/usr/lib/python2.7/dist-packages/shapely/affinity.py is in python-shapely 1.3.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 | """Affine transforms, both in general and specific, named transforms."""
from math import sin, cos, tan, pi
__all__ = ['affine_transform', 'rotate', 'scale', 'skew', 'translate']
def affine_transform(geom, matrix):
"""Returns a transformed geometry using an affine transformation matrix.
The coefficient matrix is provided as a list or tuple with 6 or 12 items
for 2D or 3D transformations, respectively.
For 2D affine transformations, the 6 parameter matrix is:
[a, b, d, e, xoff, yoff]
which represents the augmented matrix:
/ a b xoff \
[x' y' 1] = [x y 1] | d e yoff |
\ 0 0 1 /
or the equations for the transformed coordinates:
x' = a * x + b * y + xoff
y' = d * x + e * y + yoff
For 3D affine transformations, the 12 parameter matrix is:
[a, b, c, d, e, f, g, h, i, xoff, yoff, zoff]
which represents the augmented matrix:
/ a b c xoff \
[x' y' z' 1] = [x y z 1] | d e f yoff |
| g h i zoff |
\ 0 0 0 1 /
or the equations for the transformed coordinates:
x' = a * x + b * y + c * z + xoff
y' = d * x + e * y + f * z + yoff
z' = g * x + h * y + i * z + zoff
"""
if geom.is_empty:
return geom
if len(matrix) == 6:
ndim = 2
a, b, d, e, xoff, yoff = matrix
if geom.has_z:
ndim = 3
i = 1.0
c = f = g = h = zoff = 0.0
matrix = a, b, c, d, e, f, g, h, i, xoff, yoff, zoff
elif len(matrix) == 12:
ndim = 3
a, b, c, d, e, f, g, h, i, xoff, yoff, zoff = matrix
if not geom.has_z:
ndim = 2
matrix = a, b, d, e, xoff, yoff
else:
raise ValueError("'matrix' expects either 6 or 12 coefficients")
def affine_pts(pts):
"""Internal function to yield affine transform of coordinate tuples"""
if ndim == 2:
for x, y in pts:
xp = a * x + b * y + xoff
yp = d * x + e * y + yoff
yield (xp, yp)
elif ndim == 3:
for x, y, z in pts:
xp = a * x + b * y + c * z + xoff
yp = d * x + e * y + f * z + yoff
zp = g * x + h * y + i * z + zoff
yield (xp, yp, zp)
# Process coordinates from each supported geometry type
if geom.type in ('Point', 'LineString'):
return type(geom)(list(affine_pts(geom.coords)))
elif geom.type == 'Polygon':
ring = geom.exterior
shell = type(ring)(list(affine_pts(ring.coords)))
holes = list(geom.interiors)
for pos, ring in enumerate(holes):
holes[pos] = type(ring)(list(affine_pts(ring.coords)))
return type(geom)(shell, holes)
elif geom.type.startswith('Multi') or geom.type == 'GeometryCollection':
# Recursive call
# TODO: fix GeometryCollection constructor
return type(geom)([affine_transform(part, matrix)
for part in geom.geoms])
else:
raise ValueError('Type %r not recognized' % geom.type)
def interpret_origin(geom, origin, ndim):
"""Returns interpreted coordinate tuple for origin parameter.
This is a helper function for other transform functions.
The point of origin can be a keyword 'center' for the 2D bounding box
center, 'centroid' for the geometry's 2D centroid, a Point object or a
coordinate tuple (x0, y0, z0).
"""
# get coordinate tuple from 'origin' from keyword or Point type
if origin == 'center':
# bounding box center
minx, miny, maxx, maxy = geom.bounds
origin = ((maxx + minx)/2.0, (maxy + miny)/2.0)
elif origin == 'centroid':
origin = geom.centroid.coords[0]
elif isinstance(origin, str):
raise ValueError("'origin' keyword %r is not recognized" % origin)
elif hasattr(origin, 'type') and origin.type == 'Point':
origin = origin.coords[0]
# origin should now be tuple-like
if len(origin) not in (2, 3):
raise ValueError("Expected number of items in 'origin' to be "
"either 2 or 3")
if ndim == 2:
return origin[0:2]
else: # 3D coordinate
if len(origin) == 2:
return origin + (0.0,)
else:
return origin
def rotate(geom, angle, origin='center', use_radians=False):
"""Returns a rotated geometry on a 2D plane.
The angle of rotation can be specified in either degrees (default) or
radians by setting ``use_radians=True``. Positive angles are
counter-clockwise and negative are clockwise rotations.
The point of origin can be a keyword 'center' for the bounding box
center (default), 'centroid' for the geometry's centroid, a Point object
or a coordinate tuple (x0, y0).
The affine transformation matrix for 2D rotation is:
/ cos(r) -sin(r) xoff \
| sin(r) cos(r) yoff |
\ 0 0 1 /
where the offsets are calculated from the origin Point(x0, y0):
xoff = x0 - x0 * cos(r) + y0 * sin(r)
yoff = y0 - x0 * sin(r) - y0 * cos(r)
"""
if not use_radians: # convert from degrees
angle *= pi/180.0
cosp = cos(angle)
sinp = sin(angle)
if abs(cosp) < 2.5e-16:
cosp = 0.0
if abs(sinp) < 2.5e-16:
sinp = 0.0
x0, y0 = interpret_origin(geom, origin, 2)
matrix = (cosp, -sinp, 0.0,
sinp, cosp, 0.0,
0.0, 0.0, 1.0,
x0 - x0 * cosp + y0 * sinp, y0 - x0 * sinp - y0 * cosp, 0.0)
return affine_transform(geom, matrix)
def scale(geom, xfact=1.0, yfact=1.0, zfact=1.0, origin='center'):
"""Returns a scaled geometry, scaled by factors along each dimension.
The point of origin can be a keyword 'center' for the 2D bounding box
center (default), 'centroid' for the geometry's 2D centroid, a Point
object or a coordinate tuple (x0, y0, z0).
Negative scale factors will mirror or reflect coordinates.
The general 3D affine transformation matrix for scaling is:
/ xfact 0 0 xoff \
| 0 yfact 0 yoff |
| 0 0 zfact zoff |
\ 0 0 0 1 /
where the offsets are calculated from the origin Point(x0, y0, z0):
xoff = x0 - x0 * xfact
yoff = y0 - y0 * yfact
zoff = z0 - z0 * zfact
"""
x0, y0, z0 = interpret_origin(geom, origin, 3)
matrix = (xfact, 0.0, 0.0,
0.0, yfact, 0.0,
0.0, 0.0, zfact,
x0 - x0 * xfact, y0 - y0 * yfact, z0 - z0 * zfact)
return affine_transform(geom, matrix)
def skew(geom, xs=0.0, ys=0.0, origin='center', use_radians=False):
"""Returns a skewed geometry, sheared by angles along x and y dimensions.
The shear angle can be specified in either degrees (default) or radians
by setting ``use_radians=True``.
The point of origin can be a keyword 'center' for the bounding box
center (default), 'centroid' for the geometry's centroid, a Point object
or a coordinate tuple (x0, y0).
The general 2D affine transformation matrix for skewing is:
/ 1 tan(xs) xoff \
| tan(ys) 1 yoff |
\ 0 0 1 /
where the offsets are calculated from the origin Point(x0, y0):
xoff = -y0 * tan(xs)
yoff = -x0 * tan(ys)
"""
if not use_radians: # convert from degrees
xs *= pi/180.0
ys *= pi/180.0
tanx = tan(xs)
tany = tan(ys)
if abs(tanx) < 2.5e-16:
tanx = 0.0
if abs(tany) < 2.5e-16:
tany = 0.0
x0, y0 = interpret_origin(geom, origin, 2)
matrix = (1.0, tanx, 0.0,
tany, 1.0, 0.0,
0.0, 0.0, 1.0,
-y0 * tanx, -x0 * tany, 0.0)
return affine_transform(geom, matrix)
def translate(geom, xoff=0.0, yoff=0.0, zoff=0.0):
"""Returns a translated geometry shifted by offsets along each dimension.
The general 3D affine transformation matrix for translation is:
/ 1 0 0 xoff \
| 0 1 0 yoff |
| 0 0 1 zoff |
\ 0 0 0 1 /
"""
matrix = (1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0,
xoff, yoff, zoff)
return affine_transform(geom, matrix)
|