/usr/share/pyshared/pywcs/pywcs.py is in python-pywcs 1.11-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 | # Copyright (C) 2008-2012 Association of Universities for Research in
# Astronomy (AURA)
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above
# copyright notice, this list of conditions and the following
# disclaimer.
#
# 2. Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials
# provided with the distribution.
#
# 3. The name of AURA and its representatives may not be used to
# endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY AURA ``AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL AURA BE LIABLE FOR ANY DIRECT,
# INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
# OF THE POSSIBILITY OF SUCH DAMAGE.
"""
Under the hood, there are 3 separate classes that perform different
parts of the transformation:
- `~pywcs.Wcsprm`: Is a direct wrapper of the core WCS
functionality in `wcslib`_.
- `~pywcs.Sip`: Handles polynomial distortion as defined in the
`SIP`_ convention.
- `~pywcs.DistortionLookupTable`: Handles `Paper IV`_ distortion
lookup tables.
Additionally, the class `WCS` aggregates all of these transformations
together in a pipeline:
- Detector to image plane correction (by a pair of
`~pywcs.DistortionLookupTable` objects).
- `SIP`_ distortion correction (by an underlying `~pywcs.Sip`
object)
- `Paper IV`_ table-lookup distortion correction (by a pair of
`~pywcs.DistortionLookupTable` objects).
- `wcslib`_ WCS transformation (by a `~pywcs.Wcsprm` object)
"""
from __future__ import division # confidence high
# stdlib
import copy
import sys
# third-party
import numpy as np
try:
import pyfits
HAS_PYFITS = True
except ImportError:
HAS_PYFITS = False
# local
if sys.version_info[0] >= 3:
from . import _docutil as __
from . import _pywcs
else:
import _docutil as __
import _pywcs
assert _pywcs._sanity_check(), \
"""PyWcs did not pass its sanity check for your build on your platform.
Please send details about your build and platform to mdroe@stsci.edu"""
if sys.version_info[0] >= 3:
string_types = (bytes,)
else:
string_types = (str, unicode)
# This is here for the sake of epydoc
WCSBase = _pywcs._Wcs
DistortionLookupTable = _pywcs.DistortionLookupTable
Sip = _pywcs.Sip
UnitConverter = _pywcs.UnitConverter
class Wcsprm(_pywcs._Wcsprm): pass
# Copy all the constants from the C extension into this module's namespace
for key, val in _pywcs.__dict__.items():
if (key.startswith('WCSSUB') or
key.startswith('WCSHDR') or
key.startswith('WCSHDO')):
locals()[key] = val
# A wrapper around the C WCS type
def _parse_keysel(keysel):
keysel_flags = 0
if keysel is not None:
for element in keysel:
if element.lower() == 'image':
keysel_flags |= _pywcs.WCSHDR_IMGHEAD
elif element.lower() == 'binary':
keysel_flags |= _pywcs.WCSHDR_BIMGARR
elif element.lower() == 'pixel':
keysel_flags |= _pywcs.WCSHDR_PIXLIST
else:
raise ValueError(
"keysel must be a list of 'image', 'binary' and/or 'pixel'")
else:
keysel_flags = -1
return keysel_flags
class WCS(WCSBase):
"""
WCS objects perform standard WCS transformations, and correct for
`SIP`_ and `Paper IV`_ table-lookup distortions, based on the WCS
keywords and supplementary data read from a FITS file.
"""
def __init__(self, header=None, fobj=None, key=' ', minerr=0.0,
relax=False, naxis=None, keysel=None, colsel=None):
"""
- *header*: A string containing the header content, or a
PyFITS header object. If *header* is not provided or None,
the object will be initialized to default values.
- *fobj*: A PyFITS file (hdulist) object. It is needed when
header keywords point to a `Paper IV`_ Lookup table
distortion stored in a different extension.
- *key*: A string. The name of a particular WCS transform to
use. This may be either ``' '`` or ``'A'``-``'Z'`` and
corresponds to the ``"a"`` part of the ``CTYPEia`` cards.
*key* may only be provided if *header* is also provided.
- *minerr*: A floating-point value. The minimum value a
distortion correction must have in order to be applied. If
the value of ``CQERRja`` is smaller than *minerr*, the
corresponding distortion is not applied.
- *relax*: Degree of permissiveness:
- `False`: Recognize only FITS keywords defined by the
published WCS standard.
- `True`: Admit all recognized informal extensions of the
WCS standard.
- `int`: a bit field selecting specific extensions to
accept. See :ref:`relaxread` for details.
- *naxis*: int or sequence. Extracts specific coordinate axes
using :meth:`~pywcs.Wcsprm.sub`. If a header is provided,
and *naxis* is not ``None``, *naxis* will be passed to
:meth:`~pywcs.Wcsprm.sub` in order to select specific axes
from the header. See :meth:`~pywcs.Wcsprm.sub` for more
details about this parameter.
- *keysel*: A list of flags used to select the keyword types
considered by wcslib. When ``None``, only the standard
image header keywords are considered (and the underlying
wcspih() C function is called). To use binary table image
array or pixel list keywords, *keysel* must be set.
Each element in the list should be one of the following
strings:
- 'image': Image header keywords
- 'binary': Binary table image array keywords
- 'pixel': Pixel list keywords
Keywords such as ``EQUIna`` or ``RFRQna`` that are common to
binary table image arrays and pixel lists (including
``WCSNna`` and ``TWCSna``) are selected by both 'binary' and
'pixel'.
- *colsel*: A sequence of table column numbers used
to restrict the WCS transformations considered to only those
pertaining to the specified columns. If `None`, there is no
restriction.
.. warning::
pywcs supports arbitrary *n* dimensions for the core WCS
(the transformations handled by WCSLIB). However, the Paper
IV lookup table and SIP distortions must be two dimensional.
Therefore, if you try to create a WCS object where the core
WCS has a different number of dimensions than 2 and that
object also contains a Paper IV lookup table or SIP
distortion, a `ValueError` exception will be raised. To
avoid this, consider using the *naxis* kwarg to select two
dimensions from the core WCS.
**Exceptions:**
- `MemoryError`: Memory allocation failed.
- `ValueError`: Invalid key.
- `KeyError`: Key not found in FITS header.
- `AssertionError`: Lookup table distortion present in the
header but fobj not provided.
"""
if header is None:
if naxis is None:
naxis = 2
wcsprm = _pywcs._Wcsprm(header=None, key=key,
relax=relax, naxis=naxis)
self.naxis = wcsprm.naxis
# Set some reasonable defaults.
det2im = (None, None)
cpdis = (None, None)
sip = None
else:
keysel_flags = _parse_keysel(keysel)
if isinstance(header, string_types):
header_string = header
elif HAS_PYFITS:
assert isinstance(header, pyfits.Header)
header_string = repr(header.ascard)
else:
raise TypeError(
"header must be a string or a pyfits.Header object")
try:
wcsprm = _pywcs._Wcsprm(header=header_string, key=key,
relax=relax, keysel=keysel_flags,
colsel=colsel)
except _pywcs.NoWcsKeywordsFoundError:
# The header may have SIP or distortions, but no core
# WCS. That isn't an error -- we want a "default"
# (identity) core Wcs transformation in that case.
if colsel is None:
wcsprm = _pywcs._Wcsprm(header=None, key=key,
relax=relax, keysel=keysel_flags,
colsel=colsel)
else:
raise
if naxis is not None:
wcsprm = wcsprm.sub(naxis)
self.naxis = wcsprm.naxis
det2im = self._read_det2im_kw(header, fobj)
cpdis = self._read_distortion_kw(
header, fobj, dist='CPDIS', err=minerr)
sip = self._read_sip_kw(header)
if (wcsprm.naxis != 2 and
(det2im[0] or det2im[1] or cpdis[0] or cpdis[1] or sip)):
raise ValueError(
"""
Paper IV lookup tables and SIP distortions only work in 2 dimensions.
However, WCSLIB has detected %d dimensions in the core WCS keywords.
To use core WCS in conjunction with Paper IV lookup tables or SIP
distortion, you must select or reduce these to 2 dimensions using the
naxis kwarg.
""" %
wcsprm.naxis)
self.get_naxis(header)
WCSBase.__init__(self, sip, cpdis, wcsprm, det2im)
def __copy__(self):
new_copy = self.__class__()
WCSBase.__init__(new_copy, self.sip,
(self.cpdis1, self.cpdis2),
self.wcs,
(self.det2im1, self.det2im2))
new_copy.__dict__.update(self.__dict__)
return new_copy
def __deepcopy__(self, memo):
new_copy = self.__class__()
new_copy.naxis = copy.deepcopy(self.naxis, memo)
WCSBase.__init__(new_copy, copy.deepcopy(self.sip, memo),
(copy.deepcopy(self.cpdis1, memo),
copy.deepcopy(self.cpdis2, memo)),
copy.deepcopy(self.wcs, memo),
(copy.deepcopy(self.det2im1, memo),
copy.deepcopy(self.det2im2, memo)))
for key in self.__dict__:
val = self.__dict__[key]
new_copy.__dict__[key] = copy.deepcopy(val, memo)
return new_copy
def copy(self):
"""
Return a shallow copy of the object.
Convenience method so user doesn't have to import the :mod:`copy`
stdlib module.
"""
return copy.copy(self)
def deepcopy(self):
"""
Return a deep copy of the object.
Convenience method so user doesn't have to import the :mod:`copy`
stdlib module.
"""
return copy.deepcopy(self)
def sub(self, axes=None):
copy = self.deepcopy()
copy.wcs = self.wcs.sub(axes)
copy.naxis = copy.wcs.naxis
return copy
sub.__doc__ = _pywcs._Wcsprm.sub.__doc__
def calcFootprint(self, header=None, undistort=True):
"""
Calculates the footprint of the image on the sky.
A footprint is defined as the positions of the corners of the
image on the sky after all available distortions have been
applied.
Returns a (4, 2) array of (*x*, *y*) coordinates.
"""
if header is None:
try:
# classes that inherit from WCS and define naxis1/2
# do not require a header parameter
naxis1 = self.naxis1
naxis2 = self.naxis2
except AttributeError :
print("Need a valid header in order to calculate footprint\n")
return None
else:
naxis1 = header.get('NAXIS1', None)
naxis2 = header.get('NAXIS2', None)
corners = np.zeros(shape=(4,2),dtype=np.float64)
if naxis1 is None or naxis2 is None:
return None
corners[0,0] = 1.
corners[0,1] = 1.
corners[1,0] = 1.
corners[1,1] = naxis2
corners[2,0] = naxis1
corners[2,1] = naxis2
corners[3,0] = naxis1
corners[3,1] = 1.
if undistort:
return self.all_pix2sky(corners, 1)
else:
return self.wcs_pix2sky(corners,1)
def _read_det2im_kw(self, header, fobj):
"""
Create a `Paper IV`_ type lookup table for detector to image
plane correction.
"""
cpdis = [None, None]
crpix = [0.,0.]
crval = [0.,0.]
cdelt = [1.,1.]
if fobj is None:
return (None, None)
if not HAS_PYFITS:
raise ImportError(
"pyfits is required to use Paper IV lookup tables")
if not isinstance(fobj, pyfits.HDUList):
return (None, None)
try:
d2im_data = fobj[('D2IMARR', 1)].data
except KeyError:
return (None, None)
except AttributeError:
return (None, None)
d2im_data = np.array([d2im_data])
d2im_hdr = fobj[('D2IMARR', 1)].header
naxis = d2im_hdr['NAXIS']
for i in range(1,naxis+1):
crpix[i-1] = d2im_hdr.get('CRPIX'+str(i), 0.0)
crval[i-1] = d2im_hdr.get('CRVAL'+str(i), 0.0)
cdelt[i-1] = d2im_hdr.get('CDELT'+str(i), 1.0)
cpdis = DistortionLookupTable(d2im_data, crpix, crval, cdelt)
axiscorr = header.get('AXISCORR', None)
if axiscorr == 1:
return (cpdis, None)
else:
return (None, cpdis)
def _read_distortion_kw(self, header, fobj, dist='CPDIS', err=0.0):
"""
Reads `Paper IV`_ table-lookup distortion keywords and data,
and returns a 2-tuple of `~pywcs.DistortionLookupTable`
objects.
If no `Paper IV`_ distortion keywords are found, ``(None,
None)`` is returned.
"""
if isinstance(header, string_types):
return (None, None)
if dist == 'CPDIS':
d_kw = 'DP'
err_kw = 'CPERR'
else:
d_kw = 'DQ'
err_kw = 'CQERR'
tables = {}
for i in range(1, self.naxis+1):
d_error = header.get(err_kw+str(i), 0.0)
if d_error < err:
tables[i] = None
continue
distortion = dist+str(i)
if distortion in header:
dis = header[distortion].lower()
if dis == 'lookup':
if fobj is not None and not HAS_PYFITS:
raise ImportError(
"pyfits is required to use Paper IV lookup tables")
assert isinstance(fobj, pyfits.HDUList), \
'A pyfits HDUList is required for Lookup table distortion.'
dp = (d_kw+str(i)).strip()
d_extver = header.get(dp+'.EXTVER', 1)
if i == header[dp+'.AXIS.%s'%i]:
d_data = fobj['WCSDVARR', d_extver].data
else:
d_data = (fobj['WCSDVARR', d_extver].data).transpose()
d_header = fobj['WCSDVARR', d_extver].header
d_crpix = (d_header.get('CRPIX1', 0.0), d_header.get('CRPIX2', 0.0))
d_crval = (d_header.get('CRVAL1', 0.0), d_header.get('CRVAL2', 0.0))
d_cdelt = (d_header.get('CDELT1', 1.0), d_header.get('CDELT2', 1.0))
d_lookup = DistortionLookupTable(d_data, d_crpix,
d_crval, d_cdelt)
tables[i] = d_lookup
else:
print('Polynomial distortion is not implemented.\n')
else:
tables[i] = None
if not tables:
return (None, None)
else:
return (tables.get(1), tables.get(2))
def _read_sip_kw(self, header):
"""
Reads `SIP`_ header keywords and returns a `~pywcs.Sip`
object.
If no `SIP`_ header keywords are found, ``None`` is returned.
"""
if isinstance(header, string_types):
# TODO: Parse SIP from a string without pyfits around
return None
if "A_ORDER" in header:
if "B_ORDER" not in header:
raise ValueError(
"A_ORDER provided without corresponding B_ORDER "
"keyword for SIP distortion")
m = int(header["A_ORDER"])
a = np.zeros((m+1, m+1), np.double)
for i in range(m+1):
for j in range(m-i+1):
a[i, j] = header.get(("A_%d_%d" % (i, j)), 0.0)
m = int(header["B_ORDER"])
b = np.zeros((m+1, m+1), np.double)
for i in range(m+1):
for j in range(m-i+1):
b[i, j] = header.get(("B_%d_%d" % (i, j)), 0.0)
elif "B_ORDER" in header:
raise ValueError(
"B_ORDER provided without corresponding A_ORDER "
"keyword for SIP distortion")
else:
a = None
b = None
if "AP_ORDER" in header:
if "BP_ORDER" not in header:
raise ValueError(
"AP_ORDER provided without corresponding BP_ORDER "
"keyword for SIP distortion")
m = int(header["AP_ORDER"])
ap = np.zeros((m+1, m+1), np.double)
for i in range(m+1):
for j in range(m-i+1):
ap[i, j] = header.get("AP_%d_%d" % (i, j), 0.0)
m = int(header["BP_ORDER"])
bp = np.zeros((m+1, m+1), np.double)
for i in range(m+1):
for j in range(m-i+1):
bp[i, j] = header.get("BP_%d_%d" % (i, j), 0.0)
elif "BP_ORDER" in header:
raise ValueError(
"BP_ORDER provided without corresponding AP_ORDER "
"keyword for SIP distortion")
else:
ap = None
bp = None
if a is None and b is None and ap is None and bp is None:
return None
if "CRPIX1" not in header or "CRPIX2" not in header:
raise ValueError(
"Header has SIP keywords without CRPIX keywords")
crpix1 = header.get("CRPIX1")
crpix2 = header.get("CRPIX2")
return Sip(a, b, ap, bp, (crpix1, crpix2))
def _denormalize_sky(self, sky):
if self.wcs.lngtyp != 'RA':
raise ValueError(
"WCS does not have longitude type of 'RA', therefore " +
"(ra, dec) data can not be used as input")
if self.wcs.lattype != 'DEC':
raise ValueError(
"WCS does not have longitude type of 'DEC', therefore " +
"(ra, dec) data can not be used as input")
if self.wcs.naxis == 2:
if self.wcs.lng == 0 and self.wcs.lat == 1:
return sky
elif self.wcs.lng == 1 and self.wcs.lat == 0:
# Reverse the order of the columns
return sky[:,::-1]
else:
raise ValueError(
"WCS does not have longitude and latitude celestial " +
"axes, therefore (ra, dec) data can not be used as input")
else:
if self.wcs.lng < 0 or self.wcs.lat < 0:
raise ValueError(
"WCS does not have both longitude and latitude celestial " +
"axes, therefore (ra, dec) data can not be used as input")
out = np.zeros((sky.shape[0], self.wcs.naxis))
out[:,self.wcs.lng] = sky[:,0]
out[:,self.wcs.lat] = sky[:,1]
return out
def _normalize_sky(self, sky):
if self.wcs.lngtyp != 'RA':
raise ValueError(
"WCS does not have longitude type of 'RA', therefore " +
"(ra, dec) data can not be returned")
if self.wcs.lattype != 'DEC':
raise ValueError(
"WCS does not have longitude type of 'DEC', therefore " +
"(ra, dec) data can not be returned")
if self.wcs.naxis == 2:
if self.wcs.lng == 0 and self.wcs.lat == 1:
return sky
elif self.wcs.lng == 1 and self.wcs.lat == 0:
# Reverse the order of the columns
return sky[:,::-1]
else:
raise ValueError(
"WCS does not have longitude and latitude celestial "
"axes, therefore (ra, dec) data can not be returned")
else:
if self.wcs.lng < 0 or self.wcs.lat < 0:
raise ValueError(
"WCS does not have both longitude and latitude celestial "
"axes, therefore (ra, dec) data can not be returned")
out = np.empty((sky.shape[0], 2))
out[:,0] = sky[:,self.wcs.lng]
out[:,1] = sky[:,self.wcs.lat]
return out
def _array_converter(self, func, sky, *args, **kwargs):
"""
A helper function to support reading either a pair of arrays
or a single Nx2 array.
"""
ra_dec_order = kwargs.get('ra_dec_order')
if len(args) == 2:
xy, origin = args
try:
xy = np.asarray(xy)
origin = int(origin)
except:
raise TypeError(
"When providing two arguments, they must be (xy, origin)")
if ra_dec_order and sky == 'input':
xy = self._denormalize_sky(xy)
result = func(xy, origin)
if ra_dec_order and sky == 'output':
result = self._normalize_sky(result)
return result
elif len(args) == 3:
x, y, origin = args
try:
x = np.asarray(x)
y = np.asarray(y)
origin = int(origin)
except:
raise TypeError(
"When providing three arguments, they must be (x, y, origin)")
if x.size != y.size:
raise ValueError("x and y arrays are not the same size")
length = x.size
xy = np.hstack((x.reshape((length, 1)),
y.reshape((length, 1))))
if ra_dec_order and sky == 'input':
xy = self._denormalize_sky(xy)
sky = func(xy, origin)
if ra_dec_order and sky == 'output':
sky = self._normalize_sky_output(sky)
return sky[:, 0], sky[:, 1]
return [sky[:, i] for i in range(sky.shape[1])]
raise TypeError("Expected 2 or 3 arguments, %d given" % len(args))
def all_pix2sky(self, *args, **kwargs):
return self._array_converter(self._all_pix2sky, 'output', *args, **kwargs)
all_pix2sky.__doc__ = """
Transforms pixel coordinates to sky coordinates by doing all
of the following in order:
- Detector to image plane correction (optionally)
- `SIP`_ distortion correction (optionally)
- `Paper IV`_ table-lookup distortion correction (optionally)
- `wcslib`_ WCS transformation
%s
%s
For a transformation that is not two-dimensional, the
two-argument form must be used.
.. note::
The order of the axes for the result is determined by the
`CTYPEia` keywords in the FITS header, therefore it may
not always be of the form (*ra*, *dec*). The
`~pywcs.Wcsprm.lat`, `~pywcs.Wcsprm.lng`,
`~pywcs.Wcsprm.lattyp` and `~pywcs.Wcsprm.lngtyp` members
can be used to determine the order of the axes.
**Exceptions:**
- `MemoryError`: Memory allocation failed.
- `SingularMatrixError`: Linear transformation matrix is
singular.
- `InconsistentAxisTypesError`: Inconsistent or unrecognized
coordinate axis types.
- `ValueError`: Invalid parameter value.
- `ValueError`: Invalid coordinate transformation parameters.
- `ValueError`: x- and y-coordinate arrays are not the same
size.
- `InvalidTransformError`: Invalid coordinate transformation
parameters.
- `InvalidTransformError`: Ill-conditioned coordinate
transformation parameters.
""" % (__.TWO_OR_THREE_ARGS(
'sky coordinates, in degrees', 'naxis', 8),
__.RA_DEC_ORDER(8))
def wcs_pix2sky(self, *args, **kwargs):
if self.wcs is None:
raise ValueError("No basic WCS settings were created.")
return self._array_converter(lambda xy, o: self.wcs.p2s(xy, o)['world'],
'output', *args, **kwargs)
wcs_pix2sky.__doc__ = """
Transforms pixel coordinates to sky coordinates by doing only
the basic `wcslib`_ transformation. No `SIP`_ or `Paper IV`_
table lookup distortion correction is applied. To perform
distortion correction, see `~pywcs.WCS.all_pix2sky`,
`~pywcs.WCS.sip_pix2foc`, `~pywcs.WCS.p4_pix2foc`, or
`~pywcs.WCS.pix2foc`.
%s
%s
For a transformation that is not two-dimensional, the
two-argument form must be used.
.. note::
The order of the axes for the result is determined by the
`CTYPEia` keywords in the FITS header, therefore it may
not always be of the form (*ra*, *dec*). The
`~pywcs.Wcsprm.lat`, `~pywcs.Wcsprm.lng`,
`~pywcs.Wcsprm.lattyp` and `~pywcs.Wcsprm.lngtyp` members
can be used to determine the order of the axes.
**Exceptions:**
- `MemoryError`: Memory allocation failed.
- `SingularMatrixError`: Linear transformation matrix is
singular.
- `InconsistentAxisTypesError`: Inconsistent or unrecognized
coordinate axis types.
- `ValueError`: Invalid parameter value.
- `ValueError`: Invalid coordinate transformation parameters.
- `ValueError`: x- and y-coordinate arrays are not the same
size.
- `InvalidTransformError`: Invalid coordinate transformation
parameters.
- `InvalidTransformError`: Ill-conditioned coordinate
transformation parameters.
""" % (__.TWO_OR_THREE_ARGS('sky coordinates, in degrees.', 'naxis', 8),
__.RA_DEC_ORDER(8))
def wcs_sky2pix(self, *args, **kwargs):
if self.wcs is None:
raise ValueError("No basic WCS settings were created.")
return self._array_converter(lambda xy, o: self.wcs.s2p(xy, o)['pixcrd'],
'input', *args, **kwargs)
wcs_sky2pix.__doc__ = """
Transforms sky coordinates to pixel coordinates, using only
the basic `wcslib`_ WCS transformation. No `SIP`_ or `Paper
IV`_ table lookup distortion is applied.
%s
%s
For a transformation that is not two-dimensional, the
two-argument form must be used.
.. note::
The order of the axes for the input sky array is
determined by the `CTYPEia` keywords in the FITS header,
therefore it may not always be of the form (*ra*, *dec*).
The `~pywcs.Wcsprm.lat`, `~pywcs.Wcsprm.lng`,
`~pywcs.Wcsprm.lattyp` and `~pywcs.Wcsprm.lngtyp` members
can be used to determine the order of the axes.
**Exceptions:**
- `MemoryError`: Memory allocation failed.
- `SingularMatrixError`: Linear transformation matrix is
singular.
- `InconsistentAxisTypesError`: Inconsistent or unrecognized
coordinate axis types.
- `ValueError`: Invalid parameter value.
- `InvalidTransformError`: Invalid coordinate transformation
parameters.
- `InvalidTransformError`: Ill-conditioned coordinate
transformation parameters.
""" % (__.TWO_OR_THREE_ARGS('pixel coordinates', 'naxis', 8),
__.RA_DEC_ORDER(8))
def pix2foc(self, *args, **kwargs):
return self._array_converter(self._pix2foc, None, *args, **kwargs)
pix2foc.__doc__ = """
Convert pixel coordinates to focal plane coordinates using the
`SIP`_ polynomial distortion convention and `Paper IV`_
table-lookup distortion correction.
%s
**Exceptions:**
- `MemoryError`: Memory allocation failed.
- `ValueError`: Invalid coordinate transformation parameters.
""" % (__.TWO_OR_THREE_ARGS('focal coordinates', '2', 8))
def p4_pix2foc(self, *args, **kwargs):
return self._array_converter(self._p4_pix2foc, None, *args, **kwargs)
p4_pix2foc.__doc__ = """
Convert pixel coordinates to focal plane coordinates using
`Paper IV`_ table-lookup distortion correction.
%s
**Exceptions:**
- `MemoryError`: Memory allocation failed.
- `ValueError`: Invalid coordinate transformation parameters.
""" % (__.TWO_OR_THREE_ARGS('focal coordinates', '2', 8))
def det2im(self, *args, **kwargs):
return self._array_converter(self._det2im, None, *args, **kwargs)
det2im.__doc__ = """
Convert detector coordinates to image plane coordinates using
`Paper IV`_ table-lookup distortion correction.
%s
**Exceptions:**
- `MemoryError`: Memory allocation failed.
- `ValueError`: Invalid coordinate transformation parameters.
""" % (__.TWO_OR_THREE_ARGS('pixel coordinates', '2', 8))
def sip_pix2foc(self, *args, **kwargs):
if self.sip is None:
if len(args) == 2:
return args[0]
elif len(args) == 3:
return args[:2]
else:
raise TypeError("Wrong number of arguments")
return self._array_converter(self.sip.pix2foc, None, *args, **kwargs)
sip_pix2foc.__doc__ = """
Convert pixel coordinates to focal plane coordinates using the
`SIP`_ polynomial distortion convention.
`Paper IV`_ table lookup distortion correction is not applied,
even if that information existed in the FITS file that
initialized this :class:`~pywcs.WCS` object. To correct for that,
use `~pywcs.WCS.pix2foc` or `~pywcs.WCS.p4_pix2foc`.
%s
**Exceptions:**
- `MemoryError`: Memory allocation failed.
- `ValueError`: Invalid coordinate transformation parameters.
""" % (__.TWO_OR_THREE_ARGS('focal coordinates', '2', 8))
def sip_foc2pix(self, *args, **kwargs):
if self.sip is None:
if len(args) == 2:
return args[0]
elif len(args) == 3:
return args[:2]
else:
raise TypeError("Wrong number of arguments")
return self._array_converter(self.sip.foc2pix, None, *args, **kwargs)
sip_foc2pix.__doc__ = """
Convert focal plane coordinates to pixel coordinates using the
`SIP`_ polynomial distortion convention.
`Paper IV`_ table lookup distortion correction is not applied,
even if that information existed in the FITS file that
initialized this `~pywcs.WCS` object.
%s
**Exceptions:**
- `MemoryError`: Memory allocation failed.
- `ValueError`: Invalid coordinate transformation parameters.
""" % (__.TWO_OR_THREE_ARGS('pixel coordinates', '2', 8))
def to_header(self, relax=False):
"""
Generate a `pyfits`_ header object with the WCS information
stored in this object.
.. warning::
This function does not write out SIP or Paper IV distortion
keywords, yet, only the core WCS support by `wcslib`_.
The output header will almost certainly differ from the input in a
number of respects:
1. The output header only contains WCS-related keywords. In
particular, it does not contain syntactically-required
keywords such as ``SIMPLE``, ``NAXIS``, ``BITPIX``, or
``END``.
2. Deprecated (e.g. ``CROTAn``) or non-standard usage will
be translated to standard (this is partially dependent on
whether `fix` was applied).
3. Quantities will be converted to the units used internally,
basically SI with the addition of degrees.
4. Floating-point quantities may be given to a different decimal
precision.
5. Elements of the ``PCi_j`` matrix will be written if and
only if they differ from the unit matrix. Thus, if the
matrix is unity then no elements will be written.
6. Additional keywords such as ``WCSAXES``, ``CUNITia``,
``LONPOLEa`` and ``LATPOLEa`` may appear.
7. The original keycomments will be lost, although
`to_header` tries hard to write meaningful comments.
8. Keyword order may be changed.
- *relax*: Degree of permissiveness:
- `False`: Recognize only FITS keywords defined by the
published WCS standard.
- `True`: Admit all recognized informal extensions of the WCS
standard.
- `int`: a bit field selecting specific extensions to write.
See :ref:`relaxwrite` for details.
Returns a `pyfits`_ Header object.
"""
if not HAS_PYFITS:
raise ImportError(
"pyfits is required to generate a FITS header")
header_string = self.wcs.to_header(relax)
cards = pyfits.CardList()
for i in range(0, len(header_string), 80):
card_string = header_string[i:i+80]
if pyfits.__version__[0] >= '3':
card = pyfits.Card.fromstring(card_string)
else:
card = pyfits.Card()
card.fromstring(card_string)
cards.append(card)
return pyfits.Header(cards)
def to_header_string(self, relax=False):
"""
Identical to `to_header`, but returns a string containing the
header cards.
"""
return self.to_header(self, relax).to_string()
def footprint_to_file(self, filename=None, color='green', width=2):
"""
Writes out a `ds9`_ style regions file. It can be loaded
directly by `ds9`_.
- *filename*: string. Output file name - default is
``'footprint.reg'``
- *color*: string. Color to use when plotting the line.
- *width*: int. Width of the region line.
"""
if not filename:
filename = 'footprint.reg'
comments = '# Region file format: DS9 version 4.0 \n'
comments += '# global color=green font="helvetica 12 bold select=1 highlite=1 edit=1 move=1 delete=1 include=1 fixed=0 source\n'
f = open(filename, 'a')
f.write(comments)
f.write('linear\n')
f.write('polygon(')
self.footprint.tofile(f, sep=',')
f.write(') # color=%s, width=%d \n' % (color, width))
f.close()
def get_naxis(self, header=None):
self.naxis1 = 0.0
self.naxis2 = 0.0
if header != None and not isinstance(header, string_types):
self.naxis1 = header.get('NAXIS1', 0.0)
self.naxis2 = header.get('NAXIS2', 0.0)
def rotateCD(self, theta):
_theta = DEGTORAD(theta)
_mrot = np.zeros(shape=(2,2),dtype=np.double)
_mrot[0] = (np.cos(_theta),np.sin(_theta))
_mrot[1] = (-np.sin(_theta),np.cos(_theta))
new_cd = np.dot(self.wcs.cd, _mrot)
self.wcs.cd = new_cd
def printwcs(self):
"""
Temporary function for internal use.
"""
print('WCS Keywords\n')
if hasattr(self.wcs, 'cd'):
print('CD_11 CD_12: %r %r' % (self.wcs.cd[0,0], self.wcs.cd[0,1]))
print('CD_21 CD_22: %r %r' % (self.wcs.cd[1,0], self.wcs.cd[1,1]))
print('CRVAL : %r %r' % (self.wcs.crval[0], self.wcs.crval[1]))
print('CRPIX : %r %r' % (self.wcs.crpix[0], self.wcs.crpix[1]))
print('NAXIS : %r %r' % (self.naxis1, self.naxis2))
def get_axis_types(self):
"""
``list of dicts``
Similar to `self.wcsprm.axis_types <_pywcs._Wcsprm.axis_types>`
but provides the information in a more Python-friendly format.
Returns a list of dictionaries, one for each axis, each
containing attributes about the type of that axis.
Each dictionary has the following keys:
- 'coordinate_type':
- None: Non-specific coordinate type.
- 'stokes': Stokes coordinate.
- 'celestial': Celestial coordinate (including ``CUBEFACE``).
- 'spectral': Spectral coordinate.
- 'scale':
- 'linear': Linear axis.
- 'quantized': Quantized axis (``STOKES``, ``CUBEFACE``).
- 'non-linear celestial': Non-linear celestial axis.
- 'non-linear spectral': Non-linear spectral axis.
- 'logarithmic': Logarithmic axis.
- 'tabular': Tabular axis.
- 'group'
- Group number, e.g. lookup table number
- 'number'
- For celestial axes:
- 0: Longitude coordinate.
- 1: Latitude coordinate.
- 2: ``CUBEFACE`` number.
- For lookup tables:
- the axis number in a multidimensional table.
``CTYPEia`` in ``"4-3"`` form with unrecognized algorithm code will
generate an error.
"""
if self.wcs is None:
raise AttributeError(
"This WCS object does not have a wcsprm object.")
coordinate_type_map = {
0: None,
1: 'stokes',
2: 'celestial',
3: 'spectral'
}
scale_map = {
0: 'linear',
1: 'quantized',
2: 'non-linear celestial',
3: 'non-linear spectral',
4: 'logarithmic',
5: 'tabular'
}
result = []
for axis_type in self.wcs.axis_types:
subresult = {}
coordinate_type = (axis_type // 1000) % 10
subresult['coordinate_type'] = coordinate_type_map[coordinate_type]
scale = (axis_type // 100) % 10
subresult['scale'] = scale_map[scale]
group = (axis_type // 10) % 10
subresult['group'] = group
number = axis_type % 10
subresult['number'] = number
result.append(subresult)
return result
def DEGTORAD(deg):
return (deg * np.pi / 180.)
def RADTODEG(rad):
return (rad * 180. / np.pi)
def find_all_wcs(header, relax=False, keysel=None):
"""
Find all the WCS transformations in the given header.
- *header*: A string or PyFITS header object.
- *relax*: Degree of permissiveness:
- `False`: Recognize only FITS keywords defined by the
published WCS standard.
- `True`: Admit all recognized informal extensions of the
WCS standard.
- `int`: a bit field selecting specific extensions to accept.
See :ref:`relaxread` for details.
- *keysel*: A list of flags used to select the keyword types
considered by wcslib. When ``None``, only the standard image
header keywords are considered (and the underlying wcspih() C
function is called). To use binary table image array or pixel
list keywords, *keysel* must be set.
Each element in the list should be one of the following strings:
- 'image': Image header keywords
- 'binary': Binary table image array keywords
- 'pixel': Pixel list keywords
Keywords such as ``EQUIna`` or ``RFRQna`` that are common to
binary table image arrays and pixel lists (including ``WCSNna``
and ``TWCSna``) are selected by both 'binary' and 'pixel'.
Returns a list of `WCS` objects.
"""
if isinstance(header, string_types):
header_string = header
elif HAS_PYFITS:
assert isinstance(header, pyfits.Header)
header_string = repr(header.ascard)
else:
raise TypeError(
"header must be a string or pyfits.Header object")
keysel_flags = _parse_keysel(keysel)
wcsprms = _pywcs.find_all_wcs(header_string, relax, keysel_flags)
result = []
for wcsprm in wcsprms:
subresult = WCS()
subresult.wcs = wcsprm
result.append(subresult)
return result
|