This file is indexed.

/usr/share/pyshared/pymt/lib/squirtle.py is in python-pymt 0.5.1-0ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
'''Squirtle mini-library for SVG rendering in Pyglet.

Example usage:
    import squirtle
    my_svg = squirtle.SVG('filename.svg')
    my_svg.draw(100, 200, angle=15)

'''

__all__ = ('SVG', 'setup_gl')

from OpenGL.GL import GL_BLEND, GL_LINE_SMOOTH, GL_SRC_ALPHA, \
        GL_ONE_MINUS_SRC_ALPHA, GL_COMPILE, GL_TRIANGLES, GL_LINES, \
        GL_TRIANGLE_FAN, GL_TRIANGLE_STRIP, \
        glEnable, glGenLists, glNewList, glEndList, glPushMatrix, \
        glPopMatrix, glTranslatef, glRotatef, glScalef, glCallList, \
        glBegin, glEnd, glColor4ub, glVertex3f, glBlendFunc
from OpenGL.GLU import GLU_TESS_WINDING_RULE, GLU_TESS_WINDING_NONZERO, \
        GLU_TESS_VERTEX, GLU_TESS_BEGIN, GLU_TESS_END, GLU_TESS_ERROR, \
        GLU_TESS_COMBINE, \
        gluTessNormal, gluTessProperty, gluNewTess, gluTessCallback, \
        gluTessBeginContour, gluTessEndContour, gluTessBeginPolygon, \
        gluTessEndPolygon, gluTessVertex, gluErrorString
from xml.etree.cElementTree import parse
import re
import math
try:
    # get the faster one
    from cStringIO import StringIO
except ImportError:
    # fallback to the default one
    from StringIO import StringIO
from pymt.logger import pymt_logger

BEZIER_POINTS = 10
CIRCLE_POINTS = 24
TOLERANCE = 0.001
def setup_gl():
    """Set various pieces of OpenGL state for better rendering of SVG.

    """
    
    glEnable(GL_LINE_SMOOTH)
    glEnable(GL_BLEND)
    glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)

def parse_list(string):
    return re.findall("([A-Za-z]|-?[0-9]+\.?[0-9]*(?:e-?[0-9]*)?)", string)

def parse_style(string):
    sdict = {}
    for item in string.split(';'):
        if ':' in item:
            key, value = item.split(':')
            sdict[key] = value
    return sdict

colormap = {
    # X11 colour table (from "CSS3 module: Color working draft"), with
    # gray/grey spelling issues fixed.  This is a superset of HTML 4.0
    # colour names used in CSS 1.
    'aliceblue': '#f0f8ff',
    'antiquewhite': '#faebd7',
    'aqua': '#00ffff',
    'aquamarine': '#7fffd4',
    'azure': '#f0ffff',
    'beige': '#f5f5dc',
    'bisque': '#ffe4c4',
    'black': '#000000',
    'blanchedalmond': '#ffebcd',
    'blue': '#0000ff',
    'blueviolet': '#8a2be2',
    'brown': '#a52a2a',
    'burlywood': '#deb887',
    'cadetblue': '#5f9ea0',
    'chartreuse': '#7fff00',
    'chocolate': '#d2691e',
    'coral': '#ff7f50',
    'cornflowerblue': '#6495ed',
    'cornsilk': '#fff8dc',
    'crimson': '#dc143c',
    'cyan': '#00ffff',
    'darkblue': '#00008b',
    'darkcyan': '#008b8b',
    'darkgoldenrod': '#b8860b',
    'darkgray': '#a9a9a9',
    'darkgrey': '#a9a9a9',
    'darkgreen': '#006400',
    'darkkhaki': '#bdb76b',
    'darkmagenta': '#8b008b',
    'darkolivegreen': '#556b2f',
    'darkorange': '#ff8c00',
    'darkorchid': '#9932cc',
    'darkred': '#8b0000',
    'darksalmon': '#e9967a',
    'darkseagreen': '#8fbc8f',
    'darkslateblue': '#483d8b',
    'darkslategray': '#2f4f4f',
    'darkslategrey': '#2f4f4f',
    'darkturquoise': '#00ced1',
    'darkviolet': '#9400d3',
    'deeppink': '#ff1493',
    'deepskyblue': '#00bfff',
    'dimgray': '#696969',
    'dimgrey': '#696969',
    'dodgerblue': '#1e90ff',
    'firebrick': '#b22222',
    'floralwhite': '#fffaf0',
    'forestgreen': '#228b22',
    'fuchsia': '#ff00ff',
    'gainsboro': '#dcdcdc',
    'ghostwhite': '#f8f8ff',
    'gold': '#ffd700',
    'goldenrod': '#daa520',
    'gray': '#808080',
    'grey': '#808080',
    'green': '#008000',
    'greenyellow': '#adff2f',
    'honeydew': '#f0fff0',
    'hotpink': '#ff69b4',
    'indianred': '#cd5c5c',
    'indigo': '#4b0082',
    'ivory': '#fffff0',
    'khaki': '#f0e68c',
    'lavender': '#e6e6fa',
    'lavenderblush': '#fff0f5',
    'lawngreen': '#7cfc00',
    'lemonchiffon': '#fffacd',
    'lightblue': '#add8e6',
    'lightcoral': '#f08080',
    'lightcyan': '#e0ffff',
    'lightgoldenrodyellow': '#fafad2',
    'lightgreen': '#90ee90',
    'lightgray': '#d3d3d3',
    'lightgrey': '#d3d3d3',
    'lightpink': '#ffb6c1',
    'lightsalmon': '#ffa07a',
    'lightseagreen': '#20b2aa',
    'lightskyblue': '#87cefa',
    'lightslategray': '#778899',
    'lightslategrey': '#778899',
    'lightsteelblue': '#b0c4de',
    'lightyellow': '#ffffe0',
    'lime': '#00ff00',
    'limegreen': '#32cd32',
    'linen': '#faf0e6',
    'magenta': '#ff00ff',
    'maroon': '#800000',
    'mediumaquamarine': '#66cdaa',
    'mediumblue': '#0000cd',
    'mediumorchid': '#ba55d3',
    'mediumpurple': '#9370db',
    'mediumseagreen': '#3cb371',
    'mediumslateblue': '#7b68ee',
    'mediumspringgreen': '#00fa9a',
    'mediumturquoise': '#48d1cc',
    'mediumvioletred': '#c71585',
    'midnightblue': '#191970',
    'mintcream': '#f5fffa',
    'mistyrose': '#ffe4e1',
    'moccasin': '#ffe4b5',
    'navajowhite': '#ffdead',
    'navy': '#000080',
    'oldlace': '#fdf5e6',
    'olive': '#808000',
    'olivedrab': '#6b8e23',
    'orange': '#ffa500',
    'orangered': '#ff4500',
    'orchid': '#da70d6',
    'palegoldenrod': '#eee8aa',
    'palegreen': '#98fb98',
    'paleturquoise': '#afeeee',
    'palevioletred': '#db7093',
    'papayawhip': '#ffefd5',
    'peachpuff': '#ffdab9',
    'peru': '#cd853f',
    'pink': '#ffc0cb',
    'plum': '#dda0dd',
    'powderblue': '#b0e0e6',
    'purple': '#800080',
    'red': '#ff0000',
    'rosybrown': '#bc8f8f',
    'royalblue': '#4169e1',
    'saddlebrown': '#8b4513',
    'salmon': '#fa8072',
    'sandybrown': '#f4a460',
    'seagreen': '#2e8b57',
    'seashell': '#fff5ee',
    'sienna': '#a0522d',
    'silver': '#c0c0c0',
    'skyblue': '#87ceeb',
    'slateblue': '#6a5acd',
    'slategray': '#708090',
    'slategrey': '#708090',
    'snow': '#fffafa',
    'springgreen': '#00ff7f',
    'steelblue': '#4682b4',
    'tan': '#d2b48c',
    'teal': '#008080',
    'thistle': '#d8bfd8',
    'tomato': '#ff6347',
    'turquoise': '#40e0d0',
    'violet': '#ee82ee',
    'wheat': '#f5deb3',
    'white': '#ffffff',
    'whitesmoke': '#f5f5f5',
    'yellow': '#ffff00',
    'yellowgreen': '#9acd32',
}


def parse_color(c, default=None):
    if not c:
        return default
    if c == 'none':
        return None
    if c[0] == '#': c = c[1:]
    if c.startswith('url(#'):
        return c[5:-1]
    try:
        if str(c) in colormap:
            c = colormap[str(c)][1:]
            r = int(c[0:2], 16)
            g = int(c[2:4], 16)
            b = int(c[4:6], 16)
        elif len(c) == 6:
            r = int(c[0:2], 16)
            g = int(c[2:4], 16)
            b = int(c[4:6], 16)
        elif len(c) == 3:
            r = int(c[0], 16) * 17
            g = int(c[1], 16) * 17
            b = int(c[2], 16) * 17
        else:
            pymt_logger.exception('Squirtle: incorrect length for color %s' % str(c))
        return [r, g, b, 255]
    except Exception, ex:
        pymt_logger.exception('Squirtle: exception parsing color %s' % str(c))
        return None

class Matrix(object):
    def __init__(self, string=None):
        self.values = [1, 0, 0, 1, 0, 0] #Identity matrix seems a sensible default
        if isinstance(string, str):
            if string.startswith('matrix('):
                self.values = [float(x) for x in parse_list(string[7:-1])]
            elif string.startswith('translate('):
                x, y = [float(x) for x in parse_list(string[10:-1])]
                self.values = [1, 0, 0, 1, x, y]
            elif string.startswith('scale('):
                sx, sy = [float(x) for x in parse_list(string[6:-1])]
                self.values = [sx, 0, 0, sy, 0, 0]
        elif string is not None:
            self.values = list(string)

    def __call__(self, other):
        return (self.values[0]*other[0] + self.values[2]*other[1] + self.values[4],
                self.values[1]*other[0] + self.values[3]*other[1] + self.values[5])

    def inverse(self):
        d = float(self.values[0]*self.values[3] - self.values[1]*self.values[2])
        return Matrix([self.values[3]/d, -self.values[1]/d, -self.values[2]/d, self.values[0]/d,
                       (self.values[2]*self.values[5] - self.values[3]*self.values[4])/d,
                       (self.values[1]*self.values[4] - self.values[0]*self.values[5])/d])

    def __mul__(self, other):
        a, b, c, d, e, f = self.values
        u, v, w, x, y, z = other.values
        return Matrix([a*u + c*v, b*u + d*v, a*w + c*x, b*w + d*x, a*y + c*z + e, b*y + d*z + f])

class TriangulationError(Exception):
    """Exception raised when triangulation of a filled area fails. For internal use only.

    """
    pass

class GradientContainer(dict):
    def __init__(self, *args, **kwargs):
        dict.__init__(self, *args, **kwargs)
        self.callback_dict = {}

    def call_me_on_add(self, callback, grad_id):
        '''The client wants to know when the gradient with id grad_id gets
        added.  So store this callback for when that happens.
        When the desired gradient is added, the callback will be called
        with the gradient as the first and only argument.
        '''
        cblist = self.callback_dict.get(grad_id, None)
        if cblist == None:
            cblist = [callback]
            self.callback_dict[grad_id] = cblist
            return
        cblist.append(callback)

    def update(self, *args, **kwargs):
        raise NotImplementedError('update not done for GradientContainer')

    def __setitem__(self, key, val):
        dict.__setitem__(self, key, val)
        callbacks = self.callback_dict.get(key, [])
        for callback in callbacks:
            callback(val)


class Gradient(object):
    def __init__(self, element, svg):
        self.element = element
        self.stops = {}
        for e in element.getiterator():
            if e.tag.endswith('stop'):
                style = parse_style(e.get('style', ''))
                color = parse_color(e.get('stop-color'))
                if 'stop-color' in style:
                    color = parse_color(style['stop-color'])
                color[3] = int(float(e.get('stop-opacity', '1')) * 255)
                if 'stop-opacity' in style:
                    color[3] = int(float(style['stop-opacity']) * 255)
                self.stops[float(e.get('offset'))] = color
        self.stops = sorted(self.stops.items())
        self.svg = svg
        self.inv_transform = Matrix(element.get('gradientTransform')).inverse()

        inherit = self.element.get('{http://www.w3.org/1999/xlink}href')
        parent = None
        delay_params = False
        if inherit:
            parent_id = inherit[1:]
            parent = self.svg.gradients.get(parent_id, None)
            if parent == None:
                self.svg.gradients.call_me_on_add(self.tardy_gradient_parsed, parent_id)
                delay_params = True
                return
        if not delay_params:
            self.get_params(parent)

    def interp(self, pt):
        if not self.stops: return [255, 0, 255, 255]
        t = self.grad_value(self.inv_transform(pt))
        if t < self.stops[0][0]:
            return self.stops[0][1]
        for n, top in enumerate(self.stops[1:]):
            bottom = self.stops[n]
            if t <= top[0]:
                u = bottom[0]
                v = top[0]
                alpha = (t - u)/(v - u)
                return [int(x[0] * (1 - alpha) + x[1] * alpha) for x in zip(bottom[1], top[1])]
        return self.stops[-1][1]

    def get_params(self, parent):
        for param in self.params:
            v = None
            if parent:
                v = getattr(parent, param, None)
            my_v = self.element.get(param)
            if my_v:
                v = float(my_v)
            if v:
                setattr(self, param, v)

    def tardy_gradient_parsed(self, gradient):
        self.get_params(gradient)

class LinearGradient(Gradient):
    params = ['x1', 'x2', 'y1', 'y2', 'stops']
    def grad_value(self, pt):
        return ((pt[0] - self.x1)*(self.x2 - self.x1) + (pt[1] - self.y1)*(self.y2 - self.y1)) / ((self.x1 - self.x2)**2 + (self.y1 - self.y2)**2)

class RadialGradient(Gradient):
    params = ['cx', 'cy', 'r', 'stops']

    def grad_value(self, pt):
        return math.sqrt((pt[0] - self.cx) ** 2 + (pt[1] - self.cy) ** 2)/self.r

class SVG(object):
    """Opaque SVG image object.

    Users should instantiate this object once for each SVG file they wish to
    render.

    """

    _tess = None
    _disp_list_cache = {}
    def __init__(self, filename, anchor_x=0, anchor_y=0, bezier_points=BEZIER_POINTS, circle_points=CIRCLE_POINTS, rawdata=None):
        """Creates an SVG object from a .svg or .svgz file.

            `filename`: str
                The name of the file to be loaded.
            `anchor_x`: float
                The horizontal anchor position for scaling and rotations. Defaults to 0. The symbolic
                values 'left', 'center' and 'right' are also accepted.
            `anchor_y`: float
                The vertical anchor position for scaling and rotations. Defaults to 0. The symbolic
                values 'bottom', 'center' and 'top' are also accepted.
            `bezier_points`: int
                The number of line segments into which to subdivide Bezier splines. Defaults to 10.
            `circle_points`: int
                The number of line segments into which to subdivide circular and elliptic arcs.
                Defaults to 10.
            `rawdata`: string
                Raw data string (you need to set a fake filename for cache anyway)
                Defaults to None.
        """
        self._tess = gluNewTess()
        gluTessNormal(self._tess, 0, 0, 1)
        gluTessProperty(self._tess, GLU_TESS_WINDING_RULE, GLU_TESS_WINDING_NONZERO)

        self.filename = filename
        self.rawdata = rawdata
        self.bezier_points = bezier_points
        self.circle_points = circle_points
        self.bezier_coefficients = []
        self.gradients = GradientContainer()
        self.generate_disp_list()
        self.anchor_x = anchor_x
        self.anchor_y = anchor_y

    def _set_anchor_x(self, anchor_x):
        self._anchor_x = anchor_x
        if self._anchor_x == 'left':
            self._a_x = 0
        elif self._anchor_x == 'center':
            self._a_x = self.width * .5
        elif self._anchor_x == 'right':
            self._a_x = self.width
        else:
            self._a_x = self._anchor_x

    def _get_anchor_x(self):
        return self._anchor_x

    anchor_x = property(_get_anchor_x, _set_anchor_x)

    def _set_anchor_y(self, anchor_y):
        self._anchor_y = anchor_y
        if self._anchor_y == 'bottom':
            self._a_y = 0
        elif self._anchor_y == 'center':
            self._a_y = self.height * .5
        elif self._anchor_y == 'top':
            self._a_y = self.height
        else:
            self._a_y = self.anchor_y

    def _get_anchor_y(self):
        return self._anchor_y

    anchor_y = property(_get_anchor_y, _set_anchor_y)

    def generate_disp_list(self):
        if (self.filename, self.bezier_points) in self._disp_list_cache:
            self.disp_list, self.width, self.height = self._disp_list_cache[self.filename, self.bezier_points]
        else:
            if self.rawdata != None:
                f = StringIO(self.rawdata)
            else:
                if open(self.filename, 'rb').read(3) == '\x1f\x8b\x08': #gzip magic numbers
                    import gzip
                    f = gzip.open(self.filename, 'rb')
                else:
                    f = open(self.filename, 'rb')
            self.tree = parse(f)
            self.parse_doc()
            self.disp_list = glGenLists(1)
            glNewList(self.disp_list, GL_COMPILE)
            self.render_slowly()
            glEndList()
            self._disp_list_cache[self.filename, self.bezier_points] = (self.disp_list, self.width, self.height)

    def draw(self, x, y, z=0, angle=0, scale=1):
        """Draws the SVG to screen.

        :Parameters
            `x` : float
                The x-coordinate at which to draw.
            `y` : float
                The y-coordinate at which to draw.
            `z` : float
                The z-coordinate at which to draw. Defaults to 0. Note that z-ordering may not
                give expected results when transparency is used.
            `angle` : float
                The angle by which the image should be rotated (in degrees). Defaults to 0.
            `scale` : float
                The amount by which the image should be scaled, either as a float, or a tuple
                of two floats (xscale, yscale).

        """
        glPushMatrix()
        glTranslatef(x, y, z)
        if angle:
            glRotatef(angle, 0, 0, 1)
        if scale != 1:
            try:
                glScalef(scale[0], scale[1], 1)
            except TypeError:
                glScalef(scale, scale, 1)
        if self._a_x or self._a_y:
            glTranslatef(-self._a_x, -self._a_y, 0)
        glCallList(self.disp_list)
        glPopMatrix()

    def render_slowly(self):
        self.n_tris = 0
        self.n_lines = 0
        for path, stroke, tris, fill, transform in self.paths:
            if tris:
                self.n_tris += len(tris)/3
                if isinstance(fill, str):
                    g = self.gradients[fill]
                    fills = [g.interp(x) for x in tris]
                else:
                    fills = [fill for x in tris]
                #pyglet.graphics.draw(len(tris), GL_TRIANGLES,
                #                     ('v3f', sum((x + [0] for x in tris), [])),
                #                     ('c3B', sum(fills, [])))
                glBegin(GL_TRIANGLES)
                for vtx, clr in zip(tris, fills):
                    vtx = transform(vtx)
                    glColor4ub(*clr)
                    glVertex3f(vtx[0], vtx[1], 0)
                glEnd()
            if path:
                for loop in path:
                    self.n_lines += len(loop) - 1
                    loop_plus = []
                    for i in xrange(len(loop) - 1):
                        loop_plus += [loop[i], loop[i+1]]
                    if isinstance(stroke, str):
                        g = self.gradients[stroke]
                        strokes = [g.interp(x) for x in loop_plus]
                    else:
                        strokes = [stroke for x in loop_plus]
                    #pyglet.graphics.draw(len(loop_plus), GL_LINES,
                    #                     ('v3f', sum((x + [0] for x in loop_plus), [])),
                    #                     ('c3B', sum((stroke for x in loop_plus), [])))
                    glBegin(GL_LINES)
                    for vtx, clr in zip(loop_plus, strokes):
                        vtx = transform(vtx)
                        glColor4ub(*clr)
                        glVertex3f(vtx[0], vtx[1], 0)
                    glEnd()
    def parse_float(self, txt):
        if txt.endswith('px'):
            return float(txt[:-2])
        else:
            return float(txt)


    def parse_doc(self):
        self.paths = []
        self.width = self.parse_float(self.tree._root.get("width", '0'))
        self.height = self.parse_float(self.tree._root.get("height", '0'))
        if self.height:
            self.transform = Matrix([1, 0, 0, -1, 0, self.height])
        else:
            x, y, w, h = (self.parse_float(x) for x in parse_list(self.tree._root.get("viewBox")))
            self.transform = Matrix([1, 0, 0, -1, -x, h + y])
            self.height = h
            self.width = w
        self.opacity = 1.0
        for e in self.tree._root.getchildren():
            try:
                self.parse_element(e)
            except Exception, ex:
                pymt_logger.exception('Squirtle: exception while parsing element %s' % e)
                raise

    def parse_element(self, e):
        default = object()
        self.fill = parse_color(e.get('fill'), default)
        self.stroke = parse_color(e.get('stroke'), default)
        oldopacity = self.opacity
        self.opacity *= float(e.get('opacity', 1))
        fill_opacity = float(e.get('fill-opacity', 1))
        stroke_opacity = float(e.get('stroke-opacity', 1))

        oldtransform = self.transform
        self.transform = self.transform * Matrix(e.get('transform'))

        style = e.get('style')
        if style:
            sdict = parse_style(style)
            if 'fill' in sdict:
                self.fill = parse_color(sdict['fill'])
            if 'fill-opacity' in sdict:
                fill_opacity *= float(sdict['fill-opacity'])
            if 'stroke' in sdict:
                self.stroke = parse_color(sdict['stroke'])
            if 'stroke-opacity' in sdict:
                stroke_opacity *= float(sdict['stroke-opacity'])
        if self.fill == default:
            self.fill = [0, 0, 0, 255]
        if self.stroke == default:
            self.stroke = [0, 0, 0, 0]
        if isinstance(self.stroke, list):
            self.stroke[3] = int(self.opacity * stroke_opacity * self.stroke[3])
        if isinstance(self.fill, list):
            self.fill[3] = int(self.opacity * fill_opacity * self.fill[3])
        if isinstance(self.stroke, list) and self.stroke[3] == 0: self.stroke = self.fill #Stroked edges antialias better

        if e.tag.endswith('path'):
            pathdata = e.get('d', '')
            pathdata = re.findall("([A-Za-z]|-?[0-9]+\.?[0-9]*(?:e-?[0-9]*)?)", pathdata)

            def pnext():
                return (float(pathdata.pop(0)), float(pathdata.pop(0)))

            self.new_path()
            while pathdata:
                opcode = pathdata.pop(0)
                if opcode == 'M':
                    self.set_position(*pnext())
                elif opcode == 'C':
                    self.curve_to(*(pnext() + pnext() + pnext()))
                elif opcode == 'c':
                    mx = self.x
                    my = self.y
                    x1, y1 = pnext()
                    x2, y2 = pnext()
                    x, y = pnext()

                    self.curve_to(mx + x1, my + y1, mx + x2, my + y2, mx + x, my + y)
                elif opcode == 'S':
                    self.curve_to(2 * self.x - self.last_cx, 2 * self.y - self.last_cy, *(pnext() + pnext()))
                elif opcode == 's':
                    mx = self.x
                    my = self.y
                    x1, y1 = 2 * self.x - self.last_cx, 2 * self.y - self.last_cy
                    x2, y2 = pnext()
                    x, y = pnext()

                    self.curve_to(x1, y1, mx + x2, my + y2, mx + x, my + y)
                elif opcode == 'A':
                    rx, ry = pnext()
                    phi = float(pathdata.pop(0))
                    large_arc = int(pathdata.pop(0))
                    sweep = int(pathdata.pop(0))
                    x, y = pnext()
                    self.arc_to(rx, ry, phi, large_arc, sweep, x, y)
                elif opcode in 'zZ':
                    self.close_path()
                elif opcode == 'L':
                    self.line_to(*pnext())
                elif opcode == 'l':
                    x, y = pnext()
                    self.line_to(self.x + x, self.y + y)
                elif opcode == 'H':
                    x = float(pathdata.pop(0))
                    self.line_to(x, self.y)
                elif opcode == 'h':
                    x = float(pathdata.pop(0))
                    self.line_to(self.x + x, self.y)
                elif opcode == 'V':
                    y = float(pathdata.pop(0))
                    self.line_to(self.x, y)
                elif opcode == 'v':
                    y = float(pathdata.pop(0))
                    self.line_to(self.x, self.y + y)
                else:
                    self.warn("Unrecognised opcode: " + opcode)
            self.end_path()
        elif e.tag.endswith('rect'):
            x = 0
            y = 0
            if 'x' in e.keys():
                x = float(e.get('x'))
            if 'y' in e.keys():
                y = float(e.get('y'))
            h = float(e.get('height'))
            w = float(e.get('width'))
            self.new_path()
            self.set_position(x, y)
            self.line_to(x+w,y)
            self.line_to(x+w,y+h)
            self.line_to(x,y+h)
            self.line_to(x,y)
            self.end_path()
        elif e.tag.endswith('polyline') or e.tag.endswith('polygon'):
            pathdata = e.get('points')
            pathdata = re.findall("(-?[0-9]+\.?[0-9]*(?:e-?[0-9]*)?)", pathdata)
            def pnext():
                return (float(pathdata.pop(0)), float(pathdata.pop(0)))
            self.new_path()
            while pathdata:
                self.line_to(*pnext())
            if e.tag.endswith('polygon'):
                self.close_path()
            self.end_path()
        elif e.tag.endswith('line'):
            x1 = float(e.get('x1'))
            y1 = float(e.get('y1'))
            x2 = float(e.get('x2'))
            y2 = float(e.get('y2'))
            self.new_path()
            self.set_position(x1, y1)
            self.line_to(x2, y2)
            self.end_path()
        elif e.tag.endswith('circle'):
            cx = float(e.get('cx'))
            cy = float(e.get('cy'))
            r = float(e.get('r'))
            self.new_path()
            for i in xrange(self.circle_points):
                theta = 2 * i * math.pi / self.circle_points
                self.line_to(cx + r * math.cos(theta), cy + r * math.sin(theta))
            self.close_path()
            self.end_path()
        elif e.tag.endswith('ellipse'):
            cx = float(e.get('cx'))
            cy = float(e.get('cy'))
            rx = float(e.get('rx'))
            ry = float(e.get('ry'))
            self.new_path()
            for i in xrange(self.circle_points):
                theta = 2 * i * math.pi / self.circle_points
                self.line_to(cx + rx * math.cos(theta), cy + ry * math.sin(theta))
            self.close_path()
            self.end_path()
        elif e.tag.endswith('linearGradient'):
            self.gradients[e.get('id')] = LinearGradient(e, self)
        elif e.tag.endswith('radialGradient'):
            self.gradients[e.get('id')] = RadialGradient(e, self)
        for c in e.getchildren():
            try:
                self.parse_element(c)
            except Exception, ex:
                pymt_logger.exception('Squirtle: exception while parsing element %s' % c)
                raise
        self.transform = oldtransform
        self.opacity = oldopacity

    def new_path(self):
        self.x = 0
        self.y = 0
        self.close_index = 0
        self.path = []
        self.loop = []
    def close_path(self):
        self.loop.append(self.loop[0][:])
        self.path.append(self.loop)
        self.loop = []
    def set_position(self, x, y):
        self.x = x
        self.y = y
        self.loop.append([x,y])

    def arc_to(self, rx, ry, phi, large_arc, sweep, x, y):
        # This function is made out of magical fairy dust
        # http://www.w3.org/TR/2003/REC-SVG11-20030114/implnote.html#ArcImplementationNotes
        x1 = self.x
        y1 = self.y
        x2 = x
        y2 = y
        cp = math.cos(phi)
        sp = math.sin(phi)
        dx = .5 * (x1 - x2)
        dy = .5 * (y1 - y2)
        x_ = cp * dx + sp * dy
        y_ = -sp * dx + cp * dy
        r2 = (((rx * ry)**2 - (rx * y_)**2 - (ry * x_)**2)/
	      ((rx * y_)**2 + (ry * x_)**2))
        if r2 < 0: r2 = 0
        r = math.sqrt(r2)
        if large_arc == sweep:
            r = -r
        cx_ = r * rx * y_ / ry
        cy_ = -r * ry * x_ / rx
        cx = cp * cx_ - sp * cy_ + .5 * (x1 + x2)
        cy = sp * cx_ + cp * cy_ + .5 * (y1 + y2)
        def angle(u, v):
            a = math.acos((u[0]*v[0] + u[1]*v[1]) / math.sqrt((u[0]**2 + u[1]**2) * (v[0]**2 + v[1]**2)))
            sgn = 1 if u[0]*v[1] > u[1]*v[0] else -1
            return sgn * a

        psi = angle((1,0), ((x_ - cx_)/rx, (y_ - cy_)/ry))
        delta = angle(((x_ - cx_)/rx, (y_ - cy_)/ry),
                      ((-x_ - cx_)/rx, (-y_ - cy_)/ry))
        if sweep and delta < 0: delta += math.pi * 2
        if not sweep and delta > 0: delta -= math.pi * 2
        n_points = max(int(abs(self.circle_points * delta / (2 * math.pi))), 1)

        for i in xrange(n_points + 1):
            theta = psi + i * delta / n_points
            ct = math.cos(theta)
            st = math.sin(theta)
            self.line_to(cp * rx * ct - sp * ry * st + cx,
                         sp * rx * ct + cp * ry * st + cy)

    def curve_to(self, x1, y1, x2, y2, x, y):
        if not self.bezier_coefficients:
            for i in xrange(self.bezier_points+1):
                t = float(i)/self.bezier_points
                t0 = (1 - t) ** 3
                t1 = 3 * t * (1 - t) ** 2
                t2 = 3 * t ** 2 * (1 - t)
                t3 = t ** 3
                self.bezier_coefficients.append([t0, t1, t2, t3])
        self.last_cx = x2
        self.last_cy = y2
        for i, t in enumerate(self.bezier_coefficients):
            px = t[0] * self.x + t[1] * x1 + t[2] * x2 + t[3] * x
            py = t[0] * self.y + t[1] * y1 + t[2] * y2 + t[3] * y
            self.loop.append([px, py])

        self.x, self.y = px, py

    def line_to(self, x, y):
        self.set_position(x, y)

    def end_path(self):
        self.path.append(self.loop)
        if self.path:
            path = []
            for orig_loop in self.path:
                if not orig_loop: continue
                loop = [orig_loop[0]]
                for pt in orig_loop:
                    if (pt[0] - loop[-1][0])**2 + (pt[1] - loop[-1][1])**2 > TOLERANCE:
                        loop.append(pt)
                path.append(loop)
            self.paths.append((path if self.stroke else None, self.stroke,
                               self.triangulate(path) if self.fill else None, self.fill,
                               self.transform))
        self.path = []

    def triangulate(self, looplist):
        tlist = []
        self.curr_shape = []

        def vertexCallback(vertex):
            self.curr_shape.append(list(vertex[0:2]))

        def beginCallback(which):
            self.tess_style = which

        def endCallback():
            if self.tess_style == GL_TRIANGLE_FAN:
                c = self.curr_shape.pop(0)
                p1 = self.curr_shape.pop(0)
                while self.curr_shape:
                    p2 = self.curr_shape.pop(0)
                    tlist.extend([c, p1, p2])
                    p1 = p2
            elif self.tess_style == GL_TRIANGLE_STRIP:
                p1 = self.curr_shape.pop(0)
                p2 = self.curr_shape.pop(0)
                while self.curr_shape:
                    p3 = self.curr_shape.pop(0)
                    tlist.extend([p1, p2, p3])
                    p1 = p2
                    p2 = p3
            elif self.tess_style == GL_TRIANGLES:
                tlist.extend(self.curr_shape)
            else:
                pymt_logger.warning('Squirtle: Unrecognised tesselation style: %d' % (self.tess_style,))
            self.tess_style = None
            self.curr_shape = []

        def errorCallback(code):
            err = gluErrorString(code)
            pymt_logger.warning('Squirtle: GLU Tesselation Error: ' + err)

        def combineCallback(coords, vertex_data, weights):
            return (coords[0], coords[1], coords[2])

        gluTessCallback(self._tess, GLU_TESS_VERTEX, vertexCallback)
        gluTessCallback(self._tess, GLU_TESS_BEGIN, beginCallback)
        gluTessCallback(self._tess, GLU_TESS_END, endCallback)
        gluTessCallback(self._tess, GLU_TESS_ERROR, errorCallback)
        gluTessCallback(self._tess, GLU_TESS_COMBINE, combineCallback)

        data_lists = []
        for vlist in looplist:
            d_list = []
            for x, y in vlist:
                v_data = (x, y, 0)
                found = False
                for x2, y2, z2 in d_list:
                    d = math.sqrt((x - x2) ** 2 + (y - y2) ** 2)
                    if d < 0.0000001:
                        # XXX we've found a coordinate nearly the same as an other
                        # coordinate. this is the "COMBINE" case of GLU tesslation
                        # But on my PyOpenGL version, i got the "need combine
                        # callback" error, and i'm unable to get ride of it until
                        # the wrong vertex is removed.
                        found = True
                        break
                if found:
                    continue
                d_list.append(v_data)
            data_lists.append(d_list)
        gluTessBeginPolygon(self._tess, None)
        for d_list in data_lists:
            gluTessBeginContour(self._tess)
            for v_data in reversed(d_list):
                gluTessVertex(self._tess, v_data, v_data)
            gluTessEndContour(self._tess)
        gluTessEndPolygon(self._tess)
        return tlist

    def warn(self, message):
        pymt_logger.warning('Squirtle: svg parser on %s: %s' % (self.filename, message))