This file is indexed.

/usr/share/pyshared/Symbolic/__init__.py is in python-swiginac 1.5.1.1-1build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
"""High--level symbolic manipulation, built on top of swiginac."""

__author__      = "Ola Skavhaug (skavhaug@simula.no)"
__date__        = "2003-12-01 -- 2005-11-16"
__copyright__   = "Copyright (c) 2003, 2004, 2005 Ola Skavhaug"
__license__     = "GNU GPL Version 2"

import Numeric
import swiginac as _g
_rel = _g.relational

def curl2d(obj):
    """Create a 2D curl from a scalar Expression"""
    return Vector([-obj.diff(obj.spatial_symbs[1], 1), obj.diff(obj.spatial_symbs[0], 1)], obj.spatial_symbs)

def div(obj):
    """Return the divergence of the argument expression"""
    return obj.div()

def grad(obj):
    """ Return the gradient of the argument expression"""
    return obj.grad()

def laplace(obj):
    """Return the Laplace of the argument expression"""
    return obj.laplace()

class Symbolic(object):
    """ Base class for Symbol, Expr, Vector, and Matrix."""
    # Common variables
    data = None
    string_type = "python"

    # Common methods
    def __str__(self):
        return str(self.data)
 
    def setOutput(self, type):
        self.data.set_print_context(type)

class Expr(Symbolic):
    """This class works a bit like GiNaC::ex. The actual data is stored in
    self.data, and the rest of this class provides various methods for doing
    symbolic manipulation."""

    def __init__(self, data = _g.numeric(0), symbs = None, time = None): 
        self.data = _toex(data)
        self.spatial_symbs = symbs
        self.time = time
        self._string = None
        self._lhs = []

    def __call__(self):
        return self.data

    def __repr__(self):
        return "Expr("+str(self)+")"

    def initEval(self, symbol_point):
        """In order to evaluate a GiNaC object, we need som additinal data
        structures. This method adds this."""

        self._lhs = map(lambda s: s.data, symbol_point)

    def __add__(self, other):
        return Expr(self.data + _toex(other), symbs=self.spatial_symbs, time=self.time)

    def __sub__(self, other):
        return Expr(self.data - _toex(other), symbs=self.spatial_symbs, time=self.time)

    def __mul__(self, other):
        if isinstance(other, Vector):
            return Vector([self.data*x for x in other.data], symbs=self.spatial_symbs, time=self.time)
        return Expr(self.data * _toex(other), symbs=self.spatial_symbs, time=self.time)

    def __div__(self, other):
        return Expr(self.data / _toex(other), symbs=self.spatial_symbs, time=self.time)

    def __radd__(self, other):
        return self.__add__(other)

    def __rsub__(self, other):
        return -self.__sub__(other)

    def __rmul__(self, other):
        return self.__mul__(other)

    def __rdiv__(self, other):
        return Expr(other)/self
        #return 1/self.__div__(other)

#    def __iadd__(self, other):
#        self.data += _toex(other)
#        return self

#    def __isub__(self, other):
#        self.data -= _toex(other)
#        return self

#    def __imul__(self, other):
#        self.data *= _toex(other)
#        return self

#    def __idiv__(self, other):
#        self.data /= _toex(other)
#        return self

    def __neg__(self):
        return Expr(-self.data, symbs=self.spatial_symbs, time=self.time)

    def __pos__(self):
        return Expr(+self.data, symbs=self.spatial_symbs, time=self.time)

    def __abs__(self):
        return Expr(_g.abs(self.data), symbs=self.spatial_symbs, time=self.time)

    def __pow__(self, other):
        return Expr(_g.power(self.data, _toex(other)).evalf(), symbs=self.spatial_symbs, time=self.time)

    def __eq__(self, other):
        return self.data == _toex(other)

    def __copy__(self):
        return Expr(self.data.copy(), symbs=self.spatial_symbs, time=self.time)

    def copy(self):
        return self.__copy__()

    def diff(self, symb, count=1):
        return Expr(self.data.diff(symb.data, count), symbs=self.spatial_symbs, time=self.time)

    def expand(self):
        return Expr(self.data.expand(), symbs=self.spatial_symbs, time=self.time)
        

    def series(self, pt, order=6):
        if isinstance(pt, Symbol):
            pt = pt==0
        return Expr(self.data.series(pt, order), symbs=self.spatial_symbs, time=self.time)

    def pyEval(self, *args):
        """Evaluating using Python. Arguments are Python floats in the same
        order as used in initEval(symbol_point)."""
        for i in range(len(self._lhs)): exec("%s=%f" % (str(self._lhs[i]), args[i])) 
        s = str(self)
        from math import exp, log, sin, cos, tan, asin, atan, tanh
        #from operator import abs
        return eval(s)

    def eval(self, *args):
        """Evaluate Expr using GiNaC. Quite robust, not efficient."""
        return float(self.data.subs(self._lhs, list(args)).evalf())

    def setSymbols(self, symbs, time=None):
        print "Deprecated, use setSpatialSymbs instead"
        self.spatial_symbs = symbs
        self.time = time

    def setSpatialSymbols(self, symbs):
        self.spatial_symbs = symbs

    def setTimeSymbol(self, time):
        self.time = time

    def simplify(self):
        return Expr(_g.collect_common_factors(self.data), symbs=self.spatial_symbs, time=self.time)

    def grad(self):
        v = Vector(symbs=self.spatial_symbs, time=self.time)
        for i in range(len(self.spatial_symbs)): 
            v[i] = self.diff(self.spatial_symbs[i], 1)
        return v

    def laplace(self): 
        return self.grad().div()

    def hessian(self):
        m = self.grad().grad()
        l = len(self.spatial_symbs)
        hl = l*(l+1)/2
        hess = []
        for i in range(l):
            hess.append(m[i, i])
        for p in range(l-1):
            for q in range(p+1, l):
                hess.append(m[p, q])
        return hess

class Matrix(Symbolic):
    """Simple wrapping of GiNaC::Matrix, equipped with high-level
    mathematical operations."""

    """ Consider a new constructor that allows setting a Matrix directly with
    lists"""

    def __init__(self, *args, **kwargs):
        if isinstance(args[0], int):
            self.__init1__(*args, **kwargs)
        elif isinstance(args[0], list) and len(args) == 1:
            self.__init2__(*args, **kwargs)
        elif isinstance(args[0], _g.matrix) and len(args) == 1:
            self.__init3__(*args, **kwargs)
        else:
            raise TypeError, ("Wrong arguements to Matrix.__init__():", str(args))

    def __init1__(self, i, j, symbs=None, time=None):
        self.i = i; self.j = j
        self.data = _g.matrix(i, j)
        self.spatial_symbs = symbs
        self.time = time
        if not symbs:
            self.symbs = range(self.j)
        for i in range(self.i):
            for j in range(self.j):
                self[i, j] = Expr()
        self._lhs = []

    def __init2__(self, l, symbs=None, time=None):
        self.i = len(l)
        self.j = len(l[0])
        l = [[_toex(x) for x in sl] for sl in l] #Convert to nested list of swiginac types
        self.data = _g.matrix(l)
        self.spatial_symbs = symbs
        self.time = time
        if not symbs:
            self.symbs = range(self.j)
        self._lhs = []

    def __init3__(self, m, symbs=None, time=None):
        self.i = m.rows()
        self.j = m.cols()
        self.data = m.copy()
        self.spatial_symbs = symbs
        self.time = time
        if not symbs:
            self.symbs = range(self.j)
        self._lhs = []



    def __setitem__(self, index, value):
        i = index[0]; j = index[1]
        b = _toex(value)
        self.data.set(i, j, b)

    def __getitem__(self, index):
        matlist = []
        for i in range(self.i):
            matlist.append([])
            for j in range(self.j):
                matlist[i].append(self.data[i,j])
        res = Numeric.array(matlist)[index]
        if isinstance(res, _g.basic):
            return Expr(res, symbs=self.spatial_symbs, time=self.time)
        if len(res.shape) == 1:
            if len(res) > 0:
                return Vector(res.tolist(), symbs=self.spatial_symbs, time=self.time)
            else:
                return Expr(0)
        else:
            return Matrix(res.tolist(), symbs=self.spatial_symbs, time=self.time)

#    def __getitem2__(self, index):
#        """This method is under construction. It will be improved soon."""
#        #print type(index)
#        #print index
#        i = None
#        j = None
#        if isinstance(index, tuple):
#            if isinstance(index[0], int): # We know the row
#                i = index[0]; 
#                if i < 0:
#                    i = self.i + i
#            if isinstance(index[1], int): # We know the column
#                j = index[1]
#                if j < 0:
#                    j = self.j + j
#            if not i==None and not j == None:
#                if i < self.i and j < self.j:
#                    return Expr(self.data[i, j], symbs=self.spatial_symbs, time=self.time)
#                else:
#                    raise IndexError, "Index out of range"
#            if isinstance(index[1], slice):
#                #print "Second arg is slice"
#                (start, stop, step) = (index[1].start, index[1].stop, index[1].step)
#                if not i == None:
#                    if start == stop == step == None:
#                        return Vector([self.data[i, j] for j in range(self.j)], symbs=self.spatial_symbs, time=self.time)
#                    if start == None: start = 0
#                    elif start < 0: start = self.j + start
#                    if stop == None: stop = self.i
#                    elif stop< 0: stop = self.j + stop
#                    if step == None: step = 1
#                    return Vector([self.data[i, j] for j in range(start, stop, step)])
#        elif isinstance(index, int): # Only one slice
#            if index < 0:
#                #print "i is less than 0"
#                index = self.j + index 
#                if index < 0:
#                    raise IndexError, "Index out of range"
#            return Vector([self.data[index, j] for j in range(self.j)], symbs=self.spatial_symbs, time=self.time)
#        else:
#            (start, stop, step) = (index.start, index.stop, index.step)
#            if start == stop == step == None:
#                return self.__copy__()
#            if start == None: 
#                start = 0
#            if stop == None:
#                stop = self.i
#            if step == None:
#                step = 1
#

            

    def addSymbols(self, list):
        self.symbs.extend(list)

    def __call__(self):
        return self.data()

        return self.string()

    def __str__(self):
        return str(self.data)

    def __repr__(self):
        return 'Matrix(' + str(self) + ')'

    def diff(self, symb, count=1):
        e = Expr(self())
        return e.diff(symb, count)

    def __add__(self, other):
        if isinstance(other, Matrix):
            m = Matrix(self.i, self.j, self.spatial_symbs, self.time)
            for i in range(self.i):
                for j in range(self.j):
                    m[i, j] = self[i, j]+other[i, j]
            return m
        else:
            raise TypeError, "Expected a Matrix, got %s" % (type(other))

    def __mul__(self, other):
        if isinstance(other, Matrix):
            m = Matrix(self.i, other.j, self.spatial_symbs, self.time)
            for i in range(self.i):
                for j in range(other.j):
                    m[i, j] = Expr()
                    for k in range(self.i):
                        m[i, j] += self[i, k]*other[k, j]
            return m
        elif isinstance(other, Vector):
            v = Vector(self.symbs)
            for j in range(self.j):
                v[j] = Expr()
                for i in range(self.i):
                    v[j] += self[j, i]*other[i]
            return v
        else:
            b = _toex(other)
            m = Matrix(self.i, self.j, self.spatial_symbs, self.time)
            for i in range(self.i):
                for j in range(self.j):
                    m[i, j] = self[i, j]*b
            return m

    def __eq__(self, other):
        return self.data == _toex(other)

    def __copy__(self):
        return Matrix(self.data.copy(), symbs=self.spatial_symbs, time=self.time)

    def copy(self):
        return self.__copy__()


    def determinant(self):
        return Expr(self.data.determinant(), self.spatial_symbs, time=self.time)

    def initEval(self, symbol_point):
        """In order to evaluate an ex in GiNaC, we need som additinal data
        structures. This method adds this.
        """

        self._lhs = map(lambda s: s.data, symbol_point)

    def eval(self, *args):
        ret_vals = []
        for i in range(self.i):
            ret_vals.append([])
            for j in range(self.j):
                ret_vals[i].append(float(self[i, j].data.subs(self._lhs, list(args)).evalf()))
        return ret_vals

    def __rmul__(self, other):
        return self.__mul__(other)

    def __sub__(self, other):
        if isinstance(other, Matrix):
            m = Matrix(self.i, self.j, self.spatial_symbs, self.time)
            for i in range(self.i):
                for j in range(self.j):
                    m[i, j] = self[i, j] - other[i, j]
            return m

    def transpose(self):
        m = Matrix(self.i, self.j, self.spatial_symbs, self.time)
        for i in range(self.i):
            for j in range(self.j):
                m[i, j] = self[j, i]
        return m

    def div(self):
        v = Vector(symbs=self.spatial_symbs, time=self.time)
        for j in range(self.j):
            v[j] = Expr(symbs=self.spatial_symbs, time=self.time)
            for i in range(self.i):
                v[j] += self[i, j].diff(self.spatial_symbs[i], 1)
        return v

class Vector(Symbolic):
    """Simple Vector consisting of Expr, and equipped with arithmetic and differential
    operators. Make sure that the entries the the list data, always are
    swiginac types!"""

    def __eq__(self, other):
        return self.data == _toex(other)
   
    def __call__(self):
        return self.data.eval()

    def __init__ (self, list=None, symbs=None, time=None):
        self.spatial_symbs = symbs
        self.time = time
        self._string = None
        if list: 
            self.data = map(lambda x: _toex(x), list)
        elif symbs: 
            self.data = map(lambda x: x(), symbs)
        else:
            self.data = []
        self._lhs = []
 
    def setSpatialSymbols(self, symbs):
        self.spatial_symbs = symbs
 
    def __setitem__(self, i, val):
        self.data[i] = _toex(val)

    def __len__(self):
        return len(self.data)

    def __str__(self):
        return str(self.data)

    def setOutput(self, type):
        for i in xrange(len(self.data)):
            self.data[i].set_print_context(type)

    def __repr__(self):
        return "Vector("+str(self)+")"
 
    def __getitem__(self, index):
        res = Numeric.array(self.data)[index] 
        if isinstance(res, _g.basic):
            return Expr(res, symbs=self.spatial_symbs, time=self.time)
        elif isinstance(res, Numeric.ArrayType):
            if len(res) > 1:
                return Vector(res.tolist(), symbs=self.spatial_symbs, time=self.time)
            else: # There should be a result in res[0]. If not, an exception will be raised
                return Expr(res[0], symbs=self.spatial_symbs, time=self.time)

    def __copy__(self):
        return Vector(self.data[:], symbs=self.spatial_symbs, time=self.time)

    def copy(self):
        return self.__copy__()

 
    def div(self):
        data = self.data
        s = self.spatial_symbs
        e = Expr(symbs=s, time=self.time)
        for i in range(len(self)): 
            e += data[i].diff(s[i].data, 1)
        return Expr(e, symbs=self.spatial_symbs, time=self.time)
 
    def initEval(self, symbol_point):
        """In order to evaluate the vector components in GiNaC, we need som
        additinal data structures. This method adds this.
        """
        self._lhs = map(lambda s: s.data, symbol_point)
 
    def pyEval(self, *args):
        for i in range(len(self._lhs)): exec("%s=%f" % (str(self._lhs[i]), args[i])) 
        s = str(self)
        from math import exp, log, sin, cos, tan, asin, atan
        from operator import abs
        ret_vals = []
        for comp in s: 
            ret_vals.append(eval(comp))
        return ret_vals
 
    def eval(self, *args):
        ret_vals = []
        for i in range(len(self)): 
            ret_vals.append(float(self.data[i].subs(self._lhs, list(args)).evalf()))
        return ret_vals
 
    def __add__(self, other):
        v = Vector(list=range(len(self)), symbs=self.spatial_symbs,  time=self.time)
        for i in range(len(self)):
            v[i] = self[i] + other[i]
        return v
 
    def __sub__(self, other):
        v = Vector(list=range(len(self)), symbs=self.spatial_symbs, time=self.time)
        for i in range(len(self)):
            v[i] = self[i] - other[i]
        return v
 
    def __mul__(self, other):
        if isinstance(other, int) | isinstance(other, float) | isinstance(other, Expr):
            v = Vector(list=range(len(self)), symbs=self.spatial_symbs, time=self.time)
            b = _toex(other)
            for i in range(len(self)):
                v[i] = self[i]*b
            return v
        elif isinstance(other, Matrix): #Vector-Matrix product
            v = Vector(symbs=self.spatial_symbs, time=self.time)
            for j in range(other.j):
                v[j] = Expr()
                for i in range(len(self)):
                    tmp = self[i]*other[i, j]
                    v[j] += tmp
            return v

    def __eq__(self, other):
        return self.data == _toex(other)
  
    def __radd__(self, other):
        return self.__add__(other)
 
    def __rsub(self, other):
        return self.__sub__(other)
 
    def __rmul__(self, other):
        return self.__mul__(other)

  
#    def __iadd__(self, other):
#        for i in range(len(self)):
#            self[i] += other[i]
#        return self
# 
#    def __isub__(self, other):
#        for i in range(len(self)):
#            self[i] -= other[i]
#        return self
# 
#    def __imul__(self, other):
#        if isinstance(other, Vector):
#            for i in range(len(self)):
#                self[i] *= other[i]
#        elif isinstance(other, Matrix):
#            result = Vector(symbs=self.spatial_symbs)
#            for j in range(other.j):
#                result[j] = 0
#                for i in range(len(self)):
#                    result[j] += other[j, i]*self[i]
#            return result
#        else:
#            rh = _toex(other)
#            for i in range(len(self)):
#                self.data.let_op(i, self[i]() * rh)
#        return self
# 
 
    def __neg__(self):
        v = Vector(symbs=self.spatial_symbs, time=self.time)
        for i in range(len(self)):
            v[i] = -self[i]
        return v
 
    def simplify(self):
        v = Vector(symbs=self.spatial_symbs, time=self.time)
        for i in range(len(self)):
            v[i] = self[i].simplify()
        return v
 
    def grad(self):
        n = len(self)
        m = Matrix(n, n, symbs=self.spatial_symbs, time=self.time)
        for i in range(n):
            for j in range(n):
                m[i, j] = self[j].diff(self.spatial_symbs[i], 1)
        return m

class Symbol(Symbolic):
    """Simple swiginac::symbol wrapper class, equipped with arithmetic
    operations."""

    def __init__(self, name = 'x'): 
        if isinstance(name, str):
            self.data = _g.symbol(name)
        elif isinstance(name, _g.symbol):
            self.data = name
        else:
            raise ValueError, "Can not construct a Symbol from a %s" % type(name)
        self.spatial_symbs = [self.data]
        self.time = None

    def eval(self): 
        return self()

    def __rdiv__(self, other):
        return _toex(other)/self.data

    def __eq__(self, other):
        return self.data == _toex(other)

    def __call__(self): 
        return self.data

    def __add__(self, other):
        s = Expr(self)
        return s.__add__(other)

    def __radd__(self, other):
        e = Expr(self)
        return e.__radd__(other)

    def __sub__(self, other):
        s = Expr(self)
        return s.__sub__(other)

    def __rsub__(self, other):
        s = Expr(self)
        return s.__rsub__(other)

    def __mul__(self, other):
        s = Expr(self)
        return s.__mul__(other)

    def __div__(self, other):
        s = Expr(self)
        return s.__div__(other)


    def __rmul__(self, other):
        s = Expr(self)
        return s.__rmul__(other)

    def __neg__(self):
        neg = _g.numeric('-1')
        return self.__mul__(Expr(neg))

    def __str__(self):
        return str(Expr(self))

    def __repr__(self):
        return "Symbol('"+self.__str__()+"')"

    def __pow__(self, other):
        return Expr(self)**other

    def __rpow__(self, other):
        s = Expr(self)
        return Expr(_toex(other)**self.data)

    def __abs__(self):
        return Expr(_g.abs(self.data))

    def __copy__(self):
        new_symbol = Symbol()
        new_symbol.data = self.data.copy()
        return new_symbol

    def copy(self):
        return self.__copy__()

def _toex(other):
    """Converts other to GiNaC::ex.
    """
    if isinstance(other, (float, int)):
        return _g.numeric(other)
    elif isinstance(other, (Symbol, Expr, Matrix, Vector)):
        return other.data
    elif isinstance(other, (_g.basic)):
        return other
    elif isinstance(other, str):
        print "Can not convert a string to symbolic type"
        return _g.numeric(other)
    elif isinstance(other, list):
        return [_toex(x) for x in other]

Pi = _g.Pi
          
# Wrapping GiNaC::<function>s 
def exp(e):
    return Expr(_g.exp(e()), e.spatial_symbs, time=e.time)
def log(e):
    return Expr(_g.log(e()), e.spatial_symbs, time=e.time)

def sin(e):
    return Expr(_g.sin(e()), e.spatial_symbs, time=e.time)
def cos(e):
    return Expr(_g.cos(e()), e.spatial_symbs, time=e.time)
def tan(e):
    return Expr(_g.tan(e()), e.spatial_symbs, time=e.time)

def asin(e):
    return Expr(_g.asin(e()), e.spatial_symbs, time=e.time)
def acos(e):
    return Expr(_g.acos(e()), e.spatial_symbs, time=e.time)
def atan(e):
    return Expr(_g.atan(e()), e.spatial_symbs, time=e.time)

def sinh(e):
    return Expr(_g.sinh(e()), e.spatial_symbs, time=e.time)
def cosh(e):
    return Expr(_g.cosh(e()), e.spatial_symbs, time=e.time)
def tanh(e):
    return Expr(_g.tanh(e()), e.spatial_symbs, time=e.time)

def asinh(e):
    return Expr(_g.asinh(e()), e.spatial_symbs, time=e.time)
def acosh(e):
    return Expr(_g.acosh(e()), e.spatial_symbs, time=e.time)
def atanh(e):
    return Expr(_g.atanh(e()), e.spatial_symbs, time=e.time)

def Order(e):
    return Expr(_g.Order(e()), e.spatial_symbs, time=e.time)

#def abs(e):
#    return Expr(_g.abs(e()), e.spatial_symbs, time=e.time)

def sqrt(e):
    return e**(0.5)

# Some help variables
_e = Expr()
_s = Symbol()