/usr/share/pyshared/pymc/utils.py is in python-pymc 2.2+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 | """Utility functions for PyMC"""
# License: Scipy compatible
# Author: David Huard, 2006
import numpy as np
import sys, select, os, time
from copy import copy
from .PyMCObjects import Variable
from . import flib
import pdb
from numpy.linalg.linalg import LinAlgError
from numpy.linalg import cholesky, eigh
from .Node import logp_of_set, logp_gradient_of_set
import types
from .datatypes import *
from . import six
from .six import print_
reduce = six.moves.reduce
from numpy import (sqrt, ndarray, asmatrix, array, prod,
asarray, atleast_1d, iterable, linspace, diff,
around, log10, zeros, arange, digitize, apply_along_axis,
concatenate, bincount, sort, hsplit, argsort, inf, shape,
ndim, swapaxes, ravel, diag, cov, transpose as tr)
__all__ = ['append', 'check_list', 'autocorr', 'calc_min_interval',
'check_type', 'ar1',
'ar1_gen', 'draw_random', 'histogram', 'hpd', 'invcdf',
'make_indices', 'normcdf', 'quantiles', 'rec_getattr',
'rec_setattr', 'round_array', 'trace_generator','msqrt','safe_len',
'log_difference', 'find_generations','crawl_dataless', 'logit',
'invlogit','stukel_logit','stukel_invlogit','symmetrize','value']
symmetrize = flib.symmetrize
def value(a):
"""
Returns a.value if a is a Variable, or just a otherwise.
"""
if isinstance(a, Variable):
return a.value
else:
return a
# =====================================================================
# = Please don't use numpy.vectorize with these! It will leak memory. =
# =====================================================================
def logit(theta):
return flib.logit(ravel(theta)).reshape(shape(theta))
def invlogit(ltheta):
return flib.invlogit(ravel(ltheta)).reshape(shape(ltheta))
def stukel_invlogit(ltheta,a1,a2):
return flib.stukel_invlogit(ravel(ltheta),a1,a2).reshape(shape(ltheta))
def stukel_logit(theta,a1,a2):
return flib.stukel_logit(ravel(theta),a1,a2).reshape(shape(theta))
def check_list(thing, label):
if thing is not None:
if thing.__class__ is not list:
return [thing]
return thing
# TODO: Look into using numpy.core.numerictypes to do this part.
# TODO : Wrap the nd histogramming fortran function.
def safe_len(val):
if np.isscalar(val):
return 1
else:
return np.prod(np.shape(val))
def round_array(array_in):
"""
arr_out = round_array(array_in)
Rounds an array and recasts it to int. Also works on scalars.
"""
if isinstance(array_in, ndarray):
return np.round(array_in).astype(int)
else:
return int(np.round(array_in))
try:
from .flib import dchdc_wrap
def msqrt(C):
"""
U=incomplete_chol(C)
Computes a Cholesky factorization of C. Works for matrices that are
positive-semidefinite as well as positive-definite, though in these
cases the Cholesky factorization isn't unique.
U will be upper triangular.
This is the dchdc version. It's faster for full-rank matrices,
but it has to compute the entire matrix.
"""
chol = C.copy()
piv, N = dchdc_wrap(a=chol)
if N<0:
raise ValueError("Matrix does not appear to be positive semidefinite")
return asmatrix(chol[:N,argsort(piv)])
except:
def msqrt(cov):
"""
sig = msqrt(cov)
Return a matrix square root of a covariance matrix. Tries Cholesky
factorization first, and factorizes by diagonalization if that fails.
"""
# Try Cholesky factorization
try:
sig = asmatrix(cholesky(cov))
# If there's a small eigenvalue, diagonalize
except LinAlgError:
val, vec = eigh(cov)
sig = np.zeros(vec.shape)
for i in range(len(val)):
if val[i]<0.:
val[i]=0.
sig[:,i] = vec[:,i]*sqrt(val[i])
return np.asmatrix(sig).T
def histogram(a, bins=10, range=None, normed=False, weights=None, axis=None, strategy=None):
"""histogram(a, bins=10, range=None, normed=False, weights=None, axis=None)
-> H, dict
Return the distribution of sample.
:Stochastics:
`a` : Array sample.
`bins` : Number of bins, or an array of bin edges, in which case the
range is not used. If 'Scott' or 'Freeman' is passed, then
the named method is used to find the optimal number of bins.
`range` : Lower and upper bin edges, default: [min, max].
`normed` :Boolean, if False, return the number of samples in each bin,
if True, return the density.
`weights` : Sample weights. The weights are normed only if normed is
True. Should weights.sum() not equal len(a), the total bin count
will not be equal to the number of samples.
`axis` : Specifies the dimension along which the histogram is computed.
Defaults to None, which aggregates the entire sample array.
`strategy` : Histogramming method (binsize, searchsorted or digitize).
:Return:
`H` : The number of samples in each bin.
If normed is True, H is a frequency distribution.
dict{ 'edges': The bin edges, including the rightmost edge.
'upper': Upper outliers.
'lower': Lower outliers.
'bincenters': Center of bins.
'strategy': the histogramming method employed.}
:Examples:
>>> x = random.rand(100,10)
>>> H, D = histogram(x, bins=10, range=[0,1], normed=True)
>>> H2, D = histogram(x, bins=10, range=[0,1], normed=True, axis=0)
:SeeAlso: histogramnd
"""
weighted = weights is not None
a = asarray(a)
if axis is None:
a = atleast_1d(a.ravel())
if weighted:
weights = atleast_1d(weights.ravel())
axis = 0
# Define the range
if range is None:
mn, mx = a.min(), a.max()
if mn == mx:
mn = mn - .5
mx = mx + .5
range = [mn, mx]
# Find the optimal number of bins.
if bins is None or type(bins) == str:
bins = _optimize_binning(a, range, bins)
# Compute the bin edges if they are not given explicitely.
# For the rightmost bin, we want values equal to the right
# edge to be counted in the last bin, and not as an outlier.
# Hence, we shift the last bin by a tiny amount.
if not iterable(bins):
dr = diff(range)/bins*1e-10
edges = linspace(range[0], range[1]+dr, bins+1, endpoint=True)
else:
edges = asarray(bins, float)
dedges = diff(edges)
bincenters = edges[:-1] + dedges/2.
# Number of bins
nbin = len(edges)-1
# Measure of bin precision.
decimal = int(-log10(dedges.min())+10)
# Choose the fastest histogramming method
even = (len(set(around(dedges, decimal))) == 1)
if strategy is None:
if even:
strategy = 'binsize'
else:
if nbin > 30: # approximative threshold
strategy = 'searchsort'
else:
strategy = 'digitize'
else:
if strategy not in ['binsize', 'digitize', 'searchsort']:
raise ValueError('Unknown histogramming strategy.', strategy)
if strategy == 'binsize' and not even:
raise ValueError('This binsize strategy cannot be used for uneven bins.')
# Stochastics for the fixed_binsize functions.
start = float(edges[0])
binwidth = float(dedges[0])
# Looping to reduce memory usage
block = 66600
slices = [slice(None)]*a.ndim
for i in arange(0,len(a),block):
slices[axis] = slice(i,i+block)
at = a[slices]
if weighted:
at = concatenate((at, weights[slices]), axis)
if strategy == 'binsize':
count = apply_along_axis(_splitinmiddle,axis,at,
flib.weighted_fixed_binsize,start,binwidth,nbin)
elif strategy == 'searchsort':
count = apply_along_axis(_splitinmiddle,axis,at, \
_histogram_searchsort_weighted, edges)
elif strategy == 'digitize':
count = apply_along_axis(_splitinmiddle,axis,at,\
_histogram_digitize,edges,normed)
else:
if strategy == 'binsize':
count = apply_along_axis(flib.fixed_binsize,axis,at,start,binwidth,nbin)
elif strategy == 'searchsort':
count = apply_along_axis(_histogram_searchsort,axis,at,edges)
elif strategy == 'digitize':
count = apply_along_axis(_histogram_digitize,axis,at,None,edges,
normed)
if i == 0:
total = count
else:
total += count
# Outlier count
upper = total.take(array([-1]), axis)
lower = total.take(array([0]), axis)
# Non-outlier count
core = a.ndim*[slice(None)]
core[axis] = slice(1, -1)
hist = total[core]
if normed:
normalize = lambda x: atleast_1d(x/(x*dedges).sum())
hist = apply_along_axis(normalize, axis, hist)
return hist, {'edges':edges, 'lower':lower, 'upper':upper, \
'bincenters':bincenters, 'strategy':strategy}
def _histogram_fixed_binsize(a, start, width, n):
"""histogram_even(a, start, width, n) -> histogram
Return an histogram where the first bin counts the number of lower
outliers and the last bin the number of upper outliers. Works only with
fixed width bins.
:Stochastics:
a : array
Array of samples.
start : float
Left-most bin edge.
width : float
Width of the bins. All bins are considered to have the same width.
n : int
Number of bins.
:Return:
H : array
Array containing the number of elements in each bin. H[0] is the number
of samples smaller than start and H[-1] the number of samples
greater than start + n*width.
"""
return flib.fixed_binsize(a, start, width, n)
def _histogram_binsize_weighted(a, w, start, width, n):
"""histogram_even_weighted(a, start, width, n) -> histogram
Return an histogram where the first bin counts the number of lower
outliers and the last bin the number of upper outliers. Works only with
fixed width bins.
:Stochastics:
a : array
Array of samples.
w : array
Weights of samples.
start : float
Left-most bin edge.
width : float
Width of the bins. All bins are considered to have the same width.
n : int
Number of bins.
:Return:
H : array
Array containing the number of elements in each bin. H[0] is the number
of samples smaller than start and H[-1] the number of samples
greater than start + n*width.
"""
return flib.weighted_fixed_binsize(a, w, start, width, n)
def _histogram_searchsort(a, bins):
n = sort(a).searchsorted(bins)
n = concatenate([n, [len(a)]])
count = concatenate([[n[0]], n[1:]-n[:-1]])
return count
def _histogram_searchsort_weighted(a, w, bins):
i = sort(a).searchsorted(bins)
sw = w[argsort(a)]
i = concatenate([i, [len(a)]])
n = concatenate([[0],sw.cumsum()])[i]
count = concatenate([[n[0]], n[1:]-n[:-1]])
return count
def _splitinmiddle(x, function, *args, **kwds):
x1,x2 = hsplit(x, 2)
return function(x1,x2,*args, **kwds)
def _histogram_digitize(a, w, edges, normed):
"""Internal routine to compute the 1d weighted histogram for uneven bins.
a: sample
w: weights
edges: bin edges
weighted: Means that the weights are appended to array a.
Return the bin count or frequency if normed.
"""
weighted = w is not None
nbin = edges.shape[0]+1
if weighted:
count = zeros(nbin, dtype=w.dtype)
if normed:
count = zeros(nbin, dtype=float)
w = w/w.mean()
else:
count = zeros(nbin, int)
binindex = digitize(a, edges)
# Count the number of identical indices.
flatcount = bincount(binindex, w)
# Place the count in the histogram array.
count[:len(flatcount)] = flatcount
return count
def _optimize_binning(x, range, method='Freedman'):
"""Find the optimal number of bins.
Available methods : Freedman, Scott
"""
N = x.shape[0]
if method.lower()=='freedman':
s=sort(x)
IQR = s[int(N*.75)] - s[int(N*.25)] # Interquantile range (75% -25%)
width = 2* IQR*N**(-1./3)
elif method.lower()=='scott':
width = 3.49 * x.std()* N**(-1./3)
else:
raise ValueError('Method must be Scott or Freedman', method)
return int(diff(range)/width)
def normcdf(x, log=False):
"""Normal cumulative density function."""
y = np.atleast_1d(x).copy()
flib.normcdf(y)
if log:
# return np.where(y>0, np.log(y), -np.inf)
return np.array([-np.inf if not yi else np.log(yi) for yi in y])
return y
def lognormcdf(x, mu, tau):
"""Log-normal cumulative density function"""
x = np.atleast_1d(x)
return np.array([0.5*(1-flib.derf(-(np.sqrt(tau/2))*(np.log(y)-mu))) for y in x])
def invcdf(x):
"""Inverse of normal cumulative density function."""
x = np.atleast_1d(x)
return np.array([flib.ppnd16(y,1) for y in x])
def ar1_gen(rho, mu, sigma, size=1):
"""Create an autoregressive series of order one AR(1) generator.
.. math::
X_t = \mu_t + \rho (X_{t-1}-\mu_{t-1} + \epsilon_t
If mu is a sequence and size > len(mu), the algorithm loops through
mu.
:Stochastics:
rho : scalar in [0,1]
mu : scalar or sequence
sigma : scalar > 0
size : integer
"""
mu = np.asarray(mu, float)
mu = np.resize(mu, size)
r = mu.copy()
r += np.random.randn(size)*sigma
r[0] = np.random.randn(1)*sigma/np.sqrt(1-rho**2)
i = 0
while True:
yield r[i]
i+=1
if i==size:
break
r[i] += rho*(r[i-1]-mu[i-1])
def ar1(rho, mu, sigma, size=1):
"""Return an autoregressive series of order one AR(1).
.. math::
X_t = \mu_t + \rho (X_{t-1}-\mu_{t-1} + \epsilon_t
If mu is a sequence and size > len(mu), the algorithm loops through
mu.
:Stochastics:
rho : scalar in [0,1]
mu : scalar or sequence
sigma : scalar > 0
size : integer
"""
return np.array([x for x in ar1_gen(rho, mu, sigma, size)])
def autocorr(x, lag=1):
"""Sample autocorrelation at specified lag.
The autocorrelation is the correlation of x_i with x_{i+lag}.
"""
if not lag: return 1
if lag<0: return
# x = np.squeeze(asarray(x))
# mu = x.mean()
# v = x.var()
# return ((x[:-lag]-mu)*(x[lag:]-mu)).sum()/v/(len(x) - lag)
S = autocov(x, lag)
return S[0,1]/sqrt(prod(diag(S)))
def autocov(x, lag=1):
"""
Sample autocovariance at specified lag.
The autocovariance is a 2x2 matrix with the variances of
x[:-lag] and x[lag:] in the diagonal and the autocovariance
on the off-diagonal.
"""
if not lag: return 1
if lag<0: return
return cov(x[:-lag], x[lag:], bias=1)
def trace_generator(trace, start=0, stop=None, step=1):
"""Return a generator returning values from the object's trace.
Ex:
T = trace_generator(theta.trace)
T.next()
for t in T:...
"""
i = start
stop = stop or np.inf
size = min(trace.length(), stop)
while i < size:
index = slice(i, i+1)
yield trace.gettrace(slicing=index)[0]
i+=step
def draw_random(obj, **kwds):
"""Draw random variates from obj.random method.
If the object has parents whose value must be updated, use
parent_name=trace_generator_function.
Ex:
R = draw_random(theta, beta=pymc.utils.trace_generator(beta.trace))
R.next()
"""
while True:
for k,v in six.iteritems(kwds):
obj.parents[k] = v.next()
yield obj.random()
def rec_getattr(obj, attr):
"""Get object's attribute. May use dot notation.
>>> class C(object): pass
>>> a = C()
>>> a.b = C()
>>> a.b.c = 4
>>> rec_getattr(a, 'b.c')
4
"""
return reduce(getattr, attr.split('.'), obj)
def rec_setattr(obj, attr, value):
"""Set object's attribute. May use dot notation.
>>> class C(object): pass
>>> a = C()
>>> a.b = C()
>>> a.b.c = 4
>>> rec_setattr(a, 'b.c', 2)
>>> a.b.c
2
"""
attrs = attr.split('.')
setattr(reduce(getattr, attrs[:-1], obj), attrs[-1], value)
def hpd(x, alpha):
"""Calculate HPD (minimum width BCI) of array for given alpha
:Arguments:
x : Numpy array
An array containing MCMC samples
alpha : float
Desired probability of type I error
"""
# Make a copy of trace
x = x.copy()
# For multivariate node
if x.ndim>1:
# Transpose first, then sort
tx = tr(x, range(x.ndim)[1:]+[0])
dims = shape(tx)
# Container list for intervals
intervals = np.resize(0.0, dims[:-1]+(2,))
for index in make_indices(dims[:-1]):
try:
index = tuple(index)
except TypeError:
pass
# Sort trace
sx = sort(tx[index])
# Append to list
intervals[index] = calc_min_interval(sx, alpha)
# Transpose back before returning
return array(intervals)
else:
# Sort univariate node
sx = sort(x)
return array(calc_min_interval(sx, alpha))
def make_indices(dimensions):
# Generates complete set of indices for given dimensions
level = len(dimensions)
if level==1: return range(dimensions[0])
indices = [[]]
while level:
_indices = []
for j in range(dimensions[level-1]):
_indices += [[j]+i for i in indices]
indices = _indices
level -= 1
try:
return [tuple(i) for i in indices]
except TypeError:
return indices
def calc_min_interval(x, alpha):
"""Internal method to determine the minimum interval of
a given width"""
# Initialize interval
min_int = [None,None]
try:
# Number of elements in trace
n = len(x)
# Start at far left
start, end = 0, int(n*(1-alpha))
# Initialize minimum width to large value
min_width = inf
while end < n:
# Endpoints of interval
hi, lo = x[end], x[start]
# Width of interval
width = hi - lo
# Check to see if width is narrower than minimum
if width < min_width:
min_width = width
min_int = [lo, hi]
# Increment endpoints
start +=1
end += 1
return min_int
except IndexError:
print_('Too few elements for interval calculation')
return [None,None]
def quantiles(x, qlist=(2.5, 25, 50, 75, 97.5)):
"""Returns a dictionary of requested quantiles from array
:Arguments:
x : Numpy array
An array containing MCMC samples
qlist : tuple or list
A list of desired quantiles (defaults to (2.5, 25, 50, 75, 97.5))
"""
# Make a copy of trace
x = x.copy()
# For multivariate node
if x.ndim>1:
# Transpose first, then sort, then transpose back
sx = sort(x.T).T
else:
# Sort univariate node
sx = sort(x)
try:
# Generate specified quantiles
quants = [sx[int(len(sx)*q/100.0)] for q in qlist]
return dict(zip(qlist, quants))
except IndexError:
print_("Too few elements for quantile calculation")
def coda_output(pymc_object):
"""Generate output files that are compatible with CODA
:Arguments:
pymc_object : Model or Node
A PyMC object containing MCMC output.
"""
print_()
print_("Generating CODA output")
print_('='*50)
name = pymc_object.__name__
# Open trace file
trace_file = open(name+'_coda.out', 'w')
# Open index file
index_file = open(name+'_coda.ind', 'w')
variables = [pymc_object]
if hasattr(pymc_object, 'variables'):
variables = pymc_object.variables
# Initialize index
index = 1
# Loop over all parameters
for v in variables:
vname = v.__name__
print_("Processing", vname)
try:
index = _process_trace(trace_file, index_file, v.trace(), vname, index)
except TypeError:
pass
# Close files
trace_file.close()
index_file.close()
# Lazy shortcut
coda = coda_output
def _process_trace(trace_file, index_file, trace, name, index):
"""Support function for coda_output(); writes output to files"""
if ndim(trace)>1:
trace = swapaxes(trace, 0, 1)
for i, seq in enumerate(trace):
_name = '%s_%s' % (name, i)
index = _process_trace(trace_file, index_file, seq, _name, index)
else:
index_buffer = '%s\t%s\t' % (name, index)
for i, val in enumerate(trace):
trace_file.write('%s\t%s\r\n' % (i+1, val))
index += 1
index_file.write('%s%s\r\n' % (index_buffer, index-1))
return index
def log_difference(lx, ly):
"""Returns log(exp(lx) - exp(ly)) without leaving log space."""
# Negative log of double-precision infinity
li=-709.78271289338397
diff = ly - lx
# Make sure log-difference can succeed
if np.any(diff>=0):
raise ValueError('Cannot compute log(x-y), because y>=x for some elements.')
# Otherwise evaluate log-difference
return lx + np.log(1.-np.exp(diff))
def getInput():
"""Read the input buffer without blocking the system."""
input = ''
if sys.platform=='win32':
import msvcrt
if msvcrt.kbhit(): # Check for a keyboard hit.
input += msvcrt.getch()
print_(input)
else:
time.sleep(.1)
else: # Other platforms
# Posix will work with sys.stdin or sys.stdin.fileno()
# Mac needs the file descriptor.
# This solution does not work for windows since select
# expects a socket, and I have no idea how to create a
# socket from standard input.
sock = sys.stdin.fileno()
#select(rlist, wlist, xlist, timeout)
while len(select.select([sock], [], [], 0.1)[0])>0:
input += os.read(sock, 4096)
return input
def crawl_dataless(sofar, gens):
"""
Crawls out from v to find the biggest dataless submodel containing v.
TODO: Let MCMC start the crawl from its last generation. It doesn't
matter that there won't be one contiguous group.
"""
new_gen = set([])
all_ext_parents = set()
for s in gens[-1]:
all_ext_parents.update(s.extended_parents)
for p in all_ext_parents:
if p._random is not None and not p.observed:
if len(p.extended_children-sofar) == 0:
new_gen.add(p)
if len(new_gen)==0:
return sofar, gens
else:
sofar |= new_gen
gens.append(new_gen)
return crawl_dataless(sofar, gens)
def find_generations(container, with_data = False):
"""
A generation is the set of stochastic variables that only has parents in
previous generations.
"""
generations = []
# Find root generation
generations.append(set())
all_children = set()
if with_data:
stochastics_to_iterate = container.stochastics | container.observed_stochastics
else:
stochastics_to_iterate = container.stochastics
for s in stochastics_to_iterate:
all_children.update(s.extended_children & stochastics_to_iterate)
generations[0] = stochastics_to_iterate - all_children
# Find subsequent _generations
children_remaining = True
gen_num = 0
while children_remaining:
gen_num += 1
# Find children of last generation
generations.append(set())
for s in generations[gen_num-1]:
generations[gen_num].update(s.extended_children & stochastics_to_iterate)
# Take away stochastics that have parents in the current generation.
thisgen_children = set()
for s in generations[gen_num]:
thisgen_children.update(s.extended_children & stochastics_to_iterate)
generations[gen_num] -= thisgen_children
# Stop when no subsequent _generations remain
if len(thisgen_children) == 0:
children_remaining = False
return generations
def append(nodelist, node, label=None, sep='_'):
"""
Append function to automate the naming of list elements in Containers.
:Arguments:
- `nodelist` : List containing nodes for Container.
- `node` : Node to be added to list.
- `label` : Label to be appended to list (If not passed,
defaults to element number).
- `sep` : Separator character for label (defaults to underscore).
:Return:
- `nodelist` : Passed list with node added.
"""
nname = node.__name__
# Determine label
label = label or len(nodelist)
# Look for separator at the end of name
ind = nname.rfind(sep)
# If there is no separator, we will remove last character and
# replace with label.
node.__name__ = nname[:ind] + sep + str(label)
nodelist.append(node)
return nodelist
#deterministic related utilities
def find_element(names, modules, error_on_fail):
element = None
found = False
if type(names) is str:
names = [names]
if type(modules) is dict or type(modules) is types.ModuleType:
modules = [modules]
for module in modules:
if type(module) is types.ModuleType:
module = copy(module.__dict__)
elif type(module) is dict:
module = copy(module)
else:
raise AttributeError
for name in names:
try:
function = module[name]
found = True
except KeyError:
pass
if not found and error_on_fail:
raise NameError("no function or variable " + str(names) + " in " + str(modules))
return function
|