This file is indexed.

/usr/share/pyshared/pyx/deco.py is in python-pyx 0.12.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
# -*- encoding: utf-8 -*-
#
#
# Copyright (C) 2002-2011 Jörg Lehmann <joergl@users.sourceforge.net>
# Copyright (C) 2003-2011 Michael Schindler <m-schindler@users.sourceforge.net>
# Copyright (C) 2002-2011 André Wobst <wobsta@users.sourceforge.net>
#
# This file is part of PyX (http://pyx.sourceforge.net/).
#
# PyX is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PyX is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PyX; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA

# TODO:
# - should we improve on the arc length -> arg parametrization routine or
#   should we at least factor it out?

import sys, math
import attr, canvas, canvasitem, color, path, normpath, style, trafo, unit, deformer

_marker = object()

#
# Decorated path
#

class decoratedpath(canvasitem.canvasitem):
    """Decorated path

    The main purpose of this class is during the drawing
    (stroking/filling) of a path. It collects attributes for the
    stroke and/or fill operations.
    """

    def __init__(self, path, strokepath=None, fillpath=None,
                 styles=None, strokestyles=None, fillstyles=None,
                 ornaments=None, fillrule=style.fillrule.nonzero_winding):

        self.path = path

        # global style for stroking and filling and subdps
        self.styles = styles

        # styles which apply only for stroking and filling
        self.strokestyles = strokestyles
        self.fillstyles = fillstyles

        # the decoratedpath can contain additional elements of the
        # path (ornaments), e.g., arrowheads.
        if ornaments is None:
            self.ornaments = canvas.canvas()
        else:
            self.ornaments = ornaments

        # the fillrule is either fillrule.nonzero_winding or fillrule.even_odd
        self.fillrule = fillrule

        self.nostrokeranges = None

    def ensurenormpath(self):
        """convert self.path into a normpath"""
        assert self.nostrokeranges is None or isinstance(self.path, path.normpath), "you don't understand what you are doing"
        self.path = self.path.normpath()

    def excluderange(self, begin, end):
        assert isinstance(self.path, path.normpath), "you don't understand what this is about"
        if self.nostrokeranges is None:
            self.nostrokeranges = [(begin, end)]
        else:
            ibegin = 0
            while ibegin < len(self.nostrokeranges) and self.nostrokeranges[ibegin][1] < begin:
                ibegin += 1

            if ibegin == len(self.nostrokeranges):
                self.nostrokeranges.append((begin, end))
                return

            iend = len(self.nostrokeranges) - 1
            while 0 <= iend and end < self.nostrokeranges[iend][0]:
                iend -= 1

            if iend == -1:
                self.nostrokeranges.insert(0, (begin, end))
                return

            if self.nostrokeranges[ibegin][0] < begin:
                begin = self.nostrokeranges[ibegin][0]
            if end < self.nostrokeranges[iend][1]:
                end = self.nostrokeranges[iend][1]

            self.nostrokeranges[ibegin:iend+1] = [(begin, end)]

    def bbox(self):
        pathbbox = self.path.bbox()
        ornamentsbbox = self.ornaments.bbox()
        if ornamentsbbox is not None:
            return ornamentsbbox + pathbbox
        else:
            return pathbbox

    def strokepath(self):
        if self.nostrokeranges:
            splitlist = []
            for begin, end in self.nostrokeranges:
                splitlist.append(begin)
                splitlist.append(end)
            split = self.path.split(splitlist)
            # XXX properly handle closed paths?
            result = split[0]
            for i in range(2, len(split), 2):
                result += split[i]
            return result
        else:
            return self.path

    def processPS(self, file, writer, context, registry, bbox):
        # draw (stroke and/or fill) the decoratedpath on the canvas
        # while trying to produce an efficient output, e.g., by
        # not writing one path two times

        # small helper
        def _writestyles(styles, context, registry, bbox):
            for style in styles:
                style.processPS(file, writer, context, registry, bbox)

        if self.strokestyles is None and self.fillstyles is None:
            if not len(self.ornaments):
                raise RuntimeError("Path neither to be stroked nor filled nor decorated in another way")
            # just draw additional elements of decoratedpath
            self.ornaments.processPS(file, writer, context, registry, bbox)
            return

        strokepath = self.strokepath()
        fillpath = self.path

        # apply global styles
        if self.styles:
            file.write("gsave\n")
            context = context()
            _writestyles(self.styles, context, registry, bbox)

        if self.fillstyles is not None:
            file.write("newpath\n")
            fillpath.outputPS(file, writer)

            if self.strokestyles is not None and strokepath is fillpath:
                # do efficient stroking + filling if respective paths are identical
                file.write("gsave\n")

                if self.fillstyles:
                    _writestyles(self.fillstyles, context(), registry, bbox)

                if self.fillrule.even_odd:
                    file.write("eofill\n")
                else:
                    file.write("fill\n")
                file.write("grestore\n")

                acontext = context()
                if self.strokestyles:
                    file.write("gsave\n")
                    _writestyles(self.strokestyles, acontext, registry, bbox)

                file.write("stroke\n")
                # take linewidth into account for bbox when stroking a path
                bbox += strokepath.bbox().enlarged_pt(0.5*acontext.linewidth_pt)

                if self.strokestyles:
                    file.write("grestore\n")
            else:
                # only fill fillpath - for the moment
                if self.fillstyles:
                    file.write("gsave\n")
                    _writestyles(self.fillstyles, context(), registry, bbox)

                if self.fillrule.even_odd:
                    file.write("eofill\n")
                else:
                    file.write("fill\n")
                bbox += fillpath.bbox()

                if self.fillstyles:
                    file.write("grestore\n")

        if self.strokestyles is not None and (strokepath is not fillpath or self.fillstyles is None):
            # this is the only relevant case still left
            # Note that a possible stroking has already been done.
            acontext = context()
            if self.strokestyles:
                file.write("gsave\n")
                _writestyles(self.strokestyles, acontext, registry, bbox)

            file.write("newpath\n")
            strokepath.outputPS(file, writer)
            file.write("stroke\n")
            # take linewidth into account for bbox when stroking a path
            bbox += strokepath.bbox().enlarged_pt(0.5*acontext.linewidth_pt)

            if self.strokestyles:
                file.write("grestore\n")

        # now, draw additional elements of decoratedpath
        self.ornaments.processPS(file, writer, context, registry, bbox)

        # restore global styles
        if self.styles:
            file.write("grestore\n")

    def processPDF(self, file, writer, context, registry, bbox):
        # draw (stroke and/or fill) the decoratedpath on the canvas

        def _writestyles(styles, context, registry, bbox):
            for style in styles:
                style.processPDF(file, writer, context, registry, bbox)

        def _writestrokestyles(strokestyles, context, registry, bbox):
            context.fillattr = 0
            for style in strokestyles:
                style.processPDF(file, writer, context, registry, bbox)
            context.fillattr = 1

        def _writefillstyles(fillstyles, context, registry, bbox):
            context.strokeattr = 0
            for style in fillstyles:
                style.processPDF(file, writer, context, registry, bbox)
            context.strokeattr = 1

        if self.strokestyles is None and self.fillstyles is None:
            if not len(self.ornaments):
                raise RuntimeError("Path neither to be stroked nor filled nor decorated in another way")
            # just draw additional elements of decoratedpath
            self.ornaments.processPDF(file, writer, context, registry, bbox)
            return

        strokepath = self.strokepath()
        fillpath = self.path

        # apply global styles
        if self.styles:
            file.write("q\n") # gsave
            context = context()
            _writestyles(self.styles, context, registry, bbox)

        if self.fillstyles is not None:
            fillpath.outputPDF(file, writer)

            if self.strokestyles is not None and strokepath is fillpath:
                # do efficient stroking + filling
                file.write("q\n") # gsave
                acontext = context()

                if self.fillstyles:
                    _writefillstyles(self.fillstyles, acontext, registry, bbox)
                if self.strokestyles:
                    _writestrokestyles(self.strokestyles, acontext, registry, bbox)

                if self.fillrule.even_odd:
                    file.write("B*\n")
                else:
                    file.write("B\n") # both stroke and fill
                # take linewidth into account for bbox when stroking a path
                bbox += strokepath.bbox().enlarged_pt(0.5*acontext.linewidth_pt)

                file.write("Q\n") # grestore
            else:
                # only fill fillpath - for the moment
                if self.fillstyles:
                    file.write("q\n") # gsave
                    _writefillstyles(self.fillstyles, context(), registry, bbox)

                if self.fillrule.even_odd:
                    file.write("f*\n")
                else:
                    file.write("f\n") # fill
                bbox += fillpath.bbox()

                if self.fillstyles:
                    file.write("Q\n") # grestore

        if self.strokestyles is not None and (strokepath is not fillpath or self.fillstyles is None):
            # this is the only relevant case still left
            # Note that a possible stroking has already been done.
            acontext = context()

            if self.strokestyles:
                file.write("q\n") # gsave
                _writestrokestyles(self.strokestyles, acontext, registry, bbox)

            strokepath.outputPDF(file, writer)
            file.write("S\n") # stroke
            # take linewidth into account for bbox when stroking a path
            bbox += strokepath.bbox().enlarged_pt(0.5*acontext.linewidth_pt)

            if self.strokestyles:
                file.write("Q\n") # grestore

        # now, draw additional elements of decoratedpath
        self.ornaments.processPDF(file, writer, context, registry, bbox)

        # restore global styles
        if self.styles:
            file.write("Q\n") # grestore

#
# Path decorators
#

class deco:

    """decorators

    In contrast to path styles, path decorators depend on the concrete
    path to which they are applied. In particular, they don't make
    sense without any path and can thus not be used in canvas.set!

    """

    def decorate(self, dp, texrunner):
        """apply a style to a given decoratedpath object dp

        decorate accepts a decoratedpath object dp, applies PathStyle
        by modifying dp in place.
        """

        pass

#
# stroked and filled: basic decos which stroked and fill,
# respectively the path
#

class _stroked(deco, attr.exclusiveattr):

    """stroked is a decorator, which draws the outline of the path"""

    def __init__(self, styles=[]):
        attr.exclusiveattr.__init__(self, _stroked)
        self.styles = attr.mergeattrs(styles)
        attr.checkattrs(self.styles, [style.strokestyle])

    def __call__(self, styles=[]):
        # XXX or should we also merge self.styles
        return _stroked(styles)

    def decorate(self, dp, texrunner):
        if dp.strokestyles is not None:
            raise RuntimeError("Cannot stroke an already stroked path")
        dp.strokestyles = self.styles

stroked = _stroked()
stroked.clear = attr.clearclass(_stroked)


class _filled(deco, attr.exclusiveattr):

    """filled is a decorator, which fills the interior of the path"""

    def __init__(self, styles=[]):
        attr.exclusiveattr.__init__(self, _filled)
        self.styles = attr.mergeattrs(styles)
        attr.checkattrs(self.styles, [style.fillstyle])

    def __call__(self, styles=[]):
        # XXX or should we also merge self.styles
        return _filled(styles)

    def decorate(self, dp, texrunner):
        if dp.fillstyles is not None:
            raise RuntimeError("Cannot fill an already filled path")
        dp.fillstyles = self.styles

filled = _filled()
filled.clear = attr.clearclass(_filled)

#
# Arrows
#

# helper function which constructs the arrowhead

def _arrowhead(anormpath, arclenfrombegin, direction, size, angle, constriction, constrictionlen):

    """helper routine, which returns an arrowhead from a given anormpath

    - arclenfrombegin: position of arrow in arc length from the start of the path
    - direction: +1 for an arrow pointing along the direction of anormpath or
                 -1 for an arrow pointing opposite to the direction of normpath
    - size: size of the arrow as arc length
    - angle. opening angle
    - constriction: boolean to indicate whether the constriction point is to be taken into account or not
    - constrictionlen: arc length of constriction. (not used when constriction is false)
    """

    # arc length and coordinates of tip
    tx, ty = anormpath.at(arclenfrombegin)

    # construct the template for the arrow by cutting the path at the
    # corresponding length
    arrowtemplate = anormpath.split([arclenfrombegin, arclenfrombegin - direction * size])[1]

    # from this template, we construct the two outer curves of the arrow
    arrowl = arrowtemplate.transformed(trafo.rotate(-angle/2.0, tx, ty))
    arrowr = arrowtemplate.transformed(trafo.rotate( angle/2.0, tx, ty))

    # now come the joining backward parts
    if constriction:
        # constriction point (cx, cy) lies on path
        cx, cy = anormpath.at(arclenfrombegin - direction * constrictionlen)
        arrowcr= path.line(*(arrowr.atend() + (cx,cy)))
        arrow = arrowl.reversed() << arrowr << arrowcr
    else:
        arrow = arrowl.reversed() << arrowr

    arrow[-1].close()

    return arrow


_base = 6 * unit.v_pt

class arrow(deco, attr.attr):

    """arrow is a decorator which adds an arrow to either side of the path"""

    def __init__(self, attrs=[], pos=1, reversed=0, size=_base, angle=45, constriction=0.8):
        self.attrs = attr.mergeattrs([style.linestyle.solid, filled] + attrs)
        attr.checkattrs(self.attrs, [deco, style.fillstyle, style.strokestyle])
        self.pos = pos
        self.reversed = reversed
        self.size = size
        self.angle = angle
        self.constriction = constriction

        # calculate absolute arc length of constricition
        # Note that we have to correct this length because the arrowtemplates are rotated
        # by self.angle/2 to the left and right. Hence, if we want no constriction, i.e., for
        # self.constriction = 1, we actually have a length which is approximately shorter
        # by the given geometrical factor.
        if self.constriction is not None:
            self.constrictionlen = self.size * self.constriction * math.cos(math.radians(self.angle/2.0))
        else:
            # if we do not want a constriction, i.e. constriction is None, we still
            # need constrictionlen for cutting the path
            self.constrictionlen = self.size * 1 * math.cos(math.radians(self.angle/2.0))

    def __call__(self, attrs=None, pos=None, reversed=None, size=None, angle=None, constriction=_marker):
        if attrs is None:
            attrs = self.attrs
        if pos is None:
            pos = self.pos
        if reversed is None:
            reversed = self.reversed
        if size is None:
            size = self.size
        if angle is None:
            angle = self.angle
        if constriction is _marker:
            constriction = self.constriction
        return arrow(attrs=attrs, pos=pos, reversed=reversed, size=size, angle=angle, constriction=constriction)

    def decorate(self, dp, texrunner):
        dp.ensurenormpath()
        anormpath = dp.path

        arclenfrombegin = (1-self.reversed)*self.constrictionlen + self.pos * (anormpath.arclen() - self.constrictionlen)
        direction = self.reversed and -1 or 1
        arrowhead = _arrowhead(anormpath, arclenfrombegin, direction, self.size, self.angle,
                               self.constriction is not None, self.constrictionlen)

        # add arrowhead to decoratedpath
        dp.ornaments.draw(arrowhead, self.attrs)

        # exlude part of the path from stroking when the arrow is strictly at the begin or the end
        if self.pos == 0 and self.reversed:
            dp.excluderange(0, min(self.size, self.constrictionlen))
        elif self.pos == 1 and not self.reversed:
            dp.excluderange(anormpath.end() - min(self.size, self.constrictionlen), anormpath.end())

arrow.clear = attr.clearclass(arrow)

# arrows at begin of path
barrow = arrow(pos=0, reversed=1)
barrow.SMALL = barrow(size=_base/math.sqrt(64))
barrow.SMALl = barrow(size=_base/math.sqrt(32))
barrow.SMAll = barrow(size=_base/math.sqrt(16))
barrow.SMall = barrow(size=_base/math.sqrt(8))
barrow.Small = barrow(size=_base/math.sqrt(4))
barrow.small = barrow(size=_base/math.sqrt(2))
barrow.normal = barrow(size=_base)
barrow.large = barrow(size=_base*math.sqrt(2))
barrow.Large = barrow(size=_base*math.sqrt(4))
barrow.LArge = barrow(size=_base*math.sqrt(8))
barrow.LARge = barrow(size=_base*math.sqrt(16))
barrow.LARGe = barrow(size=_base*math.sqrt(32))
barrow.LARGE = barrow(size=_base*math.sqrt(64))

# arrows at end of path
earrow = arrow()
earrow.SMALL = earrow(size=_base/math.sqrt(64))
earrow.SMALl = earrow(size=_base/math.sqrt(32))
earrow.SMAll = earrow(size=_base/math.sqrt(16))
earrow.SMall = earrow(size=_base/math.sqrt(8))
earrow.Small = earrow(size=_base/math.sqrt(4))
earrow.small = earrow(size=_base/math.sqrt(2))
earrow.normal = earrow(size=_base)
earrow.large = earrow(size=_base*math.sqrt(2))
earrow.Large = earrow(size=_base*math.sqrt(4))
earrow.LArge = earrow(size=_base*math.sqrt(8))
earrow.LARge = earrow(size=_base*math.sqrt(16))
earrow.LARGe = earrow(size=_base*math.sqrt(32))
earrow.LARGE = earrow(size=_base*math.sqrt(64))


class text(deco, attr.attr):
    """a simple text decorator"""

    def __init__(self, text, textattrs=[], angle=0, relangle=None, textdist=0.2,
                       relarclenpos=0.5, arclenfrombegin=None, arclenfromend=None,
                       texrunner=None):
        if arclenfrombegin is not None and arclenfromend is not None:
            raise ValueError("either set arclenfrombegin or arclenfromend")
        self.text = text
        self.textattrs = textattrs
        self.angle = angle
        self.relangle = relangle
        self.textdist = textdist
        self.relarclenpos = relarclenpos
        self.arclenfrombegin = arclenfrombegin
        self.arclenfromend = arclenfromend
        self.texrunner = texrunner

    def decorate(self, dp, texrunner):
        if self.texrunner:
            texrunner = self.texrunner
        import text as textmodule
        textattrs = attr.mergeattrs([textmodule.halign.center, textmodule.vshift.mathaxis] + self.textattrs)

        dp.ensurenormpath()
        if self.arclenfrombegin is not None:
            param = dp.path.begin() + self.arclenfrombegin
        elif self.arclenfromend is not None:
            param = dp.path.end() - self.arclenfromend
        else:
            # relarcpos is used, when neither arcfrombegin nor arcfromend is given
            param = self.relarclenpos * dp.path.arclen()
        x, y = dp.path.at(param)

        if self.relangle is not None:
            a = dp.path.trafo(param).apply_pt(math.cos(self.relangle*math.pi/180), math.sin(self.relangle*math.pi/180))
            b = dp.path.trafo(param).apply_pt(0, 0)
            angle = math.atan2(a[1] - b[1], a[0] - b[0])
        else:
            angle = self.angle*math.pi/180
        t = texrunner.text(x, y, self.text, textattrs)
        t.linealign(self.textdist, math.cos(angle), math.sin(angle))
        dp.ornaments.insert(t)

class curvedtext(deco, attr.attr):
    """a text decorator for curved text

    - text: is typeset along the path to which this decorator is applied
    - relarclenpos: position for the base point of the text (default: 0)
    - arlenfrombegin, arclenfromend: alternative ways of specifying the position of the base point;
                                     use of relarclenpos, arclenfrombegin and arclenfromend is mutually exclusive
    - textattrs, texrunner: standard text arguments (defaults: [] resp None)

    """

    # defaulttextattrs = [textmodule.halign.center] # TODO: not possible due to cyclic import issue

    def __init__(self, text, textattrs=[],
                       relarclenpos=0.5, arclenfrombegin=None, arclenfromend=None,
                       texrunner=None, exclude=None):
        if arclenfrombegin is not None and arclenfromend is not None:
            raise ValueError("either set arclenfrombegin or arclenfromend")
        self.text = text
        self.textattrs = textattrs
        self.relarclenpos = relarclenpos
        self.arclenfrombegin = arclenfrombegin
        self.arclenfromend = arclenfromend
        self.texrunner = texrunner
        self.exclude = exclude

    def decorate(self, dp, texrunner):
        if self.texrunner:
            texrunner = self.texrunner
        import text as textmodule
        self.defaulttextattrs = [textmodule.halign.center]

        dp.ensurenormpath()
        if self.arclenfrombegin is not None:
            textpos = dp.path.begin() + self.arclenfrombegin
        elif self.arclenfromend is not None:
            textpos = dp.path.end() - self.arclenfromend
        else:
            # relarcpos is used if neither arcfrombegin nor arcfromend is given
            textpos = self.relarclenpos * dp.path.arclen()

        textattrs = self.defaulttextattrs + self.textattrs
        t = texrunner.text(0, 0, self.text, textattrs, singlecharmode=1)
        t.ensuredvicanvas()

        c = canvas.canvas()
        for item in t.dvicanvas.items:
            bbox = item.bbox()
            if bbox:
                x = item.bbox().center()[0]
                atrafo = dp.path.trafo(textpos+x)
                c.insert(item, [trafo.translate(-x, 0), atrafo])
                if self.exclude is not None:
                    dp.excluderange(textpos+bbox.left()-self.exclude, textpos+bbox.right()+self.exclude)
            else:
                c.insert(item)
        dp.ornaments.insert(c)



class shownormpath(deco, attr.attr):

    def decorate(self, dp, texrunner):
        r_pt = 2
        dp.ensurenormpath()
        for normsubpath in dp.path.normsubpaths:
            for i, normsubpathitem in enumerate(normsubpath.normsubpathitems):
                if isinstance(normsubpathitem, normpath.normcurve_pt):
                    dp.ornaments.stroke(normpath.normpath([normpath.normsubpath([normsubpathitem])]), [color.rgb.green])
                else:
                    dp.ornaments.stroke(normpath.normpath([normpath.normsubpath([normsubpathitem])]), [color.rgb.blue])
        for normsubpath in dp.path.normsubpaths:
            for i, normsubpathitem in enumerate(normsubpath.normsubpathitems):
                if isinstance(normsubpathitem, normpath.normcurve_pt):
                    dp.ornaments.stroke(path.line_pt(normsubpathitem.x0_pt, normsubpathitem.y0_pt, normsubpathitem.x1_pt, normsubpathitem.y1_pt), [style.linestyle.dashed, color.rgb.red])
                    dp.ornaments.stroke(path.line_pt(normsubpathitem.x2_pt, normsubpathitem.y2_pt, normsubpathitem.x3_pt, normsubpathitem.y3_pt), [style.linestyle.dashed, color.rgb.red])
                    dp.ornaments.draw(path.circle_pt(normsubpathitem.x1_pt, normsubpathitem.y1_pt, r_pt), [filled([color.rgb.red])])
                    dp.ornaments.draw(path.circle_pt(normsubpathitem.x2_pt, normsubpathitem.y2_pt, r_pt), [filled([color.rgb.red])])
        for normsubpath in dp.path.normsubpaths:
            for i, normsubpathitem in enumerate(normsubpath.normsubpathitems):
                if not i:
                    x_pt, y_pt = normsubpathitem.atbegin_pt()
                    dp.ornaments.draw(path.circle_pt(x_pt, y_pt, r_pt), [filled])
                x_pt, y_pt = normsubpathitem.atend_pt()
                dp.ornaments.draw(path.circle_pt(x_pt, y_pt, r_pt), [filled])


class linehatched(deco, attr.exclusiveattr, attr.clearclass):
    """draws a pattern with explicit lines

    This class acts as a drop-in replacement for postscript patterns
    from the pattern module which are not understood by some printers"""

    def __init__(self, dist, angle, strokestyles=[], cross=0):
        attr.clearclass.__init__(self, _filled)
        attr.exclusiveattr.__init__(self, linehatched)
        self.dist = dist
        self.angle = angle
        self.strokestyles = attr.mergeattrs([style.linewidth.THIN] + strokestyles)
        attr.checkattrs(self.strokestyles, [style.strokestyle])
        self.cross = cross

    def __call__(self, dist=None, angle=None, strokestyles=None, cross=None):
        if dist is None:
            dist = self.dist
        if angle is None:
            angle = self.angle
        if strokestyles is None:
            strokestyles = self.strokestyles
        if cross is None:
            cross = self.cross
        return linehatched(dist, angle, strokestyles, cross)

    def _decocanvas(self, angle, dp, texrunner):
        dp.ensurenormpath()
        dist_pt = unit.topt(self.dist)

        c = canvas.canvas([canvas.clip(dp.path)])
        llx_pt, lly_pt, urx_pt, ury_pt = dp.path.bbox().highrestuple_pt()
        center_pt = 0.5*(llx_pt+urx_pt), 0.5*(lly_pt+ury_pt)
        radius_pt = 0.5*math.hypot(urx_pt-llx_pt, ury_pt-lly_pt) + dist_pt
        n = int(2*radius_pt / dist_pt) + 1
        for i in range(n):
            x_pt = center_pt[0] - radius_pt + i*dist_pt
            c.stroke(path.line_pt(x_pt, center_pt[1]-radius_pt, x_pt, center_pt[1]+radius_pt),
                     [trafo.rotate_pt(angle, center_pt[0], center_pt[1])] + self.strokestyles)
        return c

    def decorate(self, dp, texrunner):
        dp.ornaments.insert(self._decocanvas(self.angle, dp, texrunner))
        if self.cross:
            dp.ornaments.insert(self._decocanvas(self.angle+90, dp, texrunner))

    def merge(self, attrs):
        # act as attr.clearclass and as attr.exclusiveattr at the same time
        newattrs = attr.exclusiveattr.merge(self, attrs)
        return attr.clearclass.merge(self, newattrs)

linehatched.clear = attr.clearclass(linehatched)

_hatch_base = 0.1 * unit.v_cm

linehatched0 = linehatched(_hatch_base, 0)
linehatched0.SMALL = linehatched0(_hatch_base/math.sqrt(64))
linehatched0.SMALL = linehatched0(_hatch_base/math.sqrt(64))
linehatched0.SMALl = linehatched0(_hatch_base/math.sqrt(32))
linehatched0.SMAll = linehatched0(_hatch_base/math.sqrt(16))
linehatched0.SMall = linehatched0(_hatch_base/math.sqrt(8))
linehatched0.Small = linehatched0(_hatch_base/math.sqrt(4))
linehatched0.small = linehatched0(_hatch_base/math.sqrt(2))
linehatched0.normal = linehatched0(_hatch_base)
linehatched0.large = linehatched0(_hatch_base*math.sqrt(2))
linehatched0.Large = linehatched0(_hatch_base*math.sqrt(4))
linehatched0.LArge = linehatched0(_hatch_base*math.sqrt(8))
linehatched0.LARge = linehatched0(_hatch_base*math.sqrt(16))
linehatched0.LARGe = linehatched0(_hatch_base*math.sqrt(32))
linehatched0.LARGE = linehatched0(_hatch_base*math.sqrt(64))

linehatched45 = linehatched(_hatch_base, 45)
linehatched45.SMALL = linehatched45(_hatch_base/math.sqrt(64))
linehatched45.SMALl = linehatched45(_hatch_base/math.sqrt(32))
linehatched45.SMAll = linehatched45(_hatch_base/math.sqrt(16))
linehatched45.SMall = linehatched45(_hatch_base/math.sqrt(8))
linehatched45.Small = linehatched45(_hatch_base/math.sqrt(4))
linehatched45.small = linehatched45(_hatch_base/math.sqrt(2))
linehatched45.normal = linehatched45(_hatch_base)
linehatched45.large = linehatched45(_hatch_base*math.sqrt(2))
linehatched45.Large = linehatched45(_hatch_base*math.sqrt(4))
linehatched45.LArge = linehatched45(_hatch_base*math.sqrt(8))
linehatched45.LARge = linehatched45(_hatch_base*math.sqrt(16))
linehatched45.LARGe = linehatched45(_hatch_base*math.sqrt(32))
linehatched45.LARGE = linehatched45(_hatch_base*math.sqrt(64))

linehatched90 = linehatched(_hatch_base, 90)
linehatched90.SMALL = linehatched90(_hatch_base/math.sqrt(64))
linehatched90.SMALl = linehatched90(_hatch_base/math.sqrt(32))
linehatched90.SMAll = linehatched90(_hatch_base/math.sqrt(16))
linehatched90.SMall = linehatched90(_hatch_base/math.sqrt(8))
linehatched90.Small = linehatched90(_hatch_base/math.sqrt(4))
linehatched90.small = linehatched90(_hatch_base/math.sqrt(2))
linehatched90.normal = linehatched90(_hatch_base)
linehatched90.large = linehatched90(_hatch_base*math.sqrt(2))
linehatched90.Large = linehatched90(_hatch_base*math.sqrt(4))
linehatched90.LArge = linehatched90(_hatch_base*math.sqrt(8))
linehatched90.LARge = linehatched90(_hatch_base*math.sqrt(16))
linehatched90.LARGe = linehatched90(_hatch_base*math.sqrt(32))
linehatched90.LARGE = linehatched90(_hatch_base*math.sqrt(64))

linehatched135 = linehatched(_hatch_base, 135)
linehatched135.SMALL = linehatched135(_hatch_base/math.sqrt(64))
linehatched135.SMALl = linehatched135(_hatch_base/math.sqrt(32))
linehatched135.SMAll = linehatched135(_hatch_base/math.sqrt(16))
linehatched135.SMall = linehatched135(_hatch_base/math.sqrt(8))
linehatched135.Small = linehatched135(_hatch_base/math.sqrt(4))
linehatched135.small = linehatched135(_hatch_base/math.sqrt(2))
linehatched135.normal = linehatched135(_hatch_base)
linehatched135.large = linehatched135(_hatch_base*math.sqrt(2))
linehatched135.Large = linehatched135(_hatch_base*math.sqrt(4))
linehatched135.LArge = linehatched135(_hatch_base*math.sqrt(8))
linehatched135.LARge = linehatched135(_hatch_base*math.sqrt(16))
linehatched135.LARGe = linehatched135(_hatch_base*math.sqrt(32))
linehatched135.LARGE = linehatched135(_hatch_base*math.sqrt(64))

crosslinehatched0 = linehatched(_hatch_base, 0, cross=1)
crosslinehatched0.SMALL = crosslinehatched0(_hatch_base/math.sqrt(64))
crosslinehatched0.SMALl = crosslinehatched0(_hatch_base/math.sqrt(32))
crosslinehatched0.SMAll = crosslinehatched0(_hatch_base/math.sqrt(16))
crosslinehatched0.SMall = crosslinehatched0(_hatch_base/math.sqrt(8))
crosslinehatched0.Small = crosslinehatched0(_hatch_base/math.sqrt(4))
crosslinehatched0.small = crosslinehatched0(_hatch_base/math.sqrt(2))
crosslinehatched0.normal = crosslinehatched0
crosslinehatched0.large = crosslinehatched0(_hatch_base*math.sqrt(2))
crosslinehatched0.Large = crosslinehatched0(_hatch_base*math.sqrt(4))
crosslinehatched0.LArge = crosslinehatched0(_hatch_base*math.sqrt(8))
crosslinehatched0.LARge = crosslinehatched0(_hatch_base*math.sqrt(16))
crosslinehatched0.LARGe = crosslinehatched0(_hatch_base*math.sqrt(32))
crosslinehatched0.LARGE = crosslinehatched0(_hatch_base*math.sqrt(64))

crosslinehatched45 = linehatched(_hatch_base, 45, cross=1)
crosslinehatched45.SMALL = crosslinehatched45(_hatch_base/math.sqrt(64))
crosslinehatched45.SMALl = crosslinehatched45(_hatch_base/math.sqrt(32))
crosslinehatched45.SMAll = crosslinehatched45(_hatch_base/math.sqrt(16))
crosslinehatched45.SMall = crosslinehatched45(_hatch_base/math.sqrt(8))
crosslinehatched45.Small = crosslinehatched45(_hatch_base/math.sqrt(4))
crosslinehatched45.small = crosslinehatched45(_hatch_base/math.sqrt(2))
crosslinehatched45.normal = crosslinehatched45
crosslinehatched45.large = crosslinehatched45(_hatch_base*math.sqrt(2))
crosslinehatched45.Large = crosslinehatched45(_hatch_base*math.sqrt(4))
crosslinehatched45.LArge = crosslinehatched45(_hatch_base*math.sqrt(8))
crosslinehatched45.LARge = crosslinehatched45(_hatch_base*math.sqrt(16))
crosslinehatched45.LARGe = crosslinehatched45(_hatch_base*math.sqrt(32))
crosslinehatched45.LARGE = crosslinehatched45(_hatch_base*math.sqrt(64))


class colorgradient(deco, attr.attr):
    """inserts pieces of the path in different colors"""

    def __init__(self, grad, attrs=[], steps=20):
        self.attrs = attrs
        self.grad = grad
        self.steps = steps

    def decorate(self, dp, texrunner):
        dp.ensurenormpath()
        l = dp.path.arclen()

        colors = [self.grad.select(n, self.steps) for n in range(self.steps)]
        colors.reverse()
        params = dp.path.arclentoparam([l*i/float(self.steps) for i in range(self.steps)])
        params.reverse()

        c = canvas.canvas()
        # treat the end pieces separately
        c.stroke(dp.path.split(params[1])[1], attr.mergeattrs([colors[0]] + self.attrs))
        for n in range(1,self.steps-1):
            c.stroke(dp.path.split([params[n-1],params[n+1]])[1], attr.mergeattrs([colors[n]] + self.attrs))
        c.stroke(dp.path.split(params[-2])[0], attr.mergeattrs([colors[-1]] + self.attrs))
        dp.ornaments.insert(c)


class brace(deco, attr.attr):
    r"""draws a nicely curled brace

    In most cases, the original line is not wanted use canvas.canvas.draw(..) for it

    Geometrical parameters:

                 inner /\ strokes
          ____________/  \__________
         /   bar            bar     \ outer
        /                            \ strokes

    totalheight  distance from the jaws to the middle cap
    barthickness  thickness of the main bars
    innerstrokesthickness  thickness of the two ending strokes
    outerstrokesthickness  thickness of the inner strokes at the middle cap
    innerstrokesrelheight  height of the inner/outer strokes, relative to the total height
    outerstrokesrelheight  this determines the angle of the main bars!
                           should be around 0.5
    Note: if innerstrokesrelheight + outerstrokesrelheight == 1 then the main bars
          will be aligned parallel to the connecting line between the endpoints
    outerstrokesangle  angle of the two ending strokes
    innerstrokesangle  angle between the inner strokes at the middle cap
    slantstrokesangle  extra slanting of the inner/outer strokes
    innerstrokessmoothness  smoothing parameter for the inner + outer strokes
    outerstrokessmoothness  should be around 1 (allowed: [0,infty))
    middlerelpos  position of the middle cap (0 == left, 1 == right)
    """
    # This code is experimental because it is unclear
    # how the brace fits into the concepts of PyX
    #
    # Some thoughts:
    # - a brace needs to be decoratable with text
    #   it needs stroking and filling attributes
    # - the brace is not really a box:
    #   it has two "anchor" points that are important for aligning it to other things
    #   and one "anchor" point (plus direction) for aligning other things
    # - a brace is not a deformer:
    #   it does not look at anything else than begin/endpoint of a path
    # - a brace might be a connector (which is to be dissolved into the box concept later?)

    def __init__(self, reverse=1, stretch=None, dist=None, fillattrs=[],
        totalheight=12*unit.x_pt,
        barthickness=0.5*unit.x_pt, innerstrokesthickness=0.25*unit.x_pt, outerstrokesthickness=0.25*unit.x_pt,
        innerstrokesrelheight=0.6, outerstrokesrelheight=0.7,
        innerstrokesangle=30, outerstrokesangle=25, slantstrokesangle=5,
        innerstrokessmoothness=2.0, outerstrokessmoothness=2.5,
        middlerelpos=0.5):
        self.fillattrs = fillattrs
        self.reverse = reverse
        self.stretch = stretch
        self.dist = dist
        self.totalheight            = totalheight
        self.barthickness           = barthickness
        self.innerstrokesthickness  = innerstrokesthickness
        self.outerstrokesthickness  = outerstrokesthickness
        self.innerstrokesrelheight  = innerstrokesrelheight
        self.outerstrokesrelheight  = outerstrokesrelheight
        self.innerstrokesangle      = innerstrokesangle
        self.outerstrokesangle      = outerstrokesangle
        self.slantstrokesangle      = slantstrokesangle
        self.innerstrokessmoothness = innerstrokessmoothness
        self.outerstrokessmoothness = outerstrokessmoothness
        self.middlerelpos           = middlerelpos

    def __call__(self, **kwargs):
        for name in ["reverse", "stretch", "dist", "fillattrs",
            "totalheight", "barthickness", "innerstrokesthickness", "outerstrokesthickness",
            "innerstrokesrelheight", "outerstrokesrelheight", "innerstrokesangle", "outerstrokesangle", "slantstrokesangle",
            "innerstrokessmoothness", "outerstrokessmoothness", "middlerelpos"]:
            if not kwargs.has_key(name):
                kwargs[name] = self.__dict__[name]
        return brace(**kwargs)

    def _halfbracepath_pt(self, length_pt, height_pt, ilength_pt, olength_pt, # <<<
    ithick_pt, othick_pt, bthick_pt, cos_iangle, sin_iangle, cos_oangle,
    sin_oangle, cos_slangle, sin_slangle):

        ismooth = self.innerstrokessmoothness
        osmooth = self.outerstrokessmoothness

        # these two parameters are not important enough to be seen outside
        inner_cap_param = 1.5
        outer_cap_param = 2.5
        outerextracurved = 0.6 # in (0, 1]
        # 1.0 will lead to F=G, the outer strokes will not be curved at their ends.
        # The smaller, the more curvature

        # build an orientation path (three straight lines)
        #
        #      \q1
        #    /  \
        #   /    \
        # _/      \______________________________________q5
        #         q2         q3              q4           \
        #                                                  \
        #                                                   \
        #                                                    \q6
        #
        # get the points for that:
        q1 = (0, height_pt - inner_cap_param * ithick_pt + 0.5*ithick_pt/sin_iangle)
        q2 = (q1[0] + ilength_pt * sin_iangle,
              q1[1] - ilength_pt * cos_iangle)
        q6 = (length_pt, 0)
        q5 = (q6[0] - olength_pt * sin_oangle,
              q6[1] + olength_pt * cos_oangle)
        bardir = (q5[0] - q2[0], q5[1] - q2[1])
        bardirnorm = math.hypot(*bardir)
        bardir = (bardir[0]/bardirnorm, bardir[1]/bardirnorm)
        ismoothlength_pt = ilength_pt * ismooth
        osmoothlength_pt = olength_pt * osmooth
        if bardirnorm < ismoothlength_pt + osmoothlength_pt:
            ismoothlength_pt = bardirnorm * ismoothlength_pt / (ismoothlength_pt + osmoothlength_pt)
            osmoothlength_pt = bardirnorm * osmoothlength_pt / (ismoothlength_pt + osmoothlength_pt)
        q3 = (q2[0] + ismoothlength_pt * bardir[0],
              q2[1] + ismoothlength_pt * bardir[1])
        q4 = (q5[0] - osmoothlength_pt * bardir[0],
              q5[1] - osmoothlength_pt * bardir[1])

        #
        #    P _O
        #   / | \A2
        #  / A1\ \
        #   /   \ B2C2________D2___________E2_______F2___G2
        #        \______________________________________  \
        #       B1,C1         D1           E1      F1  G1  \
        #                                                \  \
        #                                                 \  \H2
        #                                                H1\_/I2
        #                                                  I1
        #
        # the halfbraces meet in P and A1:
        P = (0, height_pt)
        A1 = (0, height_pt - inner_cap_param * ithick_pt)
        # A2 is A1, shifted by the inner thickness
        A2 = (A1[0] + ithick_pt * cos_iangle,
              A1[1] + ithick_pt * sin_iangle)
        s, t = deformer.intersection(P, A2, (cos_slangle, sin_slangle), (sin_iangle, -cos_iangle))
        O = (P[0] + s * cos_slangle,
             P[1] + s * sin_slangle)

        # from D1 to E1 is the straight part of the brace
        # also back from E2 to D1
        D1 = (q3[0] + bthick_pt * bardir[1],
              q3[1] - bthick_pt * bardir[0])
        D2 = (q3[0] - bthick_pt * bardir[1],
              q3[1] + bthick_pt * bardir[0])
        E1 = (q4[0] + bthick_pt * bardir[1],
              q4[1] - bthick_pt * bardir[0])
        E2 = (q4[0] - bthick_pt * bardir[1],
              q4[1] + bthick_pt * bardir[0])
        # I1, I2 are the control points at the outer stroke
        I1 = (q6[0] - 0.5 * othick_pt * cos_oangle,
              q6[1] - 0.5 * othick_pt * sin_oangle)
        I2 = (q6[0] + 0.5 * othick_pt * cos_oangle,
              q6[1] + 0.5 * othick_pt * sin_oangle)
        # get the control points for the curved parts of the brace
        s, t = deformer.intersection(A1, D1, (sin_iangle, -cos_iangle), bardir)
        B1 = (D1[0] + t * bardir[0],
              D1[1] + t * bardir[1])
        s, t = deformer.intersection(A2, D2, (sin_iangle, -cos_iangle), bardir)
        B2 = (D2[0] + t * bardir[0],
              D2[1] + t * bardir[1])
        s, t = deformer.intersection(E1, I1, bardir, (-sin_oangle, cos_oangle))
        G1 = (E1[0] + s * bardir[0],
              E1[1] + s * bardir[1])
        s, t = deformer.intersection(E2, I2, bardir, (-sin_oangle, cos_oangle))
        G2 = (E2[0] + s * bardir[0],
              E2[1] + s * bardir[1])
        # at the inner strokes: use curvature zero at both ends
        C1 = B1
        C2 = B2
        # at the outer strokes: use curvature zero only at the connection to
        # the straight part
        F1 = (outerextracurved * G1[0] + (1 - outerextracurved) * E1[0],
              outerextracurved * G1[1] + (1 - outerextracurved) * E1[1])
        F2 = (outerextracurved * G2[0] + (1 - outerextracurved) * E2[0],
              outerextracurved * G2[1] + (1 - outerextracurved) * E2[1])
        # the tip of the outer stroke, endpoints of the bezier curve
        H1 = (I1[0] - outer_cap_param * othick_pt * sin_oangle,
              I1[1] + outer_cap_param * othick_pt * cos_oangle)
        H2 = (I2[0] - outer_cap_param * othick_pt * sin_oangle,
              I2[1] + outer_cap_param * othick_pt * cos_oangle)

        #for qq in [A1,B1,C1,D1,E1,F1,G1,H1,I1,
        #           A2,B2,C2,D2,E2,F2,G2,H2,I2,
        #           O,P
        #           ]:
        #    cc.fill(path.circle(qq[0], qq[1], 0.5), [color.rgb.green])

        # now build the right halfbrace
        bracepath = path.path(path.moveto_pt(*A1))
        bracepath.append(path.curveto_pt(B1[0], B1[1], C1[0], C1[1], D1[0], D1[1]))
        bracepath.append(path.lineto_pt(E1[0], E1[1]))
        bracepath.append(path.curveto_pt(F1[0], F1[1], G1[0], G1[1], H1[0], H1[1]))
        # the tip of the right halfbrace
        bracepath.append(path.curveto_pt(I1[0], I1[1], I2[0], I2[1], H2[0], H2[1]))
        # the rest of the right halfbrace
        bracepath.append(path.curveto_pt(G2[0], G2[1], F2[0], F2[1], E2[0], E2[1]))
        bracepath.append(path.lineto_pt(D2[0], D2[1]))
        bracepath.append(path.curveto_pt(C2[0], C2[1], B2[0], B2[1], A2[0], A2[1]))
        # the tip in the middle of the brace
        bracepath.append(path.curveto_pt(O[0], O[1], O[0], O[1], P[0], P[1]))

        return bracepath
    # >>>

    def _bracepath(self, x0_pt, y0_pt, x1_pt, y1_pt): # <<<
        height_pt = unit.topt(self.totalheight)
        totallength_pt = math.hypot(x1_pt - x0_pt, y1_pt - y0_pt)
        leftlength_pt = self.middlerelpos * totallength_pt
        rightlength_pt = totallength_pt - leftlength_pt
        ithick_pt = unit.topt(self.innerstrokesthickness)
        othick_pt = unit.topt(self.outerstrokesthickness)
        bthick_pt = unit.topt(self.barthickness)

        # create the left halfbrace with positive slanting
        # because we will mirror this part
        cos_iangle = math.cos(math.radians(0.5*self.innerstrokesangle - self.slantstrokesangle))
        sin_iangle = math.sin(math.radians(0.5*self.innerstrokesangle - self.slantstrokesangle))
        cos_oangle = math.cos(math.radians(self.outerstrokesangle - self.slantstrokesangle))
        sin_oangle = math.sin(math.radians(self.outerstrokesangle - self.slantstrokesangle))
        cos_slangle = math.cos(math.radians(-self.slantstrokesangle))
        sin_slangle = math.sin(math.radians(-self.slantstrokesangle))
        ilength_pt = self.innerstrokesrelheight * height_pt / cos_iangle
        olength_pt = self.outerstrokesrelheight * height_pt / cos_oangle

        bracepath = self._halfbracepath_pt(leftlength_pt, height_pt,
          ilength_pt, olength_pt, ithick_pt, othick_pt, bthick_pt, cos_iangle,
          sin_iangle, cos_oangle, sin_oangle, cos_slangle,
          sin_slangle).reversed().transformed(trafo.mirror(90))

        # create the right halfbrace with negative slanting
        cos_iangle = math.cos(math.radians(0.5*self.innerstrokesangle + self.slantstrokesangle))
        sin_iangle = math.sin(math.radians(0.5*self.innerstrokesangle + self.slantstrokesangle))
        cos_oangle = math.cos(math.radians(self.outerstrokesangle + self.slantstrokesangle))
        sin_oangle = math.sin(math.radians(self.outerstrokesangle + self.slantstrokesangle))
        cos_slangle = math.cos(math.radians(-self.slantstrokesangle))
        sin_slangle = math.sin(math.radians(-self.slantstrokesangle))
        ilength_pt = self.innerstrokesrelheight * height_pt / cos_iangle
        olength_pt = self.outerstrokesrelheight * height_pt / cos_oangle

        bracepath = bracepath << self._halfbracepath_pt(rightlength_pt, height_pt,
        ilength_pt, olength_pt, ithick_pt, othick_pt, bthick_pt, cos_iangle,
        sin_iangle, cos_oangle, sin_oangle, cos_slangle,
        sin_slangle)

        return bracepath.transformed(
          # two trafos for matching the given endpoints
          trafo.translate_pt(x0_pt, y0_pt) *
          trafo.rotate_pt(math.degrees(math.atan2(y1_pt-y0_pt, x1_pt-x0_pt))) *
          # one trafo to move the brace's left outer stroke to zero
          trafo.translate_pt(leftlength_pt, 0))
    # >>>

    def decorate(self, dp, texrunner):
        dp.ensurenormpath()
        x0_pt, y0_pt = dp.path.atbegin_pt()
        x1_pt, y1_pt = dp.path.atend_pt()
        if self.reverse:
            x0_pt, y0_pt, x1_pt, y1_pt = x1_pt, y1_pt, x0_pt, y0_pt
        if self.stretch is not None:
            xm, ym = 0.5*(x0_pt+x1_pt), 0.5*(y0_pt+y1_pt)
            x0_pt, y0_pt = xm + self.stretch*(x0_pt-xm), ym + self.stretch*(y0_pt-ym)
            x1_pt, y1_pt = xm + self.stretch*(x1_pt-xm), ym + self.stretch*(y1_pt-ym)
        if self.dist is not None:
            d = unit.topt(self.dist)
            dx, dy = dp.path.rotation_pt(dp.path.begin()).apply_pt(0, 1)
            x0_pt += d*dx; y0_pt += d*dy
            dx, dy = dp.path.rotation_pt(dp.path.end()).apply_pt(0, 1)
            x1_pt += d*dx; y1_pt += d*dy
        dp.ornaments.fill(self._bracepath(x0_pt, y0_pt, x1_pt, y1_pt), self.fillattrs)

brace.clear = attr.clearclass(brace)

leftbrace  = brace(reverse=0, middlerelpos=0.55, innerstrokesrelheight=0.6, outerstrokesrelheight=0.7, slantstrokesangle=-10)
rightbrace = brace(reverse=1, middlerelpos=0.45, innerstrokesrelheight=0.6, outerstrokesrelheight=0.7, slantstrokesangle=10)
belowbrace = brace(reverse=1, middlerelpos=0.55, innerstrokesrelheight=0.7, outerstrokesrelheight=0.9, slantstrokesangle=-10)
abovebrace = brace(reverse=0, middlerelpos=0.45, innerstrokesrelheight=0.7, outerstrokesrelheight=0.9, slantstrokesangle=-10)
straightbrace = brace(innerstrokesrelheight=0.5, outerstrokesrelheight=0.5,
        innerstrokesangle=30, outerstrokesangle=30, slantstrokesangle=0,
        innerstrokessmoothness=1.0, outerstrokessmoothness=1.0)