiled:
            # work around bug in LSM510 software
            if not (self.parent.is_lsm and not self.compression):
                numpy.cumsum(result, axis=-2, dtype=dtype, out=result)
        if colormapped and self.is_palette:
            if self.color_map.shape[1] >= 2**bits_per_sample:
                # FluoView and LSM might fail here
                result = numpy.take(self.color_map,
                                    result[:, 0, :, :, 0], axis=1)
        elif rgbonly and self.is_rgb and 'extra_samples' in self.tags:
            # return only RGB and first alpha channel if exists
            extra_samples = self.extra_samples
            if self.tags['extra_samples'].count == 1:
                extra_samples = (extra_samples, )
            for i, exs in enumerate(extra_samples):
                if exs in ('unassalpha', 'assocalpha', 'unspecified'):
                    if self.planar_configuration == 'contig':
                        result = result[..., [0, 1, 2, 3+i]]
                    else:
                        result = result[:, [0, 1, 2, 3+i]]
                    break
            else:
                if self.planar_configuration == 'contig':
                    result = result[..., :3]
                else:
                    result = result[:, :3]
        if squeeze:
            try:
                result.shape = self.shape
            except ValueError:
                warnings.warn("failed to reshape from %s to %s" % (
                    str(result.shape), str(self.shape)))
        return result
    def __str__(self):
        """Return string containing information about page."""
        s = ', '.join(s for s in (
            ' x '.join(str(i) for i in self.shape),
            str(numpy.dtype(self.dtype)),
            '%s bit' % str(self.bits_per_sample),
            self.photometric if 'photometric' in self.tags else '',
            self.compression if self.compression else 'raw',
            '|'.join(t[3:] for t in (
                'is_stk', 'is_lsm', 'is_nih', 'is_ome', 'is_imagej',
                'is_micromanager', 'is_fluoview', 'is_mdgel', 'is_mediacy',
                'is_reduced', 'is_tiled') if getattr(self, t))) if s)
        return "Page %i: %s" % (self.index, s)
    def __getattr__(self, name):
        """Return tag value."""
        if name in self.tags:
            value = self.tags[name].value
            setattr(self, name, value)
            return value
        raise AttributeError(name)
    @lazyattr
    def is_rgb(self):
        """True if page contains a RGB image."""
        return ('photometric' in self.tags and
                self.tags['photometric'].value == 2)
    @lazyattr
    def is_palette(self):
        """True if page contains a palette-colored image."""
        return ('photometric' in self.tags and
                self.tags['photometric'].value == 3)
    @lazyattr
    def is_tiled(self):
        """True if page contains tiled image."""
        return 'tile_width' in self.tags
    @lazyattr
    def is_reduced(self):
        """True if page is a reduced image of another image."""
        return bool(self.tags['new_subfile_type'].value & 1)
    @lazyattr
    def is_mdgel(self):
        """True if page contains md_file_tag tag."""
        return 'md_file_tag' in self.tags
    @lazyattr
    def is_mediacy(self):
        """True if page contains Media Cybernetics Id tag."""
        return ('mc_id' in self.tags and
                self.tags['mc_id'].value.startswith(b'MC TIFF'))
    @lazyattr
    def is_stk(self):
        """True if page contains MM_UIC2 tag."""
        return 'mm_uic2' in self.tags
    @lazyattr
    def is_lsm(self):
        """True if page contains LSM CZ_LSM_INFO tag."""
        return 'cz_lsm_info' in self.tags
    @lazyattr
    def is_fluoview(self):
        """True if page contains FluoView MM_STAMP tag."""
        return 'mm_stamp' in self.tags
    @lazyattr
    def is_nih(self):
        """True if page contains NIH image header."""
        return 'nih_image_header' in self.tags
    @lazyattr
    def is_ome(self):
        """True if page contains OME-XML in image_description tag."""
        return ('image_description' in self.tags and self.tags[
            'image_description'].value.startswith(b'<?xml version='))
    @lazyattr
    def is_shaped(self):
        """True if page contains shape in image_description tag."""
        return ('image_description' in self.tags and self.tags[
            'image_description'].value.startswith(b'shape=('))
    @lazyattr
    def is_imagej(self):
        """True if page contains ImageJ description."""
        return (
            ('image_description' in self.tags and
             self.tags['image_description'].value.startswith(b'ImageJ=')) or
            ('image_description_1' in self.tags and  # Micromanager
             self.tags['image_description_1'].value.startswith(b'ImageJ=')))
    @lazyattr
    def is_micromanager(self):
        """True if page contains Micro-Manager metadata."""
        return 'micromanager_metadata' in self.tags
class TiffTag(object):
    """A TIFF tag structure.
    Attributes
    ----------
    name : string
        Attribute name of tag.
    code : int
        Decimal code of tag.
    dtype : str
        Datatype of tag data. One of TIFF_DATA_TYPES.
    count : int
        Number of values.
    value : various types
        Tag data as Python object.
    value_offset : int
        Location of value in file, if any.
    All attributes are read-only.
    """
    __slots__ = ('code', 'name', 'count', 'dtype', 'value', 'value_offset',
                 '_offset', '_value')
    class Error(Exception):
        pass
    def __init__(self, arg, **kwargs):
        """Initialize instance from file or arguments."""
        self._offset = None
        if hasattr(arg, '_fh'):
            self._fromfile(arg, **kwargs)
        else:
            self._fromdata(arg, **kwargs)
    def _fromdata(self, code, dtype, count, value, name=None):
        """Initialize instance from arguments."""
        self.code = int(code)
        self.name = name if name else str(code)
        self.dtype = TIFF_DATA_TYPES[dtype]
        self.count = int(count)
        self.value = value
    def _fromfile(self, parent):
        """Read tag structure from open file. Advance file cursor."""
        fh = parent._fh
        byteorder = parent.byteorder
        self._offset = fh.tell()
        self.value_offset = self._offset + parent.offset_size + 4
        fmt, size = {4: ('HHI4s', 12), 8: ('HHQ8s', 20)}[parent.offset_size]
        data = fh.read(size)
        code, dtype = struct.unpack(byteorder + fmt[:2], data[:4])
        count, value = struct.unpack(byteorder + fmt[2:], data[4:])
        self._value = value
        if code in TIFF_TAGS:
            name = TIFF_TAGS[code][0]
        elif code in CUSTOM_TAGS:
            name = CUSTOM_TAGS[code][0]
        else:
            name = str(code)
        try:
            dtype = TIFF_DATA_TYPES[dtype]
        except KeyError:
            raise TiffTag.Error("unknown tag data type %i" % dtype)
        fmt = '%s%i%s' % (byteorder, count*int(dtype[0]), dtype[1])
        size = struct.calcsize(fmt)
        if size > parent.offset_size or code in CUSTOM_TAGS:
            pos = fh.tell()
            tof = {4: 'I', 8: 'Q'}[parent.offset_size]
            self.value_offset = offset = struct.unpack(byteorder+tof, value)[0]
            if offset < 0 or offset > parent._fsize:
                raise TiffTag.Error("corrupt file - invalid tag value offset")
            elif offset < 4:
                raise TiffTag.Error("corrupt value offset for tag %i" % code)
            fh.seek(offset)
            if code in CUSTOM_TAGS:
                readfunc = CUSTOM_TAGS[code][1]
                value = readfunc(fh, byteorder, dtype, count)
                fh.seek(0, 2)  # bug in numpy/Python 3.x ?
                if isinstance(value, dict):  # numpy.core.records.record
                    value = Record(value)
            elif code in TIFF_TAGS or dtype[-1] == 's':
                value = struct.unpack(fmt, fh.read(size))
            else:
                value = read_numpy(fh, byteorder, dtype, count)
                fh.seek(0, 2)  # bug in numpy/Python 3.x ?
            fh.seek(pos)
        else:
            value = struct.unpack(fmt, value[:size])
        if not code in CUSTOM_TAGS:
            if len(value) == 1:
                value = value[0]
        if dtype.endswith('s') and isinstance(value, bytes):
            value = stripnull(value)
        self.code = code
        self.name = name
        self.dtype = dtype
        self.count = count
        self.value = value
    def __str__(self):
        """Return string containing information about tag."""
        return ' '.join(str(getattr(self, s)) for s in self.__slots__)
class TiffSequence(object):
    """Sequence of image files.
    Properties
    ----------
    files : list
        List of file names.
    shape : tuple
        Shape of image sequence.
    axes : str
        Labels of axes in shape.
    Examples
    --------
    >>> ims = TiffSequence("test.oif.files/*.tif")
    >>> ims = ims.asarray()
    >>> ims.shape
    (2, 100, 256, 256)
    """
    _axes_pattern = """
        # matches Olympus OIF and Leica TIFF series
        _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))
        _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))?
        _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))?
        _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))?
        _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))?
        _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))?
        _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))?
        """
    class _ParseError(Exception):
        pass
    def __init__(self, files, imread=TiffFile, pattern='axes'):
        """Initialize instance from multiple files.
        Parameters
        ----------
        files : str, or sequence of str
            Glob pattern or sequence of file names.
        imread : function or class
            Image read function or class with asarray function returning numpy
            array from single file.
        pattern : str
            Regular expression pattern that matches axes names and sequence
            indices in file names.
        """
        if isinstance(files, basestring):
            files = natural_sorted(glob.glob(files))
        files = list(files)
        if not files:
            raise ValueError("no files found")
        #if not os.path.isfile(files[0]):
        #    raise ValueError("file not found")
        self.files = files
        if hasattr(imread, 'asarray'):
            _imread = imread
            def imread(fname, *args, **kwargs):
                with _imread(fname) as im:
                    return im.asarray(*args, **kwargs)
        self.imread = imread
        self.pattern = self._axes_pattern if pattern == 'axes' else pattern
        try:
            self._parse()
            if not self.axes:
                self.axes = 'I'
        except self._ParseError:
            self.axes = 'I'
            self.shape = (len(files),)
            self._start_index = (0,)
            self._indices = ((i,) for i in range(len(files)))
    def __str__(self):
        """Return string with information about image sequence."""
        return "\n".join([
            self.files[0],
            '* files: %i' % len(self.files),
            '* axes: %s' % self.axes,
            '* shape: %s' % str(self.shape)])
    def __len__(self):
        return len(self.files)
    def __enter__(self):
        return self
    def __exit__(self, exc_type, exc_value, traceback):
        self.close()
    def close(self):
        pass
    def asarray(self, *args, **kwargs):
        """Read image data from all files and return as single numpy array.
        Raise IndexError if image shapes don't match.
        """
        im = self.imread(self.files[0])
        result_shape = self.shape + im.shape
        result = numpy.zeros(result_shape, dtype=im.dtype)
        result = result.reshape(-1, *im.shape)
        for index, fname in zip(self._indices, self.files):
            index = [i-j for i, j in zip(index, self._start_index)]
            index = numpy.ravel_multi_index(index, self.shape)
            im = self.imread(fname, *args, **kwargs)
            result[index] = im
        result.shape = result_shape
        return result
    def _parse(self):
        """Get axes and shape from file names."""
        if not self.pattern:
            raise self._ParseError("invalid pattern")
        pattern = re.compile(self.pattern, re.IGNORECASE | re.VERBOSE)
        matches = pattern.findall(self.files[0])
        if not matches:
            raise self._ParseError("pattern doesn't match file names")
        matches = matches[-1]
        if len(matches) % 2:
            raise self._ParseError("pattern doesn't match axis name and index")
        axes = ''.join(m for m in matches[::2] if m)
        if not axes:
            raise self._ParseError("pattern doesn't match file names")
        indices = []
        for fname in self.files:
            matches = pattern.findall(fname)[-1]
            if axes != ''.join(m for m in matches[::2] if m):
                raise ValueError("axes don't match within the image sequence")
            indices.append([int(m) for m in matches[1::2] if m])
        shape = tuple(numpy.max(indices, axis=0))
        start_index = tuple(numpy.min(indices, axis=0))
        shape = tuple(i-j+1 for i, j in zip(shape, start_index))
        if numpy.prod(shape) != len(self.files):
            warnings.warn("files are missing. Missing data are zeroed")
        self.axes = axes.upper()
        self.shape = shape
        self._indices = indices
        self._start_index = start_index
class Record(dict):
    """Dictionary with attribute access.
    Can also be initialized with numpy.core.records.record.
    """
    __slots__ = ()
    def __init__(self, arg=None, **kwargs):
        if kwargs:
            arg = kwargs
        elif arg is None:
            arg = {}
        try:
            dict.__init__(self, arg)
        except (TypeError, ValueError):
            for i, name in enumerate(arg.dtype.names):
                v = arg[i]
                self[name] = v if v.dtype.char != 'S' else stripnull(v)
    def __getattr__(self, name):
        return self[name]
    def __setattr__(self, name, value):
        self.__setitem__(name, value)
    def __str__(self):
        """Pretty print Record."""
        s = []
        lists = []
        for k in sorted(self):
            if k.startswith('_'):  # does not work with byte
                continue
            v = self[k]
            if isinstance(v, (list, tuple)) and len(v):
                if isinstance(v[0], Record):
                    lists.append((k, v))
                    continue
                elif isinstance(v[0], TiffPage):
                    v = [i.index for i in v if i]
            s.append(
                ("* %s: %s" % (k, str(v))).split("\n", 1)[0]
                [:PRINT_LINE_LEN].rstrip())
        for k, v in lists:
            l = []
            for i, w in enumerate(v):
                l.append("* %s[%i]\n  %s" % (k, i,
                                             str(w).replace("\n", "\n  ")))
            s.append('\n'.join(l))
        return '\n'.join(s)
class TiffTags(Record):
    """Dictionary of TiffTags with attribute access."""
    def __str__(self):
        """Return string with information about all tags."""
        s = []
        for tag in sorted(self.values(), key=lambda x: x.code):
            typecode = "%i%s" % (tag.count * int(tag.dtype[0]), tag.dtype[1])
            line = "* %i %s (%s) %s" % (tag.code, tag.name, typecode,
                                        str(tag.value).split('\n', 1)[0])
            s.append(line[:PRINT_LINE_LEN].lstrip())
        return '\n'.join(s)
def read_bytes(fh, byteorder, dtype, count):
    """Read tag data from file and return as byte string."""
    return numpy_fromfile(fh, byteorder+dtype[-1], count).tostring()
def read_numpy(fh, byteorder, dtype, count):
    """Read tag data from file and return as numpy array."""
    return numpy_fromfile(fh, byteorder+dtype[-1], count)
def read_json(fh, byteorder, dtype, count):
    """Read tag data from file and return as object."""
    return json.loads(unicode(stripnull(fh.read(count)), 'utf-8'))
def read_mm_header(fh, byteorder, dtype, count):
    """Read MM_HEADER tag from file and return as numpy.rec.array."""
    return numpy.rec.fromfile(fh, MM_HEADER, 1, byteorder=byteorder)[0]
def read_mm_stamp(fh, byteorder, dtype, count):
    """Read MM_STAMP tag from file and return as numpy.array."""
    return numpy_fromfile(fh, byteorder+'8f8', 1)[0]
def read_mm_uic1(fh, byteorder, dtype, count):
    """Read MM_UIC1 tag from file and return as dictionary."""
    t = fh.read(8*count)
    t = struct.unpack('%s%iI' % (byteorder, 2*count), t)
    return dict((MM_TAG_IDS[k], v) for k, v in zip(t[::2], t[1::2])
                if k in MM_TAG_IDS)
def read_mm_uic2(fh, byteorder, dtype, count):
    """Read MM_UIC2 tag from file and return as dictionary."""
    result = {'number_planes': count}
    values = numpy_fromfile(fh, byteorder+'I', 6*count)
    result['z_distance'] = values[0::6] // values[1::6]
    #result['date_created'] = tuple(values[2::6])
    #result['time_created'] = tuple(values[3::6])
    #result['date_modified'] = tuple(values[4::6])
    #result['time_modified'] = tuple(values[5::6])
    return result
def read_mm_uic3(fh, byteorder, dtype, count):
    """Read MM_UIC3 tag from file and return as dictionary."""
    t = numpy_fromfile(fh, byteorder+'I', 2*count)
    return {'wavelengths': t[0::2] // t[1::2]}
def read_mm_uic4(fh, byteorder, dtype, count):
    """Read MM_UIC4 tag from file and return as dictionary."""
    t = struct.unpack(byteorder + 'hI'*count, fh.read(6*count))
    return dict((MM_TAG_IDS[k], v) for k, v in zip(t[::2], t[1::2])
                if k in MM_TAG_IDS)
def read_cz_lsm_info(fh, byteorder, dtype, count):
    """Read CS_LSM_INFO tag from file and return as numpy.rec.array."""
    result = numpy.rec.fromfile(fh, CZ_LSM_INFO, 1,
                                byteorder=byteorder)[0]
    {50350412: '1.3', 67127628: '2.0'}[result.magic_number]  # validation
    return result
def read_cz_lsm_time_stamps(fh, byteorder):
    """Read LSM time stamps from file and return as list."""
    size, count = struct.unpack(byteorder+'II', fh.read(8))
    if size != (8 + 8 * count):
        raise ValueError("lsm_time_stamps block is too short")
    return struct.unpack(('%s%dd' % (byteorder, count)),
                         fh.read(8*count))
def read_cz_lsm_event_list(fh, byteorder):
    """Read LSM events from file and return as list of (time, type, text)."""
    count = struct.unpack(byteorder+'II', fh.read(8))[1]
    events = []
    while count > 0:
        esize, etime, etype = struct.unpack(byteorder+'IdI', fh.read(16))
        etext = stripnull(fh.read(esize - 16))
        events.append((etime, etype, etext))
        count -= 1
    return events
def read_cz_lsm_scan_info(fh, byteorder):
    """Read LSM scan information from file and return as Record."""
    block = Record()
    blocks = [block]
    unpack = struct.unpack
    if 0x10000000 != struct.unpack(byteorder+"I", fh.read(4))[0]:
        raise ValueError("not a lsm_scan_info structure")
    fh.read(8)
    while True:
        entry, dtype, size = unpack(byteorder+"III", fh.read(12))
        if dtype == 2:
            value = stripnull(fh.read(size))
        elif dtype == 4:
            value = unpack(byteorder+"i", fh.read(4))[0]
        elif dtype == 5:
            value = unpack(byteorder+"d", fh.read(8))[0]
        else:
            value = 0
        if entry in CZ_LSM_SCAN_INFO_ARRAYS:
            blocks.append(block)
            name = CZ_LSM_SCAN_INFO_ARRAYS[entry]
            newobj = []
            setattr(block, name, newobj)
            block = newobj
        elif entry in CZ_LSM_SCAN_INFO_STRUCTS:
            blocks.append(block)
            newobj = Record()
            block.append(newobj)
            block = newobj
        elif entry in CZ_LSM_SCAN_INFO_ATTRIBUTES:
            name = CZ_LSM_SCAN_INFO_ATTRIBUTES[entry]
            setattr(block, name, value)
        elif entry == 0xffffffff:
            block = blocks.pop()
        else:
            setattr(block, "unknown_%x" % entry, value)
        if not blocks:
            break
    return block
def read_nih_image_header(fh, byteorder, dtype, count):
    """Read NIH_IMAGE_HEADER tag from file and return as numpy.rec.array."""
    a = numpy.rec.fromfile(fh, NIH_IMAGE_HEADER, 1, byteorder=byteorder)[0]
    a = a.newbyteorder(byteorder)
    a.xunit = a.xunit[:a._xunit_len]
    a.um = a.um[:a._um_len]
    return a
def imagej_metadata(data, bytecounts, byteorder):
    """Return dict from ImageJ meta data tag value."""
    _str = str if sys.version_info[0] < 3 else lambda x: str(x, 'cp1252')
    def read_string(data, byteorder):
        return _str(stripnull(data[0 if byteorder == '<' else 1::2]))
    def read_double(data, byteorder):
        return struct.unpack(byteorder+('d' * (len(data) // 8)), data)
    def read_bytes(data, byteorder):
        #return struct.unpack('b' * len(data), data)
        return numpy.fromstring(data, 'uint8')
    metadata_types = {  # big endian
        b'info': ('info', read_string),
        b'labl': ('labels', read_string),
        b'rang': ('ranges', read_double),
        b'luts': ('luts', read_bytes),
        b'roi ': ('roi', read_bytes),
        b'over': ('overlays', read_bytes)}
    metadata_types.update(  # little endian
        dict((k[::-1], v) for k, v in metadata_types.items()))
    if not bytecounts:
        raise ValueError("no ImageJ meta data")
    if not data[:4] in (b'IJIJ', b'JIJI'):
        raise ValueError("invalid ImageJ meta data")
    header_size = bytecounts[0]
    if header_size < 12 or header_size > 804:
        raise ValueError("invalid ImageJ meta data header size")
    ntypes = (header_size - 4) // 8
    header = struct.unpack(byteorder+'4sI'*ntypes, data[4:4+ntypes*8])
    pos = 4 + ntypes * 8
    counter = 0
    result = {}
    for mtype, count in zip(header[::2], header[1::2]):
        values = []
        name, func = metadata_types.get(mtype, (_str(mtype), read_bytes))
        for _ in range(count):
            counter += 1
            pos1 = pos + bytecounts[counter]
            values.append(func(data[pos:pos1], byteorder))
            pos = pos1
        result[name.strip()] = values[0] if count == 1 else values
    return result
def imagej_description(description):
    """Return dict from ImageJ image_description tag."""
    def _bool(val):
        return {b'true': True, b'false': False}[val.lower()]
    _str = str if sys.version_info[0] < 3 else lambda x: str(x, 'cp1252')
    result = {}
    for line in description.splitlines():
        try:
            key, val = line.split(b'=')
        except Exception:
            continue
        key = key.strip()
        val = val.strip()
        for dtype in (int, float, _bool, _str):
            try:
                val = dtype(val)
                break
            except Exception:
                pass
        result[_str(key)] = val
    return result
def read_micromanager_metadata(fh):
    """Read MicroManager non-TIFF settings from open file and return as dict.
    The settings can be used to read image data without parsing the TIFF file.
    Raise ValueError if file does not contain valid MicroManager metadata.
    """
    fh.seek(0)
    try:
        byteorder = {b'II': '<', b'MM': '>'}[fh.read(2)]
    except IndexError:
        raise ValueError("not a MicroManager TIFF file")
    results = {}
    fh.seek(8)
    (index_header, index_offset, display_header, display_offset,
     comments_header, comments_offset, summary_header, summary_length
     ) = struct.unpack(byteorder + "IIIIIIII", fh.read(32))
    if summary_header != 2355492:
        raise ValueError("invalid MicroManager summary_header")
    results['summary'] = read_json(fh, byteorder, None, summary_length)
    if index_header != 54773648:
        raise ValueError("invalid MicroManager index_header")
    fh.seek(index_offset)
    header, count = struct.unpack(byteorder + "II", fh.read(8))
    if header != 3453623:
        raise ValueError("invalid MicroManager index_header")
    data = struct.unpack(byteorder + "IIIII"*count, fh.read(20*count))
    results['index_map'] = {
        'channel': data[::5], 'slice': data[1::5], 'frame': data[2::5],
        'position': data[3::5], 'offset': data[4::5]}
    if display_header != 483765892:
        raise ValueError("invalid MicroManager display_header")
    fh.seek(display_offset)
    header, count = struct.unpack(byteorder + "II", fh.read(8))
    if header != 347834724:
        raise ValueError("invalid MicroManager display_header")
    results['display_settings'] = read_json(fh, byteorder, None, count)
    if comments_header != 99384722:
        raise ValueError("invalid MicroManager comments_header")
    fh.seek(comments_offset)
    header, count = struct.unpack(byteorder + "II", fh.read(8))
    if header != 84720485:
        raise ValueError("invalid MicroManager comments_header")
    results['comments'] = read_json(fh, byteorder, None, count)
    return results
def _replace_by(module_function, package=None, warn=True):
    """Try replace decorated function by module.function."""
    try:
        from importlib import import_module
    except ImportError:
        warnings.warn('Could not import module importlib')
        return lambda func: func
    def decorate(func, module_function=module_function, warn=warn):
        try:
            module, function = module_function.split('.')
            if not package:
                module = import_module(module)
            else:
                module = import_module('.' + module, package=package)
            func, oldfunc = getattr(module, function), func
            globals()['__old_' + func.__name__] = oldfunc
        except Exception:
            if warn:
                warnings.warn("failed to import %s" % module_function)
        return func
    return decorate
@_replace_by('_tifffile.decodepackbits')
def decodepackbits(encoded):
    """Decompress PackBits encoded byte string.
    PackBits is a simple byte-oriented run-length compression scheme.
    """
    func = ord if sys.version[0] == '2' else lambda x: x
    result = []
    result_extend = result.extend
    i = 0
    try:
        while True:
            n = func(encoded[i]) + 1
            i += 1
            if n < 129:
                result_extend(encoded[i:i+n])
                i += n
            elif n > 129:
                result_extend(encoded[i:i+1] * (258-n))
                i += 1
    except IndexError:
        pass
    return b''.join(result) if sys.version[0] == '2' else bytes(result)
@_replace_by('_tifffile.decodelzw')
def decodelzw(encoded):
    """Decompress LZW (Lempel-Ziv-Welch) encoded TIFF strip (byte string).
    The strip must begin with a CLEAR code and end with an EOI code.
    This is an implementation of the LZW decoding algorithm described in (1).
    It is not compatible with old style LZW compressed files like quad-lzw.tif.
    """
    len_encoded = len(encoded)
    bitcount_max = len_encoded * 8
    unpack = struct.unpack
    if sys.version[0] == '2':
        newtable = [chr(i) for i in range(256)]
    else:
        newtable = [bytes([i]) for i in range(256)]
    newtable.extend((0, 0))
    def next_code():
        """Return integer of `bitw` bits at `bitcount` position in encoded."""
        start = bitcount // 8
        s = encoded[start:start+4]
        try:
            code = unpack('>I', s)[0]
        except Exception:
            code = unpack('>I', s + b'\x00'*(4-len(s)))[0]
        code <<= bitcount % 8
        code &= mask
        return code >> shr
    switchbitch = {  # code: bit-width, shr-bits, bit-mask
        255: (9, 23, int(9*'1'+'0'*23, 2)),
        511: (10, 22, int(10*'1'+'0'*22, 2)),
        1023: (11, 21, int(11*'1'+'0'*21, 2)),
        2047: (12, 20, int(12*'1'+'0'*20, 2)), }
    bitw, shr, mask = switchbitch[255]
    bitcount = 0
    if len_encoded < 4:
        raise ValueError("strip must be at least 4 characters long")
    if next_code() != 256:
        raise ValueError("strip must begin with CLEAR code")
    code = 0
    oldcode = 0
    result = []
    result_append = result.append
    while True:
        code = next_code()  # ~5% faster when inlining this function
        bitcount += bitw
        if code == 257 or bitcount >= bitcount_max:  # EOI
            break
        if code == 256:  # CLEAR
            table = newtable[:]
            table_append = table.append
            lentable = 258
            bitw, shr, mask = switchbitch[255]
            code = next_code()
            bitcount += bitw
            if code == 257:  # EOI
                break
            result_append(table[code])
        else:
            if code < lentable:
                decoded = table[code]
                newcode = table[oldcode] + decoded[:1]
            else:
                newcode = table[oldcode]
                newcode += newcode[:1]
                decoded = newcode
            result_append(decoded)
            table_append(newcode)
            lentable += 1
        oldcode = code
        if lentable in switchbitch:
            bitw, shr, mask = switchbitch[lentable]
    if code != 257:
        warnings.warn(
            "decodelzw encountered unexpected end of stream (code %i)" % code)
    return b''.join(result)
@_replace_by('_tifffile.unpackints')
def unpackints(data, dtype, itemsize, runlen=0):
    """Decompress byte string to array of integers of any bit size <= 32.
    Parameters
    ----------
    data : byte str
        Data to decompress.
    dtype : numpy.dtype or str
        A numpy boolean or integer type.
    itemsize : int
        Number of bits per integer.
    runlen : int
        Number of consecutive integers, after which to start at next byte.
    """
    if itemsize == 1:  # bitarray
        data = numpy.fromstring(data, '|B')
        data = numpy.unpackbits(data)
        if runlen % 8:
            data = data.reshape(-1, runlen + (8 - runlen % 8))
            data = data[:, :runlen].reshape(-1)
        return data.astype(dtype)
    dtype = numpy.dtype(dtype)
    if itemsize in (8, 16, 32, 64):
        return numpy.fromstring(data, dtype)
    if itemsize < 1 or itemsize > 32:
        raise ValueError("itemsize out of range: %i" % itemsize)
    if dtype.kind not in "biu":
        raise ValueError("invalid dtype")
    itembytes = next(i for i in (1, 2, 4, 8) if 8 * i >= itemsize)
    if itembytes != dtype.itemsize:
        raise ValueError("dtype.itemsize too small")
    if runlen == 0:
        runlen = len(data) // itembytes
    skipbits = runlen*itemsize % 8
    if skipbits:
        skipbits = 8 - skipbits
    shrbits = itembytes*8 - itemsize
    bitmask = int(itemsize*'1'+'0'*shrbits, 2)
    dtypestr = '>' + dtype.char  # dtype always big endian?
    unpack = struct.unpack
    l = runlen * (len(data)*8 // (runlen*itemsize + skipbits))
    result = numpy.empty((l, ), dtype)
    bitcount = 0
    for i in range(len(result)):
        start = bitcount // 8
        s = data[start:start+itembytes]
        try:
            code = unpack(dtypestr, s)[0]
        except Exception:
            code = unpack(dtypestr, s + b'\x00'*(itembytes-len(s)))[0]
        code <<= bitcount % 8
        code &= bitmask
        result[i] = code >> shrbits
        bitcount += itemsize
        if (i+1) % runlen == 0:
            bitcount += skipbits
    return result
def unpackrgb(data, dtype='<B', bitspersample=(5, 6, 5), rescale=True):
    """Return array from byte string containing packed samples.
    Use to unpack RGB565 or RGB555 to RGB888 format.
    Parameters
    ----------
    data : byte str
        The data to be decoded. Samples in each pixel are stored consecutively.
        Pixels are aligned to 8, 16, or 32 bit boundaries.
    dtype : numpy.dtype
        The sample data type. The byteorder applies also to the data stream.
    bitspersample : tuple
        Number of bits for each sample in a pixel.
    rescale : bool
        Upscale samples to the number of bits in dtype.
    Returns
    -------
    result : ndarray
        Flattened array of unpacked samples of native dtype.
    Examples
    --------
    >>> data = struct.pack('BBBB', 0x21, 0x08, 0xff, 0xff)
    >>> print(unpackrgb(data, '<B', (5, 6, 5), False))
    [ 1  1  1 31 63 31]
    >>> print(unpackrgb(data, '<B', (5, 6, 5)))
    [  8   4   8 255 255 255]
    >>> print(unpackrgb(data, '<B', (5, 5, 5)))
    [ 16   8   8 255 255 255]
    """
    dtype = numpy.dtype(dtype)
    bits = int(numpy.sum(bitspersample))
    if not (bits <= 32 and all(i <= dtype.itemsize*8 for i in bitspersample)):
        raise ValueError("sample size not supported %s" % str(bitspersample))
    dt = next(i for i in 'BHI' if numpy.dtype(i).itemsize*8 >= bits)
    data = numpy.fromstring(data, dtype.byteorder+dt)
    result = numpy.empty((data.size, len(bitspersample)), dtype.char)
    for i, bps in enumerate(bitspersample):
        t = data >> int(numpy.sum(bitspersample[i+1:]))
        t &= int('0b'+'1'*bps, 2)
        if rescale:
            o = ((dtype.itemsize * 8) // bps + 1) * bps
            if o > data.dtype.itemsize * 8:
                t = t.astype('I')
            t *= (2**o - 1) // (2**bps - 1)
            t //= 2**(o - (dtype.itemsize * 8))
        result[:, i] = t
    return result.reshape(-1)
def reorient(image, orientation):
    """Return reoriented view of image array.
    Parameters
    ----------
    image : numpy array
        Non-squeezed output of asarray() functions.
        Axes -3 and -2 must be image length and width respectively.
    orientation : int or str
        One of TIFF_ORIENTATIONS keys or values.
    """
    o = TIFF_ORIENTATIONS.get(orientation, orientation)
    if o == 'top_left':
        return image
    elif o == 'top_right':
        return image[..., ::-1, :]
    elif o == 'bottom_left':
        return image[..., ::-1, :, :]
    elif o == 'bottom_right':
        return image[..., ::-1, ::-1, :]
    elif o == 'left_top':
        return numpy.swapaxes(image, -3, -2)
    elif o == 'right_top':
        return numpy.swapaxes(image, -3, -2)[..., ::-1, :]
    elif o == 'left_bottom':
        return numpy.swapaxes(image, -3, -2)[..., ::-1, :, :]
    elif o == 'right_bottom':
        return numpy.swapaxes(image, -3, -2)[..., ::-1, ::-1, :]
def numpy_fromfile(arg, dtype=float, count=-1, sep=''):
    """Return array from data in binary file.
    Work around numpy issue #2230, "numpy.fromfile does not accept StringIO
    object" https://github.com/numpy/numpy/issues/2230.
    """
    try:
        return numpy.fromfile(arg, dtype, count, sep)
    except IOError:
        if count < 0:
            size = 2**30
        else:
            size = count * numpy.dtype(dtype).itemsize
        data = arg.read(int(size))
        return numpy.fromstring(data, dtype, count, sep)
def stripnull(string):
    """Return string truncated at first null character."""
    i = string.find(b'\x00')
    return string if (i < 0) else string[:i]
def format_size(size):
    """Return file size as string from byte size."""
    for unit in ('B', 'KB', 'MB', 'GB', 'TB'):
        if size < 2048:
            return "%.f %s" % (size, unit)
        size /= 1024.0
def natural_sorted(iterable):
    """Return human sorted list of strings.
    >>> natural_sorted(['f1', 'f2', 'f10'])
    ['f1', 'f2', 'f10']
    """
    def sortkey(x):
        return [(int(c) if c.isdigit() else c) for c in re.split(numbers, x)]
    numbers = re.compile('(\d+)')
    return sorted(iterable, key=sortkey)
def datetime_from_timestamp(n, epoch=datetime.datetime.fromordinal(693594)):
    """Return datetime object from timestamp in Excel serial format.
    Examples
    --------
    >>> datetime_from_timestamp(40237.029999999795)
    datetime.datetime(2010, 2, 28, 0, 43, 11, 999982)
    """
    return epoch + datetime.timedelta(n)
def test_tifffile(directory='testimages', verbose=True):
    """Read all images in directory. Print error message on failure.
    Examples
    --------
    >>> test_tifffile(verbose=False)
    """
    successful = 0
    failed = 0
    start = time.time()
    for f in glob.glob(os.path.join(directory, '*.*')):
        if verbose:
            print("\n%s>\n" % f.lower(), end='')
        t0 = time.time()
        try:
            tif = TiffFile(f, multifile=True)
        except Exception as e:
            if not verbose:
                print(f, end=' ')
            print("ERROR:", e)
            failed += 1
            continue
        try:
            img = tif.asarray()
        except ValueError:
            try:
                img = tif[0].asarray()
            except Exception as e:
                if not verbose:
                    print(f, end=' ')
                print("ERROR:", e)
                failed += 1
                continue
        finally:
            tif.close()
        successful += 1
        if verbose:
            print("%s, %s %s, %s, %.0f ms" % (
                str(tif), str(img.shape), img.dtype, tif[0].compression,
                (time.time()-t0) * 1e3))
    if verbose:
        print("\nSuccessfully read %i of %i files in %.3f s\n" % (
            successful, successful+failed, time.time()-start))
class TIFF_SUBFILE_TYPES(object):
    def __getitem__(self, key):
        result = []
        if key & 1:
            result.append('reduced_image')
        if key & 2:
            result.append('page')
        if key & 4:
            result.append('mask')
        return tuple(result)
TIFF_PHOTOMETRICS = {
    0: 'miniswhite',
    1: 'minisblack',
    2: 'rgb',
    3: 'palette',
    4: 'mask',
    5: 'separated',
    6: 'cielab',
    7: 'icclab',
    8: 'itulab',
    32844: 'logl',
    32845: 'logluv',
}
TIFF_COMPESSIONS = {
    1: None,
    2: 'ccittrle',
    3: 'ccittfax3',
    4: 'ccittfax4',
    5: 'lzw',
    6: 'ojpeg',
    7: 'jpeg',
    8: 'adobe_deflate',
    9: 't85',
    10: 't43',
    32766: 'next',
    32771: 'ccittrlew',
    32773: 'packbits',
    32809: 'thunderscan',
    32895: 'it8ctpad',
    32896: 'it8lw',
    32897: 'it8mp',
    32898: 'it8bl',
    32908: 'pixarfilm',
    32909: 'pixarlog',
    32946: 'deflate',
    32947: 'dcs',
    34661: 'jbig',
    34676: 'sgilog',
    34677: 'sgilog24',
    34712: 'jp2000',
    34713: 'nef',
}
TIFF_DECOMPESSORS = {
    None: lambda x: x,
    'adobe_deflate': zlib.decompress,
    'deflate': zlib.decompress,
    'packbits': decodepackbits,
    'lzw': decodelzw,
}
TIFF_DATA_TYPES = {
    1: '1B',   # BYTE 8-bit unsigned integer.
    2: '1s',   # ASCII 8-bit byte that contains a 7-bit ASCII code;
               #   the last byte must be NULL (binary zero).
    3: '1H',   # SHORT 16-bit (2-byte) unsigned integer
    4: '1I',   # LONG 32-bit (4-byte) unsigned integer.
    5: '2I',   # RATIONAL Two LONGs: the first represents the numerator of
               #   a fraction; the second, the denominator.
    6: '1b',   # SBYTE An 8-bit signed (twos-complement) integer.
    7: '1B',   # UNDEFINED An 8-bit byte that may contain anything,
               #   depending on the definition of the field.
    8: '1h',   # SSHORT A 16-bit (2-byte) signed (twos-complement) integer.
    9: '1i',   # SLONG A 32-bit (4-byte) signed (twos-complement) integer.
    10: '2i',  # SRATIONAL Two SLONGs: the first represents the numerator
               #   of a fraction, the second the denominator.
    11: '1f',  # FLOAT Single precision (4-byte) IEEE format.
    12: '1d',  # DOUBLE Double precision (8-byte) IEEE format.
    13: '1I',  # IFD unsigned 4 byte IFD offset.
    #14: '',   # UNICODE
    #15: '',   # COMPLEX
    16: '1Q',  # LONG8 unsigned 8 byte integer (BigTiff)
    17: '1q',  # SLONG8 signed 8 byte integer (BigTiff)
    18: '1Q',  # IFD8 unsigned 8 byte IFD offset (BigTiff)
}
TIFF_SAMPLE_FORMATS = {
    1: 'uint',
    2: 'int',
    3: 'float',
    #4: 'void',
    #5: 'complex_int',
    6: 'complex',
}
TIFF_SAMPLE_DTYPES = {
    ('uint', 1): '?',  # bitmap
    ('uint', 2): 'B',
    ('uint', 3): 'B',
    ('uint', 4): 'B',
    ('uint', 5): 'B',
    ('uint', 6): 'B',
    ('uint', 7): 'B',
    ('uint', 8): 'B',
    ('uint', 9): 'H',
    ('uint', 10): 'H',
    ('uint', 11): 'H',
    ('uint', 12): 'H',
    ('uint', 13): 'H',
    ('uint', 14): 'H',
    ('uint', 15): 'H',
    ('uint', 16): 'H',
    ('uint', 17): 'I',
    ('uint', 18): 'I',
    ('uint', 19): 'I',
    ('uint', 20): 'I',
    ('uint', 21): 'I',
    ('uint', 22): 'I',
    ('uint', 23): 'I',
    ('uint', 24): 'I',
    ('uint', 25): 'I',
    ('uint', 26): 'I',
    ('uint', 27): 'I',
    ('uint', 28): 'I',
    ('uint', 29): 'I',
    ('uint', 30): 'I',
    ('uint', 31): 'I',
    ('uint', 32): 'I',
    ('uint', 64): 'Q',
    ('int', 8): 'b',
    ('int', 16): 'h',
    ('int', 32): 'i',
    ('int', 64): 'q',
    ('float', 16): 'e',
    ('float', 32): 'f',
    ('float', 64): 'd',
    ('complex', 64): 'F',
    ('complex', 128): 'D',
    ('uint', (5, 6, 5)): 'B',
}
TIFF_ORIENTATIONS = {
    1: 'top_left',
    2: 'top_right',
    3: 'bottom_right',
    4: 'bottom_left',
    5: 'left_top',
    6: 'right_top',
    7: 'right_bottom',
    8: 'left_bottom',
}
AXES_LABELS = {
    'X': 'width',
    'Y': 'height',
    'Z': 'depth',
    'S': 'sample',  # rgb(a)
    'P': 'plane',  # page
    'T': 'time',
    'C': 'channel',  # color, emission wavelength
    'A': 'angle',
    'F': 'phase',
    'R': 'tile',  # region, point
    'H': 'lifetime',  # histogram
    'E': 'lambda',  # excitation wavelength
    'L': 'exposure',  # lux
    'V': 'event',
    'Q': 'other',
}
AXES_LABELS.update(dict((v, k) for k, v in AXES_LABELS.items()))
# NIH Image PicHeader v1.63
NIH_IMAGE_HEADER = [
    ('fileid', 'a8'),
    ('nlines', 'i2'),
    ('pixelsperline', 'i2'),
    ('version', 'i2'),
    ('oldlutmode', 'i2'),
    ('oldncolors', 'i2'),
    ('colors', 'u1', (3, 32)),
    ('oldcolorstart', 'i2'),
    ('colorwidth', 'i2'),
    ('extracolors', 'u2', (6, 3)),
    ('nextracolors', 'i2'),
    ('foregroundindex', 'i2'),
    ('backgroundindex', 'i2'),
    ('xscale', 'f8'),
    ('_x0', 'i2'),
    ('_x1', 'i2'),
    ('units_t', 'i2'),
    ('p1', [('x', 'i2'), ('y', 'i2')]),
    ('p2', [('x', 'i2'), ('y', 'i2')]),
    ('curvefit_t', 'i2'),
    ('ncoefficients', 'i2'),
    ('coeff', 'f8', 6),
    ('_um_len', 'u1'),
    ('um', 'a15'),
    ('_x2', 'u1'),
    ('binarypic', 'b1'),
    ('slicestart', 'i2'),
    ('sliceend', 'i2'),
    ('scalemagnification', 'f4'),
    ('nslices', 'i2'),
    ('slicespacing', 'f4'),
    ('currentslice', 'i2'),
    ('frameinterval', 'f4'),
    ('pixelaspectratio', 'f4'),
    ('colorstart', 'i2'),
    ('colorend', 'i2'),
    ('ncolors', 'i2'),
    ('fill1', '3u2'),
    ('fill2', '3u2'),
    ('colortable_t', 'u1'),
    ('lutmode_t', 'u1'),
    ('invertedtable', 'b1'),
    ('zeroclip', 'b1'),
    ('_xunit_len', 'u1'),
    ('xunit', 'a11'),
    ('stacktype_t', 'i2'),
]
#NIH_COLORTABLE_TYPE = (
#    'CustomTable', 'AppleDefault', 'Pseudo20', 'Pseudo32', 'Rainbow',
#    'Fire1', 'Fire2', 'Ice', 'Grays', 'Spectrum')
#NIH_LUTMODE_TYPE = (
#    'PseudoColor', 'OldAppleDefault', 'OldSpectrum', 'GrayScale',
#    'ColorLut', 'CustomGrayscale')
#NIH_CURVEFIT_TYPE = (
#    'StraightLine', 'Poly2', 'Poly3', 'Poly4', 'Poly5', 'ExpoFit',
#    'PowerFit', 'LogFit', 'RodbardFit', 'SpareFit1', 'Uncalibrated',
#    'UncalibratedOD')
#NIH_UNITS_TYPE = (
#    'Nanometers', 'Micrometers', 'Millimeters', 'Centimeters', 'Meters',
#    'Kilometers', 'Inches', 'Feet', 'Miles', 'Pixels', 'OtherUnits')
#NIH_STACKTYPE_TYPE = (
#    'VolumeStack', 'RGBStack', 'MovieStack', 'HSVStack')
# MetaMorph STK tags
MM_TAG_IDS = {
    0: 'auto_scale',
    1: 'min_scale',
    2: 'max_scale',
    3: 'spatial_calibration',
    #4: 'x_calibration',
    #5: 'y_calibration',
    #6: 'calibration_units',
    #7: 'name',
    8: 'thresh_state',
    9: 'thresh_state_red',
    11: 'thresh_state_green',
    12: 'thresh_state_blue',
    13: 'thresh_state_lo',
    14: 'thresh_state_hi',
    15: 'zoom',
    #16: 'create_time',
    #17: 'last_saved_time',
    18: 'current_buffer',
    19: 'gray_fit',
    20: 'gray_point_count',
    #21: 'gray_x',
    #22: 'gray_y',
    #23: 'gray_min',
    #24: 'gray_max',
    #25: 'gray_unit_name',
    26: 'standard_lut',
    27: 'wavelength',
    #28: 'stage_position',
    #29: 'camera_chip_offset',
    #30: 'overlay_mask',
    #31: 'overlay_compress',
    #32: 'overlay',
    #33: 'special_overlay_mask',
    #34: 'special_overlay_compress',
    #35: 'special_overlay',
    36: 'image_property',
    #37: 'stage_label',
    #38: 'autoscale_lo_info',
    #39: 'autoscale_hi_info',
    #40: 'absolute_z',
    #41: 'absolute_z_valid',
    #42: 'gamma',
    #43: 'gamma_red',
    #44: 'gamma_green',
    #45: 'gamma_blue',
    #46: 'camera_bin',
    47: 'new_lut',
    #48: 'image_property_ex',
    49: 'plane_property',
    #50: 'user_lut_table',
    51: 'red_autoscale_info',
    #52: 'red_autoscale_lo_info',
    #53: 'red_autoscale_hi_info',
    54: 'red_minscale_info',
    55: 'red_maxscale_info',
    56: 'green_autoscale_info',
    #57: 'green_autoscale_lo_info',
    #58: 'green_autoscale_hi_info',
    59: 'green_minscale_info',
    60: 'green_maxscale_info',
    61: 'blue_autoscale_info',
    #62: 'blue_autoscale_lo_info',
    #63: 'blue_autoscale_hi_info',
    64: 'blue_min_scale_info',
    65: 'blue_max_scale_info',
    #66: 'overlay_plane_color'
}
# Olympus FluoView
MM_DIMENSION = [
    ('name', 'a16'),
    ('size', 'i4'),
    ('origin', 'f8'),
    ('resolution', 'f8'),
    ('unit', 'a64'),
]
MM_HEADER = [
    ('header_flag', 'i2'),
    ('image_type', 'u1'),
    ('image_name', 'a257'),
    ('offset_data', 'u4'),
    ('palette_size', 'i4'),
    ('offset_palette0', 'u4'),
    ('offset_palette1', 'u4'),
    ('comment_size', 'i4'),
    ('offset_comment', 'u4'),
    ('dimensions', MM_DIMENSION, 10),
    ('offset_position', 'u4'),
    ('map_type', 'i2'),
    ('map_min', 'f8'),
    ('map_max', 'f8'),
    ('min_value', 'f8'),
    ('max_value', 'f8'),
    ('offset_map', 'u4'),
    ('gamma', 'f8'),
    ('offset', 'f8'),
    ('gray_channel', MM_DIMENSION),
    ('offset_thumbnail', 'u4'),
    ('voice_field', 'i4'),
    ('offset_voice_field', 'u4'),
]
# Carl Zeiss LSM
CZ_LSM_INFO = [
    ('magic_number', 'i4'),
    ('structure_size', 'i4'),
    ('dimension_x', 'i4'),
    ('dimension_y', 'i4'),
    ('dimension_z', 'i4'),
    ('dimension_channels', 'i4'),
    ('dimension_time', 'i4'),
    ('dimension_data_type', 'i4'),
    ('thumbnail_x', 'i4'),
    ('thumbnail_y', 'i4'),
    ('voxel_size_x', 'f8'),
    ('voxel_size_y', 'f8'),
    ('voxel_size_z', 'f8'),
    ('origin_x', 'f8'),
    ('origin_y', 'f8'),
    ('origin_z', 'f8'),
    ('scan_type', 'u2'),
    ('spectral_scan', 'u2'),
    ('data_type', 'u4'),
    ('offset_vector_overlay', 'u4'),
    ('offset_input_lut', 'u4'),
    ('offset_output_lut', 'u4'),
    ('offset_channel_colors', 'u4'),
    ('time_interval', 'f8'),
    ('offset_channel_data_types', 'u4'),
    ('offset_scan_information', 'u4'),
    ('offset_ks_data', 'u4'),
    ('offset_time_stamps', 'u4'),
    ('offset_event_list', 'u4'),
    ('offset_roi', 'u4'),
    ('offset_bleach_roi', 'u4'),
    ('offset_next_recording', 'u4'),
    ('display_aspect_x', 'f8'),
    ('display_aspect_y', 'f8'),
    ('display_aspect_z', 'f8'),
    ('display_aspect_time', 'f8'),
    ('offset_mean_of_roi_overlay', 'u4'),
    ('offset_topo_isoline_overlay', 'u4'),
    ('offset_topo_profile_overlay', 'u4'),
    ('offset_linescan_overlay', 'u4'),
    ('offset_toolbar_flags', 'u4'),
]
# Import functions for LSM_INFO sub-records
CZ_LSM_INFO_READERS = {
    'scan_information': read_cz_lsm_scan_info,
    'time_stamps': read_cz_lsm_time_stamps,
    'event_list': read_cz_lsm_event_list,
}
# Map cz_lsm_info.scan_type to dimension order
CZ_SCAN_TYPES = {
    0: 'XYZCT',  # x-y-z scan
    1: 'XYZCT',  # z scan (x-z plane)
    2: 'XYZCT',  # line scan
    3: 'XYTCZ',  # time series x-y
    4: 'XYZTC',  # time series x-z
    5: 'XYTCZ',  # time series 'Mean of ROIs'
    6: 'XYZTC',  # time series x-y-z
    7: 'XYCTZ',  # spline scan
    8: 'XYCZT',  # spline scan x-z
    9: 'XYTCZ',  # time series spline plane x-z
    10: 'XYZCT',  # point mode
}
# Map dimension codes to cz_lsm_info attribute
CZ_DIMENSIONS = {
    'X': 'dimension_x',
    'Y': 'dimension_y',
    'Z': 'dimension_z',
    'C': 'dimension_channels',
    'T': 'dimension_time',
}
# Descriptions of cz_lsm_info.data_type
CZ_DATA_TYPES = {
    0: 'varying data types',
    2: '12 bit unsigned integer',
    5: '32 bit float',
}
CZ_LSM_SCAN_INFO_ARRAYS = {
    0x20000000: "tracks",
    0x30000000: "lasers",
    0x60000000: "detectionchannels",
    0x80000000: "illuminationchannels",
    0xa0000000: "beamsplitters",
    0xc0000000: "datachannels",
    0x13000000: "markers",
    0x11000000: "timers",
}
CZ_LSM_SCAN_INFO_STRUCTS = {
    0x40000000: "tracks",
    0x50000000: "lasers",
    0x70000000: "detectionchannels",
    0x90000000: "illuminationchannels",
    0xb0000000: "beamsplitters",
    0xd0000000: "datachannels",
    0x14000000: "markers",
    0x12000000: "timers",
}
CZ_LSM_SCAN_INFO_ATTRIBUTES = {
    0x10000001: "name",
    0x10000002: "description",
    0x10000003: "notes",
    0x10000004: "objective",
    0x10000005: "processing_summary",
    0x10000006: "special_scan_mode",
    0x10000007: "oledb_recording_scan_type",
    0x10000008: "oledb_recording_scan_mode",
    0x10000009: "number_of_stacks",
    0x1000000a: "lines_per_plane",
    0x1000000b: "samples_per_line",
    0x1000000c: "planes_per_volume",
    0x1000000d: "images_width",
    0x1000000e: "images_height",
    0x1000000f: "images_number_planes",
    0x10000010: "images_number_stacks",
    0x10000011: "images_number_channels",
    0x10000012: "linscan_xy_size",
    0x10000013: "scan_direction",
    0x10000014: "time_series",
    0x10000015: "original_scan_data",
    0x10000016: "zoom_x",
    0x10000017: "zoom_y",
    0x10000018: "zoom_z",
    0x10000019: "sample_0x",
    0x1000001a: "sample_0y",
    0x1000001b: "sample_0z",
    0x1000001c: "sample_spacing",
    0x1000001d: "line_spacing",
    0x1000001e: "plane_spacing",
    0x1000001f: "plane_width",
    0x10000020: "plane_height",
    0x10000021: "volume_depth",
    0x10000023: "nutation",
    0x10000034: "rotation",
    0x10000035: "precession",
    0x10000036: "sample_0time",
    0x10000037: "start_scan_trigger_in",
    0x10000038: "start_scan_trigger_out",
    0x10000039: "start_scan_event",
    0x10000040: "start_scan_time",
    0x10000041: "stop_scan_trigger_in",
    0x10000042: "stop_scan_trigger_out",
    0x10000043: "stop_scan_event",
    0x10000044: "stop_scan_time",
    0x10000045: "use_rois",
    0x10000046: "use_reduced_memory_rois",
    0x10000047: "user",
    0x10000048: "use_bccorrection",
    0x10000049: "position_bccorrection1",
    0x10000050: "position_bccorrection2",
    0x10000051: "interpolation_y",
    0x10000052: "camera_binning",
    0x10000053: "camera_supersampling",
    0x10000054: "camera_frame_width",
    0x10000055: "camera_frame_height",
    0x10000056: "camera_offset_x",
    0x10000057: "camera_offset_y",
    # lasers
    0x50000001: "name",
    0x50000002: "acquire",
    0x50000003: "power",
    # tracks
    0x40000001: "multiplex_type",
    0x40000002: "multiplex_order",
    0x40000003: "sampling_mode",
    0x40000004: "sampling_method",
    0x40000005: "sampling_number",
    0x40000006: "acquire",
    0x40000007: "sample_observation_time",
    0x4000000b: "time_between_stacks",
    0x4000000c: "name",
    0x4000000d: "collimator1_name",
    0x4000000e: "collimator1_position",
    0x4000000f: "collimator2_name",
    0x40000010: "collimator2_position",
    0x40000011: "is_bleach_track",
    0x40000012: "is_bleach_after_scan_number",
    0x40000013: "bleach_scan_number",
    0x40000014: "trigger_in",
    0x40000015: "trigger_out",
    0x40000016: "is_ratio_track",
    0x40000017: "bleach_count",
    0x40000018: "spi_center_wavelength",
    0x40000019: "pixel_time",
    0x40000021: "condensor_frontlens",
    0x40000023: "field_stop_value",
    0x40000024: "id_condensor_aperture",
    0x40000025: "condensor_aperture",
    0x40000026: "id_condensor_revolver",
    0x40000027: "condensor_filter",
    0x40000028: "id_transmission_filter1",
    0x40000029: "id_transmission1",
    0x40000030: "id_transmission_filter2",
    0x40000031: "id_transmission2",
    0x40000032: "repeat_bleach",
    0x40000033: "enable_spot_bleach_pos",
    0x40000034: "spot_bleach_posx",
    0x40000035: "spot_bleach_posy",
    0x40000036: "spot_bleach_posz",
    0x40000037: "id_tubelens",
    0x40000038: "id_tubelens_position",
    0x40000039: "transmitted_light",
    0x4000003a: "reflected_light",
    0x4000003b: "simultan_grab_and_bleach",
    0x4000003c: "bleach_pixel_time",
    # detection_channels
    0x70000001: "integration_mode",
    0x70000002: "special_mode",
    0x70000003: "detector_gain_first",
    0x70000004: "detector_gain_last",
    0x70000005: "amplifier_gain_first",
    0x70000006: "amplifier_gain_last",
    0x70000007: "amplifier_offs_first",
    0x70000008: "amplifier_offs_last",
    0x70000009: "pinhole_diameter",
    0x7000000a: "counting_trigger",
    0x7000000b: "acquire",
    0x7000000c: "point_detector_name",
    0x7000000d: "amplifier_name",
    0x7000000e: "pinhole_name",
    0x7000000f: "filter_set_name",
    0x70000010: "filter_name",
    0x70000013: "integrator_name",
    0x70000014: "detection_channel_name",
    0x70000015: "detection_detector_gain_bc1",
    0x70000016: "detection_detector_gain_bc2",
    0x70000017: "detection_amplifier_gain_bc1",
    0x70000018: "detection_amplifier_gain_bc2",
    0x70000019: "detection_amplifier_offset_bc1",
    0x70000020: "detection_amplifier_offset_bc2",
    0x70000021: "detection_spectral_scan_channels",
    0x70000022: "detection_spi_wavelength_start",
    0x70000023: "detection_spi_wavelength_stop",
    0x70000026: "detection_dye_name",
    0x70000027: "detection_dye_folder",
    # illumination_channels
    0x90000001: "name",
    0x90000002: "power",
    0x90000003: "wavelength",
    0x90000004: "aquire",
    0x90000005: "detchannel_name",
    0x90000006: "power_bc1",
    0x90000007: "power_bc2",
    # beam_splitters
    0xb0000001: "filter_set",
    0xb0000002: "filter",
    0xb0000003: "name",
    # data_channels
    0xd0000001: "name",
    0xd0000003: "acquire",
    0xd0000004: "color",
    0xd0000005: "sample_type",
    0xd0000006: "bits_per_sample",
    0xd0000007: "ratio_type",
    0xd0000008: "ratio_track1",
    0xd0000009: "ratio_track2",
    0xd000000a: "ratio_channel1",
    0xd000000b: "ratio_channel2",
    0xd000000c: "ratio_const1",
    0xd000000d: "ratio_const2",
    0xd000000e: "ratio_const3",
    0xd000000f: "ratio_const4",
    0xd0000010: "ratio_const5",
    0xd0000011: "ratio_const6",
    0xd0000012: "ratio_first_images1",
    0xd0000013: "ratio_first_images2",
    0xd0000014: "dye_name",
    0xd0000015: "dye_folder",
    0xd0000016: "spectrum",
    0xd0000017: "acquire",
    # markers
    0x14000001: "name",
    0x14000002: "description",
    0x14000003: "trigger_in",
    0x14000004: "trigger_out",
    # timers
    0x12000001: "name",
    0x12000002: "description",
    0x12000003: "interval",
    0x12000004: "trigger_in",
    0x12000005: "trigger_out",
    0x12000006: "activation_time",
    0x12000007: "activation_number",
}
# Map TIFF tag code to attribute name, default value, type, count, validator
TIFF_TAGS = {
    254: ('new_subfile_type', 0, 4, 1, TIFF_SUBFILE_TYPES()),
    255: ('subfile_type', None, 3, 1,
          {0: 'undefined', 1: 'image', 2: 'reduced_image', 3: 'page'}),
    256: ('image_width', None, 4, 1, None),
    257: ('image_length', None, 4, 1, None),
    258: ('bits_per_sample', 1, 3, 1, None),
    259: ('compression', 1, 3, 1, TIFF_COMPESSIONS),
    262: ('photometric', None, 3, 1, TIFF_PHOTOMETRICS),
    266: ('fill_order', 1, 3, 1, {1: 'msb2lsb', 2: 'lsb2msb'}),
    269: ('document_name', None, 2, None, None),
    270: ('image_description', None, 2, None, None),
    271: ('make', None, 2, None, None),
    272: ('model', None, 2, None, None),
    273: ('strip_offsets', None, 4, None, None),
    274: ('orientation', 1, 3, 1, TIFF_ORIENTATIONS),
    277: ('samples_per_pixel', 1, 3, 1, None),
    278: ('rows_per_strip', 2**32-1, 4, 1, None),
    279: ('strip_byte_counts', None, 4, None, None),
    280: ('min_sample_value', None, 3, None, None),
    281: ('max_sample_value', None, 3, None, None),  # 2**bits_per_sample
    282: ('x_resolution', None, 5, 1, None),
    283: ('y_resolution', None, 5, 1, None),
    284: ('planar_configuration', 1, 3, 1, {1: 'contig', 2: 'separate'}),
    285: ('page_name', None, 2, None, None),
    286: ('x_position', None, 5, 1, None),
    287: ('y_position', None, 5, 1, None),
    296: ('resolution_unit', 2, 4, 1, {1: 'none', 2: 'inch', 3: 'centimeter'}),
    297: ('page_number', None, 3, 2, None),
    305: ('software', None, 2, None, None),
    306: ('datetime', None, 2, None, None),
    315: ('artist', None, 2, None, None),
    316: ('host_computer', None, 2, None, None),
    317: ('predictor', 1, 3, 1, {1: None, 2: 'horizontal'}),
    320: ('color_map', None, 3, None, None),
    322: ('tile_width', None, 4, 1, None),
    323: ('tile_length', None, 4, 1, None),
    324: ('tile_offsets', None, 4, None, None),
    325: ('tile_byte_counts', None, 4, None, None),
    338: ('extra_samples', None, 3, None,
          {0: 'unspecified', 1: 'assocalpha', 2: 'unassalpha'}),
    339: ('sample_format', 1, 3, 1, TIFF_SAMPLE_FORMATS),
    347: ('jpeg_tables', None, None, None, None),
    530: ('ycbcr_subsampling', 1, 3, 2, None),
    531: ('ycbcr_positioning', 1, 3, 1, None),
    32997: ('image_depth', None, 4, 1, None),
    32998: ('tile_depth', None, 4, 1, None),
    33432: ('copyright', None, 1, None, None),
    33445: ('md_file_tag', None, 4, 1, None),
    33446: ('md_scale_pixel', None, 5, 1, None),
    33447: ('md_color_table', None, 3, None, None),
    33448: ('md_lab_name', None, 2, None, None),
    33449: ('md_sample_info', None, 2, None, None),
    33450: ('md_prep_date', None, 2, None, None),
    33451: ('md_prep_time', None, 2, None, None),
    33452: ('md_file_units', None, 2, None, None),
    33550: ('model_pixel_scale', None, 12, 3, None),
    33922: ('model_tie_point', None, 12, None, None),
    37510: ('user_comment', None, None, None, None),
    34665: ('exif_ifd', None, None, 1, None),
    34735: ('geo_key_directory', None, 3, None, None),
    34736: ('geo_double_params', None, 12, None, None),
    34737: ('geo_ascii_params', None, 2, None, None),
    34853: ('gps_ifd', None, None, 1, None),
    42112: ('gdal_metadata', None, 2, None, None),
    42113: ('gdal_nodata', None, 2, None, None),
    50838: ('imagej_byte_counts', None, None, None, None),
    50289: ('mc_xy_position', None, 12, 2, None),
    50290: ('mc_z_position', None, 12, 1, None),
    50291: ('mc_xy_calibration', None, 12, 3, None),
    50292: ('mc_lens_lem_na_n', None, 12, 3, None),
    50293: ('mc_channel_name', None, 1, None, None),
    50294: ('mc_ex_wavelength', None, 12, 1, None),
    50295: ('mc_time_stamp', None, 12, 1, None),
    65200: ('flex_xml', None, 2, None, None),
    # code: (attribute name, default value, type, count, validator)
}
# Map custom TIFF tag codes to attribute names and import functions
CUSTOM_TAGS = {
    700: ('xmp', read_bytes),
    34377: ('photoshop', read_numpy),
    33723: ('iptc', read_bytes),
    34675: ('icc_profile', read_numpy),
    33628: ('mm_uic1', read_mm_uic1),
    33629: ('mm_uic2', read_mm_uic2),
    33630: ('mm_uic3', read_mm_uic3),
    33631: ('mm_uic4', read_mm_uic4),
    34361: ('mm_header', read_mm_header),
    34362: ('mm_stamp', read_mm_stamp),
    34386: ('mm_user_block', read_bytes),
    34412: ('cz_lsm_info', read_cz_lsm_info),
    43314: ('nih_image_header', read_nih_image_header),
    # 40001: ('mc_ipwinscal', read_bytes),
    40100: ('mc_id_old', read_bytes),
    50288: ('mc_id', read_bytes),
    50296: ('mc_frame_properties', read_bytes),
    50839: ('imagej_metadata', read_bytes),
    51123: ('micromanager_metadata', read_json),
}
# Max line length of printed output
PRINT_LINE_LEN = 79
def imshow(data, title=None, vmin=0, vmax=None, cmap=None,
           bitspersample=None, photometric='rgb', interpolation='nearest',
           dpi=96, figure=None, subplot=111, maxdim=8192, **kwargs):
    """Plot n-dimensional images using matplotlib.pyplot.
    Return figure, subplot and plot axis.
    Requires pyplot already imported ``from matplotlib import pyplot``.
    Parameters
    ----------
    bitspersample : int or None
        Number of bits per channel in integer RGB images.
    photometric : {'miniswhite', 'minisblack', 'rgb', or 'palette'}
        The color space of the image data.
    title : str
        Window and subplot title.
    figure : matplotlib.figure.Figure (optional).
        Matplotlib to use for plotting.
    subplot : int
        A matplotlib.pyplot.subplot axis.
    maxdim : int
        maximum image size in any dimension.
    kwargs : optional
        Arguments for matplotlib.pyplot.imshow.
    """
    #if photometric not in ('miniswhite', 'minisblack', 'rgb', 'palette'):
    #    raise ValueError("Can't handle %s photometrics" % photometric)
    # TODO: handle photometric == 'separated' (CMYK)
    isrgb = photometric in ('rgb', 'palette')
    data = numpy.atleast_2d(data.squeeze())
    data = data[(slice(0, maxdim), ) * len(data.shape)]
    dims = data.ndim
    if dims < 2:
        raise ValueError("not an image")
    elif dims == 2:
        dims = 0
        isrgb = False
    else:
        if isrgb and data.shape[-3] in (3, 4):
            data = numpy.swapaxes(data, -3, -2)
            data = numpy.swapaxes(data, -2, -1)
        elif not isrgb and data.shape[-1] in (3, 4):
            data = numpy.swapaxes(data, -3, -1)
            data = numpy.swapaxes(data, -2, -1)
        isrgb = isrgb and data.shape[-1] in (3, 4)
        dims -= 3 if isrgb else 2
    if photometric == 'palette' and isrgb:
        datamax = data.max()
        if datamax > 255:
            data >>= 8  # possible precision loss
        data = data.astype('B')
    elif data.dtype.kind in 'ui':
        if not (isrgb and data.dtype.itemsize <= 1) or bitspersample is None:
            try:
                bitspersample = int(math.ceil(math.log(data.max(), 2)))
            except Exception:
                bitspersample = data.dtype.itemsize * 8
        elif not isinstance(bitspersample, int):
            # bitspersample can be tuple, e.g. (5, 6, 5)
            bitspersample = data.dtype.itemsize * 8
        datamax = 2**bitspersample
        if isrgb:
            if bitspersample < 8:
                data <<= 8 - bitspersample
            elif bitspersample > 8:
                data >>= bitspersample - 8  # precision loss
            data = data.astype('B')
    elif data.dtype.kind == 'f':
        datamax = data.max()
        if isrgb and datamax > 1.0:
            if data.dtype.char == 'd':
                data = data.astype('f')
            data /= datamax
    elif data.dtype.kind == 'b':
        datamax = 1
    elif data.dtype.kind == 'c':
        raise NotImplementedError("complex type")  # TODO: handle complex types
    if not isrgb:
        if vmax is None:
            vmax = datamax
        if vmin is None:
            if data.dtype.kind == 'i':
                dtmin = numpy.iinfo(data.dtype).min
                vmin = numpy.min(data)
                if vmin == dtmin:
                    vmin = numpy.min(data > dtmin)
            if data.dtype.kind == 'f':
                dtmin = numpy.finfo(data.dtype).min
                vmin = numpy.min(data)
                if vmin == dtmin:
                    vmin = numpy.min(data > dtmin)
            else:
                vmin = 0
    pyplot = sys.modules['matplotlib.pyplot']
    if figure is None:
        pyplot.rc('font', family='sans-serif', weight='normal', size=8)
        figure = pyplot.figure(dpi=dpi, figsize=(10.3, 6.3), frameon=True,
                               facecolor='1.0', edgecolor='w')
        try:
            figure.canvas.manager.window.title(title)
        except Exception:
            pass
        pyplot.subplots_adjust(bottom=0.03*(dims+2), top=0.9,
                               left=0.1, right=0.95, hspace=0.05, wspace=0.0)
    subplot = pyplot.subplot(subplot)
    if title:
        try:
            title = unicode(title, 'Windows-1252')
        except TypeError:
            pass
        pyplot.title(title, size=11)
    if cmap is None:
        if data.dtype.kind in 'ub' and vmin == 0:
            cmap = 'gray'
        else:
            cmap = 'coolwarm'
        if photometric == 'miniswhite':
            cmap += '_r'
    image = pyplot.imshow(data[(0, ) * dims].squeeze(), vmin=vmin, vmax=vmax,
                          cmap=cmap, interpolation=interpolation, **kwargs)
    if not isrgb:
        pyplot.colorbar()  # panchor=(0.55, 0.5), fraction=0.05
    def format_coord(x, y):
        # callback function to format coordinate display in toolbar
        x = int(x + 0.5)
        y = int(y + 0.5)
        try:
            if dims:
                return "%s @ %s [%4i, %4i]" % (cur_ax_dat[1][y, x],
                                               current, x, y)
            else:
                return "%s @ [%4i, %4i]" % (data[y, x], x, y)
        except IndexError:
            return ""
    pyplot.gca().format_coord = format_coord
    if dims:
        current = list((0, ) * dims)
        cur_ax_dat = [0, data[tuple(current)].squeeze()]
        sliders = [pyplot.Slider(
            pyplot.axes([0.125, 0.03*(axis+1), 0.725, 0.025]),
            'Dimension %i' % axis, 0, data.shape[axis]-1, 0, facecolor='0.5',
            valfmt='%%.0f [%i]' % data.shape[axis]) for axis in range(dims)]
        for slider in sliders:
            slider.drawon = False
        def set_image(current, sliders=sliders, data=data):
            # change image and redraw canvas
            cur_ax_dat[1] = data[tuple(current)].squeeze()
            image.set_data(cur_ax_dat[1])
            for ctrl, index in zip(sliders, current):
                ctrl.eventson = False
                ctrl.set_val(index)
                ctrl.eventson = True
            figure.canvas.draw()
        def on_changed(index, axis, data=data, current=current):
            # callback function for slider change event
            index = int(round(index))
            cur_ax_dat[0] = axis
            if index == current[axis]:
                return
            if index >= data.shape[axis]:
                index = 0
            elif index < 0:
                index = data.shape[axis] - 1
            current[axis] = index
            set_image(current)
        def on_keypressed(event, data=data, current=current):
            # callback function for key press event
            key = event.key
            axis = cur_ax_dat[0]
            if str(key) in '0123456789':
                on_changed(key, axis)
            elif key == 'right':
                on_changed(current[axis] + 1, axis)
            elif key == 'left':
                on_changed(current[axis] - 1, axis)
            elif key == 'up':
                cur_ax_dat[0] = 0 if axis == len(data.shape)-1 else axis + 1
            elif key == 'down':
                cur_ax_dat[0] = len(data.shape)-1 if axis == 0 else axis - 1
            elif key == 'end':
                on_changed(data.shape[axis] - 1, axis)
            elif key == 'home':
                on_changed(0, axis)
        figure.canvas.mpl_connect('key_press_event', on_keypressed)
        for axis, ctrl in enumerate(sliders):
            ctrl.on_changed(lambda k, a=axis: on_changed(k, a))
    return figure, subplot, image
def _app_show():
    """Block the GUI. For use as skimage plugin."""
    pyplot = sys.modules['matplotlib.pyplot']
    pyplot.show()
def main(argv=None):
    """Command line usage main function."""
    if float(sys.version[0:3]) < 2.6:
        print("This script requires Python version 2.6 or better.")
        print("This is Python version %s" % sys.version)
        return 0
    if argv is None:
        argv = sys.argv
    import optparse
    search_doc = lambda r, d: re.search(r, __doc__).group(1) if __doc__ else d
    parser = optparse.OptionParser(
        usage="usage: %prog [options] path",
        description=search_doc("^([^\n]+)", ""),
        version="%%prog %s" % search_doc(":Version: (.*)", "Unknown"))
    opt = parser.add_option
    opt('-p', '--page', dest='page', type='int', default=-1,
        help="display single page")
    opt('-s', '--series', dest='series', type='int', default=-1,
        help="display series of pages of same shape")
    opt('--nomultifile', dest='nomultifile', action='store_true',
        default=False, help="don't read OME series from multiple files")
    opt('--noplot', dest='noplot', action='store_true', default=False,
        help="don't display images")
    opt('--interpol', dest='interpol', metavar='INTERPOL', default='bilinear',
        help="image interpolation method")
    opt('--dpi', dest='dpi', type='int', default=96,
        help="set plot resolution")
    opt('--debug', dest='debug', action='store_true', default=False,
        help="raise exception on failures")
    opt('--test', dest='test', action='store_true', default=False,
        help="try read all images in path")
    opt('--doctest', dest='doctest', action='store_true', default=False,
        help="runs the internal tests")
    opt('-v', '--verbose', dest='verbose', action='store_true', default=True)
    opt('-q', '--quiet', dest='verbose', action='store_false')
    settings, path = parser.parse_args()
    path = ' '.join(path)
    if settings.doctest:
        import doctest
        doctest.testmod()
        return 0
    if not path:
        parser.error("No file specified")
    if settings.test:
        test_tifffile(path, settings.verbose)
        return 0
    if any(i in path for i in '?*'):
        path = glob.glob(path)
        if not path:
            print('no files match the pattern')
            return 0
        # TODO: handle image sequences
        #if len(path) == 1:
        path = path[0]
    print("Reading file structure...", end=' ')
    start = time.time()
    try:
        tif = TiffFile(path, multifile=not settings.nomultifile)
    except Exception as e:
        if settings.debug:
            raise
        else:
            print("\n", e)
            sys.exit(0)
    print("%.3f ms" % ((time.time()-start) * 1e3))
    if tif.is_ome:
        settings.norgb = True
    images = [(None, tif[0 if settings.page < 0 else settings.page])]
    if not settings.noplot:
        print("Reading image data... ", end=' ')
        def notnone(x):
            return next(i for i in x if i is not None)
        start = time.time()
        try:
            if settings.page >= 0:
                images = [(tif.asarray(key=settings.page),
                           tif[settings.page])]
            elif settings.series >= 0:
                images = [(tif.asarray(series=settings.series),
                           notnone(tif.series[settings.series].pages))]
            else:
                images = []
                for i, s in enumerate(tif.series):
                    try:
                        images.append(
                            (tif.asarray(series=i), notnone(s.pages)))
                    except ValueError as e:
                        images.append((None, notnone(s.pages)))
                        if settings.debug:
                            raise
                        else:
                            print("\n* series %i failed: %s... " % (i, e),
                                  end='')
            print("%.3f ms" % ((time.time()-start) * 1e3))
        except Exception as e:
            if settings.debug:
                raise
            else:
                print(e)
    tif.close()
    print("\nTIFF file:", tif)
    print()
    for i, s in enumerate(tif.series):
        print ("Series %i" % i)
        print(s)
        print()
    for i, page in images:
        print(page)
        print(page.tags)
        if page.is_palette:
            print("\nColor Map:", page.color_map.shape, page.color_map.dtype)
        for attr in ('cz_lsm_info', 'cz_lsm_scan_information', 'mm_uic_tags',
                     'mm_header', 'imagej_tags', 'micromanager_metadata',
                     'nih_image_header'):
            if hasattr(page, attr):
                print("", attr.upper(), Record(getattr(page, attr)), sep="\n")
        print()
        if page.is_micromanager:
            print('MICROMANAGER_FILE_METADATA')
            print(Record(tif.micromanager_metadata))
    if images and not settings.noplot:
        try:
            import matplotlib
            matplotlib.use('TkAgg')
            from matplotlib import pyplot
        except ImportError as e:
            warnings.warn("failed to import matplotlib.\n%s" % e)
        else:
            for img, page in images:
                if img is None:
                    continue
                vmin, vmax = None, None
                if 'gdal_nodata' in page.tags:
                    vmin = numpy.min(img[img > float(page.gdal_nodata)])
                if page.is_stk:
                    try:
                        vmin = page.mm_uic_tags['min_scale']
                        vmax = page.mm_uic_tags['max_scale']
                    except KeyError:
                        pass
                    else:
                        if vmax <= vmin:
                            vmin, vmax = None, None
                title = "%s\n %s" % (str(tif), str(page))
                imshow(img, title=title, vmin=vmin, vmax=vmax,
                       bitspersample=page.bits_per_sample,
                       photometric=page.photometric,
                       interpolation=settings.interpol,
                       dpi=settings.dpi)
            pyplot.show()
TIFFfile = TiffFile  # backwards compatibility
if sys.version_info[0] > 2:
    basestring = str, bytes
    unicode = str
if __name__ == "__main__":
    sys.exit(main())