This file is indexed.

/usr/share/pyshared/pymc/StepMethods.py is in python-pymc 2.2+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
from __future__ import division

import numpy as np
from .utils import msqrt, check_type, round_array, float_dtypes, integer_dtypes, bool_dtypes, safe_len, find_generations, logp_of_set, symmetrize, logp_gradient_of_set
from numpy import ones, zeros, log, shape, cov, ndarray, inner, reshape, sqrt, any, array, all, abs, exp, where, isscalar, iterable, multiply, transpose, tri, pi
from numpy.linalg.linalg import LinAlgError
from numpy.linalg import pinv, cholesky
from numpy.random import randint, random
from numpy.random import normal as rnormal
from numpy.random import poisson as rpoisson
from .PyMCObjects import Stochastic, Potential, Deterministic
from .Container import Container
from .Node import ZeroProbability, Node, Variable, StochasticBase
from pymc.decorators import prop
from . import distributions
from copy import copy
from .InstantiationDecorators import deterministic
import pdb, warnings, sys
import inspect

from . import six
from .six import print_

__docformat__='reStructuredText'


# Changeset history
# 22/03/2007 -DH- Added a _state attribute containing the name of the attributes that make up the state of the step method, and a method to return that state in a dict. Added an id.
# TODO: Test cases for binary and discrete Metropolises.

conjugate_Gibbs_competence = 0
nonconjugate_Gibbs_competence = 0

class AdaptationError(ValueError): pass


__all__=['DiscreteMetropolis', 'Metropolis', 'PDMatrixMetropolis', 'StepMethod', 'assign_method',  'pick_best_methods', 'StepMethodRegistry', 'NoStepper', 'BinaryMetropolis', 'AdaptiveMetropolis','Gibbs','conjugate_Gibbs_competence', 'nonconjugate_Gibbs_competence', 'DrawFromPrior']


StepMethodRegistry = []

def pick_best_methods(stochastic):
    """
    Picks the StepMethods best suited to handle
    a stochastic variable.
    """

    # Keep track of most competent methohd
    max_competence = 0
    # Empty set of appropriate StepMethods
    best_candidates = set([])

    # Loop over StepMethodRegistry
    for method in StepMethodRegistry:

        # Parse method and its associated competence
        try:
            competence = method.competence(stochastic)
        except:
#             print_('\n\tWarning, there was an error while step method %s assessed its competence \n \
# \tto handle stochastic %s. It is being excluded from consideration.\n' \
#                     %(method.__name__, stochastic))
            competence = 0

        # If better than current best method, promote it
        if competence > max_competence:
            best_candidates = set([method])
            max_competence = competence

        # If same competence, add it to the set of best methods
        elif competence == max_competence:
            best_candidates.add(method)

    if max_competence<=0:
        raise ValueError('Maximum competence reported for stochastic %s is <= 0... you may need to write a custom step method class.' % stochastic.__name__)

    # print_(s.__name__ + ': ', best_candidates, ' ', max_competence)
    return best_candidates

def assign_method(stochastic, scale=None, verbose=-1):
    """
    Returns a step method instance to handle a
    variable. If several methods have the same competence,
    it picks one arbitrarily (using set.pop()).
    """

    # Retrieve set of best candidates
    best_candidates = pick_best_methods(stochastic)

    # Randomly grab and appropriate method
    method = best_candidates.pop()

    failure_header = """Failed attempting to automatically assign step method class %s
to stochastic variable %s. Try setting %s's competence method to return 0
and manually assigning it when appropriate. See the user guide.

Error message: """%(method.__name__, stochastic.__name__, method.__name__)

    try:
        if scale:
            out = method(stochastic, scale = scale, verbose=verbose)
        else:
            out = method(stochastic, verbose=verbose)
    except:
        a,b,c = sys.exc_info()
        try:
            args = list(b.args)
        except AttributeError:
            args = []
        args.append(failure_header)
        b.args = args
        six.reraise(a, b, c)
    return out


class StepMethodMeta(type):
    """
    Automatically registers new step methods if they can be automatically assigned:
    if their init method has one and only one required argument.
    """
    def __init__(cls, name, bases, dict):
        type.__init__(cls, name, bases, dict)
        args, varargs, varkw, defaults = inspect.getargspec(cls.__init__)
        auto_assignment_OK = False
        if len(args) == 2:
            auto_assignment_OK = True
        elif len(args)>2:
            if defaults is not None:
                if len(defaults) == len(args)-2:
                    auto_assignment_OK = True
        elif len(args) == 1 and varargs is not None:
            auto_assignment_OK = True

        if auto_assignment_OK:
            StepMethodRegistry.append(cls)


class StepMethod(object):
    """
    This object knows how to make Stochastics take single MCMC steps.
    Its step() method will be called by Model at every MCMC iteration.

    :Parameters:
          -variables : list, array or set
            Collection of PyMCObjects

          - verbose (optional) : integer
            Level of output verbosity: 0=none, 1=low, 2=medium, 3=high. Setting to -1 (Default) allows verbosity to be set by sampler.

    Externally-accessible attributes:
      stochastics:   The Stochastics over which self has jurisdiction which have observed = False.
      children: The combined children of all Variables over which self has jurisdiction.
      parents:  The combined parents of all Nodes over which self has jurisdiction, as a set.
      loglike:  The summed log-probability of self's children conditional on all of self's
                  Variables' current values. These will be recomputed only as necessary.
                  This descriptor should eventually be written in C.

    Externally accesible methods:
      sample(): A single MCMC step for all the Stochastics over which self has
        jurisdiction. Must be overridden in subclasses.
      tune(): Tunes proposal distribution widths for all self's Stochastics.
      competence(s): Examines Stochastic instance s and returns self's
        competence to handle it, on a scale of 0 to 3.

    To instantiate a StepMethod called S with jurisdiction over a
    sequence/set N of Nodes:

      >>> S = StepMethod(N)

    :SeeAlso: Metropolis, Sampler.
    """

    def __init__(self, variables, verbose=-1, tally=False):
        # StepMethod initialization

        if not iterable(variables) or isinstance(variables, Node):
            variables = [variables]

        self.stochastics = set()
        self.children = set()
        self.parents = set()
        self.tally = tally

        self._state = []
        self._tuning_info = []
        self.verbose = verbose

        # File away the variables
        for variable in variables:
            # Sort.

            if isinstance(variable,Stochastic) and not variable.observed:
                self.stochastics.add(variable)

        if len(self.stochastics)==0:
            raise ValueError('No stochastics provided.')

        # Find children, no need to find parents; each variable takes care of those.
        for variable in variables:
            self.children |= variable.children
            for parent in six.itervalues(variable.parents):
                if isinstance(parent, Variable):
                    self.parents.add(parent)

        self.children = set([])
        self.parents = set([])
        for s in self.stochastics:
            self.children |= s.extended_children
            self.parents |= s.extended_parents

        # Remove own stochastics from children and parents.
        self.children -= self.stochastics
        self.parents -= self.stochastics

        # self.markov_blanket is a list, because we want self.stochastics to have the chance to
        # raise ZeroProbability exceptions before self.children.
        self.markov_blanket = list(self.stochastics)+list(self.children)

        # ID string for verbose feedback
        self._id = self.__class__.__name__ + '_' + '_'.join([s.__name__ for s in self.stochastics])

    def step(self):
        """
        Specifies single step of step method.
        Must be overridden in subclasses.
        """
        pass

    @staticmethod
    def competence(s):
        """
        This function is used by Sampler to determine which step method class
        should be used to handle stochastic variables.

        Return value should be a competence
        score from 0 to 3, assigned as follows:

        0:  I can't handle that variable.
        1:  I can handle that variable, but I'm a generalist and
            probably shouldn't be your top choice (Metropolis
            and friends fall into this category).
        2:  I'm designed for this type of situation, but I could be
            more specialized.
        3:  I was made for this situation, let me handle the variable.

        In order to be eligible for inclusion in the registry, a sampling
        method's init method must work with just a single argument, a
        Stochastic object.

        If you want to exclude a particular step method from
        consideration for handling a variable, do this:

        Competence functions MUST be called 'competence' and be decorated by the
        '@staticmethod' decorator. Example:

            @staticmethod
            def competence(s):
                if isinstance(s, MyStochasticSubclass):
                    return 2
                else:
                    return 0

        :SeeAlso: pick_best_methods, assign_method
        """
        return 0


    def tune(self, *args, **kwargs):
        return False

    def _get_loglike(self):
        # Fetch log-probability (as sum of childrens' log probability)
        sum = logp_of_set(self.children)
        if self.verbose>2:
            print_('\t' + self._id + ' Current log-likelihood ', sum)
        return sum

    # Make get property for retrieving log-probability
    loglike = property(fget = _get_loglike, doc="The summed log-probability of all stochastic variables that depend on \n self.stochastics, with self.stochastics removed.")

    def _get_logp_plus_loglike(self):
        sum = logp_of_set(self.markov_blanket)
        if self.verbose>2:
            print_('\t' + self._id + ' Current log-likelihood plus current log-probability', sum)
        return sum

    # Make get property for retrieving log-probability
    logp_plus_loglike = property(fget = _get_logp_plus_loglike, doc="The summed log-probability of all stochastic variables that depend on \n self.stochastics, and self.stochastics.")

    def _get_logp_gradient(self):
        return logp_gradient_of_set(self.stochastics, self.markov_blanket)
    
    logp_gradient = property(fget = _get_logp_gradient)
    
    def current_state(self):
        """Return a dictionary with the current value of the variables defining
        the state of the step method."""
        state = {}
        for s in self._state:
            state[s] = getattr(self, s)
        return state


    @prop
    def ratio():
        """Acceptance ratio"""
        def fget(self):
            return self.accepted/(self.accepted + self.rejected)
        return locals()

StepMethod = six.with_metaclass(StepMethodMeta, StepMethod)

class NoStepper(StepMethod):
    """
    Step and tune methods do nothing.

    Useful for holding stochastics constant without setting observed=True.
    """
    def step(self):
        pass
    def tune(self, *args, **kwargs):
        pass

# The default StepMethod, which Model uses to handle singleton stochastics.
class Metropolis(StepMethod):
    """
    The default StepMethod, which Model uses to handle singleton, continuous variables.

    Applies the one-at-a-time Metropolis-Hastings algorithm to the Stochastic over which self has jurisdiction.

    To instantiate a Metropolis called M with jurisdiction over a Stochastic P:

      >>> M = Metropolis(P, scale=1, proposal_sd=None, dist=None)

    :Arguments:
    - s : Stochastic
            The variable over which self has jurisdiction.

    - scale (optional) : number
            The proposal jump width is set to scale * variable.value.

    - proposal_sd (optional) : number or vector
            The proposal jump width is set to proposal_sd.

    - proposal_distribution (optional) : string
            The proposal distribution. May be 'Normal',
            'Prior' or None. If None is provided, a proposal distribution is chosen
            by examining P.value's type.

    - verbose (optional) : integer
            Level of output verbosity: 0=none, 1=low, 2=medium, 3=high. Setting to -1 (default) allows verbosity to be turned on by sampler.

    :SeeAlso: StepMethod, Sampler.
    """

    def __init__(self, stochastic, scale=1., proposal_sd=None, proposal_distribution=None, verbose=-1, tally=True, check_before_accepting=True):
        # Metropolis class initialization

        # Initialize superclass
        StepMethod.__init__(self, [stochastic], tally=tally)

        # Initialize hidden attributes
        self.proposal_sd = proposal_sd

        self.adaptive_scale_factor = 1.
        self.accepted = 0.
        self.rejected = 0.
        self._state = ['rejected', 'accepted', 'adaptive_scale_factor', 'proposal_sd', 'proposal_distribution', 'check_before_accepting']
        self._tuning_info = ['adaptive_scale_factor']
        self.check_before_accepting = check_before_accepting
        self.proposal_sd=proposal_sd

        # Set public attributes
        self.stochastic = stochastic
        if verbose > -1:
            self.verbose = verbose
        else:
            self.verbose = stochastic.verbose

        if proposal_distribution != "Prior":
            # Avoid zeros when setting proposal variance
            if proposal_sd is None:
                if all(self.stochastic.value != 0.):
                    self.proposal_sd = ones(shape(self.stochastic.value)) * abs(self.stochastic.value) * scale
                else:
                    self.proposal_sd = ones(shape(self.stochastic.value)) * scale

            # Initialize proposal deviate with array of zeros
            self.proposal_deviate = zeros(shape(self.stochastic.value), dtype=float)

            # Determine size of stochastic
            if isinstance(self.stochastic.value, ndarray):
                self._len = len(self.stochastic.value.ravel())
            else:
                self._len = 1

        #else: self.proposal_sd = None # Probably unnecessary
        # If no dist argument is provided, assign a proposal distribution automatically.
        if not proposal_distribution:

            # Pick Gaussian by default
            self.proposal_distribution = "Normal"

        else:
            
            if proposal_distribution.capitalize() in self._valid_proposals:
                self.proposal_distribution = proposal_distribution
            else: 
                raise ValueError("Invalid proposal distribution '%s' specified for Metropolis sampler." % proposal_distribution)
    
    _valid_proposals = ['Normal', 'Prior']

    @staticmethod
    def competence(s):
        """
        The competence function for Metropolis
        """
        if s.dtype is None:
            return .5

        if not s.dtype in float_dtypes:
            # If the stochastic's binary or discrete, I can't do it.
            return 0
        else:
            return 1

    def hastings_factor(self):
        """
        If this is a Metropolis-Hastings method (proposal is not symmetric random walk),
        this method should return log(back_proposal) - log(forward_proposal).
        """
        return 0.

    def step(self):
        """
        The default step method applies if the variable is floating-point
        valued, and is not being proposed from its prior.
        """

        # Probability and likelihood for s's current value:

        if self.verbose>2:
            print_()
            print_(self._id + ' getting initial logp.')

        if self.proposal_distribution == "Prior":
            logp = self.loglike
        else:
            logp = self.logp_plus_loglike

        if self.verbose>2:
            print_(self._id + ' proposing.')
            
        # Sample a candidate value
        self.propose()

        # Probability and likelihood for s's proposed value:
        try:
            if self.proposal_distribution == "Prior":
                logp_p = self.loglike
                # Check for weirdness before accepting jump
                if self.check_before_accepting:
                    self.stochastic.logp
            else:
                logp_p = self.logp_plus_loglike

        except ZeroProbability:

            # Reject proposal
            if self.verbose>2:
                print_(self._id + ' rejecting due to ZeroProbability.')
            self.reject()

            # Increment rejected count
            self.rejected += 1

            if self.verbose>2:
                print_(self._id + ' returning.')
            return

        if self.verbose>2:
            print_('logp_p - logp: ', logp_p - logp)

        HF = self.hastings_factor()

        # Evaluate acceptance ratio
        if log(random()) > logp_p - logp + HF:

            # Revert s if fail
            self.reject()

            # Increment rejected count
            self.rejected += 1
            if self.verbose > 2:
                print_(self._id + ' rejecting')
        else:
            # Increment accepted count
            self.accepted += 1
            if self.verbose > 2:
                print_(self._id + ' accepting')

        if self.verbose > 2:
            print_(self._id + ' returning.')

    def tune(self, *args, **kwargs):
        if self.proposal_distribution == "Prior":
            return False
        else:
            return StepMethod.tune(self, *args, **kwargs)

    def reject(self):
        # Sets current s value to the last accepted value
        # self.stochastic.value = self.stochastic.last_value
        self.stochastic.revert()

    def propose(self):
        """
        This method is called by step() to generate proposed values
        if self.proposal_distribution is "Normal" (i.e. no proposal specified).
        """
        if self.proposal_distribution == "Normal":
            self.stochastic.value = rnormal(self.stochastic.value, self.adaptive_scale_factor * self.proposal_sd, size=self.stochastic.value.shape)
        elif self.proposal_distribution == "Prior":
            self.stochastic.random()

    def tune(self, divergence_threshold=1e10, verbose=0):
        """
        Tunes the scaling parameter for the proposal distribution
        according to the acceptance rate of the last k proposals:

        Rate    Variance adaptation
        ----    -------------------
        <0.001        x 0.1
        <0.05         x 0.5
        <0.2          x 0.9
        >0.5          x 1.1
        >0.75         x 2
        >0.95         x 10

        This method is called exclusively during the burn-in period of the
        sampling algorithm.

        May be overridden in subclasses.
        """

        if self.verbose > -1:
            verbose = self.verbose

        # Verbose feedback
        if verbose > 0:
            print_('\t%s tuning:' % self._id)

        # Flag for tuning state
        tuning = True

        # Calculate recent acceptance rate
        if not (self.accepted + self.rejected): return tuning
        acc_rate = self.accepted / (self.accepted + self.rejected)


        # Switch statement
        if acc_rate<0.001:
            # reduce by 90 percent
            self.adaptive_scale_factor *= 0.1
        elif acc_rate<0.05:
            # reduce by 50 percent
            self.adaptive_scale_factor *= 0.5
        elif acc_rate<0.2:
            # reduce by ten percent
            self.adaptive_scale_factor *= 0.9
        elif acc_rate>0.95:
            # increase by factor of ten
            self.adaptive_scale_factor *= 10.0
        elif acc_rate>0.75:
            # increase by double
            self.adaptive_scale_factor *= 2.0
        elif acc_rate>0.5:
            # increase by ten percent
            self.adaptive_scale_factor *= 1.1
        else:
            tuning = False

        # Re-initialize rejection count
        self.rejected = 0.
        self.accepted = 0.

        # More verbose feedback, if requested
        if verbose > 0:
            if hasattr(self, 'stochastic'):
                print_('\t\tvalue:', self.stochastic.value)
            print_('\t\tacceptance rate:', acc_rate)
            print_('\t\tadaptive scale factor:', self.adaptive_scale_factor)
            print_()

        return tuning

class PDMatrixMetropolis(Metropolis):
    """Metropolis sampler with proposals customised for symmetric positive definite matrices"""
    def __init__(self, stochastic, scale=1., proposal_sd=None, verbose=-1, tally=True):
        Metropolis.__init__(self, stochastic, scale=scale, proposal_sd=proposal_sd, proposal_distribution="Normal", verbose=verbose, tally=tally)

    @staticmethod
    def competence(s):
        """
        The competence function for MatrixMetropolis
        """
        # MatrixMetropolis handles the Wishart family, which are valued as
        # _symmetric_ matrices.
        if any([isinstance(s,cls) for cls in [distributions.Wishart,distributions.WishartCov]]):
            return 2
        else:
            return 0

    def propose(self):
        """
        Proposals for positive definite matrix using random walk deviations on the Cholesky
        factor of the current value.
        """

        # Locally store size of matrix
        dims = self.stochastic.value.shape

        # Add normal deviate to value and symmetrize
        dev =  rnormal(0, self.adaptive_scale_factor * self.proposal_sd, size=dims)
        symmetrize(dev)

        # Replace
        self.stochastic.value = dev + self.stochastic.value


class Gibbs(Metropolis):
    """
    Base class for the Gibbs step methods
    """
    def __init__(self, stochastic, verbose=-1):
        Metropolis.__init__(self, stochastic, verbose=verbose, tally=False)

    # Override Metropolis's competence.
    competence = classmethod(StepMethod.competence)

    def step(self):
        if not self.conjugate:
            logp = self.stochastic.logp

        self.propose()

        if not self.conjugate:

            try:
                logp_p = self.stochastic.logp
            except ZeroProbability:
                self.reject()

            if log(random()) > logp_p - logp:
                self.reject()

    def tune(self, *args, **kwargs):
        return False

    def propose(self):
        raise NotImplementedError('The Gibbs class has to be subclassed, it is not usable directly.')


class DrawFromPrior(StepMethod):
    """
    Handles dataless submodels.
    """
    def __init__(self, variables, generations, verbose=-1):
        StepMethod.__init__(self, variables, verbose, tally=False)
        self.generations = generations

        # Some variables (eg GP) may not have logp attributes, so don't try to
        # evaluate their logps.
        self.variables_with_logp = set([])
        for s in self.markov_blanket:
            try:
                s.logp
                self.variables_with_logp.add(s)
            except:
                pass
    
    def get_logp_plus_loglike(self):
        return logp_of_set(self.variables_with_logp)
    logp_plus_loglike = property(get_logp_plus_loglike)

    def step(self):
        jumped = []
        try:
            for generation in self.generations:
                for s in generation:
                    s.rand()
                    jumped.append(s)
            self.logp_plus_loglike
        except ZeroProbability:
            if self.verbose > 2:
                forbidden = []
                for generation in self.generations:
                    for s in self.stochastics:
                        try:
                            s.logp
                        except ZeroProbability:
                            forbidden.append(s.__name__)
                print_('DrawFromPrior jumped stochastics %s to value forbidden by objects %s, rejecting.'%(', '.join(s.__name__ for s in jumped),', '.join(forbidden)))
            warnings.warn('DrawFromPrior jumped to forbidden value')
            for s in jumped:
                s.revert()

    @classmethod
    def competence(s):
        # Dataless gets assigned specially before other step methods.
        return 0


class NoStepper(StepMethod):
    """
    Step and tune methods do nothing.

    Useful for holding stochastics constant without setting observed=True.
    """
    def step(self, *args, **kwargs):
        pass
    def tune(self, *args, **kwargs):
        return False

class DiscreteMetropolis(Metropolis):
    """
    Just like Metropolis, but rounds the variable's value.
    Good for discrete stochastics.
    """
    def __init__(self, stochastic, scale=1., proposal_sd=None, proposal_distribution="Poisson", positive=False, verbose=-1, tally=True):
        # DiscreteMetropolis class initialization

        # Initialize superclass
        Metropolis.__init__(self, stochastic, scale=scale, proposal_sd=proposal_sd, proposal_distribution=proposal_distribution, verbose=verbose, tally=tally)

        # Flag for positive-only values
        self._positive = positive
        
    _valid_proposals = ['Poisson', 'Normal', 'Prior']

    @staticmethod
    def competence(stochastic):
        """
        The competence function for DiscreteMetropolis.
        """
        if stochastic.dtype in integer_dtypes:
            return 1
        else:
            return 0


    def propose(self):
        # Propose new values using normal distribution

        if self.proposal_distribution == "Normal":

            # New normal deviate, centred on current value
            new_val = rnormal(self.stochastic.value, self.adaptive_scale_factor * self.proposal_sd)

            # Round before setting proposed value
            self.stochastic.value = round_array(new_val)

        elif self.proposal_distribution == "Poisson":

            k = shape(self.stochastic.value)
            # Add or subtract (equal probability) Poisson sample
            new_val = self.stochastic.value + rpoisson(self.adaptive_scale_factor * self.proposal_sd) * (-ones(k))**(random(k)>0.5)

            if self._positive:
                # Enforce positive values
                self.stochastic.value = abs(new_val)
            else:
                self.stochastic.value = new_val

        elif self.proposal_distribution == "Prior":
            self.stochastic.random()

# TODO Implement independence sampler for BinaryMetropolis

class BinaryMetropolis(Metropolis):
    """
    Like Metropolis, but with a modified step() method.
    Good for binary variables.

    """

    def __init__(self, stochastic, p_jump=.1, proposal_distribution=None, verbose=-1, tally=True):
        # BinaryMetropolis class initialization

        # Initialize superclass
        Metropolis.__init__(self, stochastic, proposal_distribution=proposal_distribution, verbose=verbose, tally=tally)

        self._state.remove('proposal_sd')

        # adaptive_scale_factor controls the jump probability
        self.adaptive_scale_factor = log(1.-p_jump) / log(.5)

    @staticmethod
    def competence(stochastic):
        """
        The competence function for Binary One-At-A-Time Metropolis
        """
        if stochastic.dtype in bool_dtypes:
            return 2
        
        elif type(stochastic) is distributions.Bernoulli:
            return 2
            
        else:
            return 0

    def step(self):
        if not isscalar(self.stochastic.value):
            Metropolis.step(self)
        else:

            # See what log-probability of True is.
            self.stochastic.value = True

            try:
                logp_true = self.logp_plus_loglike
            except ZeroProbability:
                self.stochastic.value = False
                return

            # See what log-probability of False is.
            self.stochastic.value = False

            try:
                logp_false = self.logp_plus_loglike
            except ZeroProbability:
                self.stochastic.value = True
                return

            # Test
            p_true = exp(logp_true)
            p_false = exp(logp_false)

            if self.verbose>2:
                print_("""%s step information:
    - logp_true: %f
    - logp_false: %f
    - p_true: %f
    - p_false: %f
                """ % (self._id, logp_true, logp_false, p_true, p_false))

            # Stochastically set value according to relative
            # probabilities of True and False
            if random() > p_false / (p_true + p_false):
                if self.verbose > 2:
                    print_("%s setting %s's value to True." % (self._id, self.stochastic))
                self.stochastic.value = True
            elif self.verbose > 2:
                print_("%s setting %s's value to False." % (self._id, self.stochastic))


    def propose(self):
        # Propose new values

        if self.proposal_distribution == 'Prior':
            self.stochastic.random()
        else:
            # Convert adaptive_scale_factor to a jump probability
            p_jump = 1.-.5**self.adaptive_scale_factor

            rand_array = random(size=shape(self.stochastic.value))
            new_value = copy(self.stochastic.value)
            # Locations where switches occur, according to p_jump
            switch_locs = where(rand_array<p_jump)
            if shape(new_value):
                new_value[switch_locs] = True - new_value[switch_locs]
            else:
                new_value = True - new_value
            self.stochastic.value = new_value


class AdaptiveMetropolis(StepMethod):
    """
    The AdaptativeMetropolis (AM) sampling algorithm works like a regular
    Metropolis, with the exception that stochastic parameters are block-updated
    using a multivariate jump distribution whose covariance is tuned during
    sampling. Although the chain is non-Markovian, i.e. the proposal
    distribution is asymmetric, it has correct ergodic properties. See
    (Haario et al., 2001) for details.

    :Parameters:
      - stochastic : PyMC objects
          Stochastic objects to be handled by the AM algorith,

      - cov : array
          Initial guess for the covariance matrix C. If it is None, the 
          covariance will be estimated using the scales dictionary if provided, 
          the existing trace if available, or the current stochastics value. 
          It is suggested to provide a sensible guess for the covariance, and 
          not rely on the automatic assignment from stochastics value. 

      - delay : int
          Number of steps before the empirical covariance is computed. If greedy
          is True, the algorithm waits for delay *accepted* steps before computing
          the covariance.

      - interval : int
          Interval between covariance updates. Higher dimensional spaces require 
          more samples to obtain reliable estimates for the covariance updates. 

      - greedy : bool
          If True, only the accepted jumps are tallied in the internal trace
          until delay is reached. This is useful to make sure that the empirical
          covariance has a sensible structure.

      - shrink_if_necessary : bool
          If True, the acceptance rate is checked when the step method tunes. If
          the acceptance rate is small, the proposal covariance is shrunk according
          to the following rule:

          if acc_rate < .001:
              self.C *= .01
          elif acc_rate < .01:
              self.C *= .25
              
      - scales : dict
          Dictionary containing the scale for each stochastic keyed by name.
          If cov is None, those scales are used to define an initial covariance
          matrix. If neither cov nor scale is given, the initial covariance is
          guessed from the trace (it if exists) or the objects value, alt
          
      - verbose : int
          Controls the verbosity level.


    :Notes:
    Use the methods: `cov_from_scales`, `cov_from_trace` and `cov_from_values` for
    more control on the creation of an initial covariance matrix. A lot of problems
    can be avoided with a good initial covariance and long enough intervals between
    covariance updates. That is, do not compensate for a bad covariance guess by 
    reducing the interval between updates thinking the covariance matrix will
    converge more rapidly. 
    

    :Reference:
      Haario, H., E. Saksman and J. Tamminen, An adaptive Metropolis algorithm,
          Bernouilli, vol. 7 (2), pp. 223-242, 2001.
    """
    def __init__(self, stochastic, cov=None, delay=1000, interval=200, greedy=True, shrink_if_necessary=False, scales=None, verbose=-1, tally=False):

        # Verbosity flag
        self.verbose = verbose

        self.accepted = 0
        self.rejected = 0

        if not np.iterable(stochastic) or isinstance(stochastic, Variable):
            stochastic = [stochastic]

        # Initialize superclass
        StepMethod.__init__(self, stochastic, verbose, tally)

        self._id = 'AdaptiveMetropolis_'+'_'.join([p.__name__ for p in self.stochastics])
        # State variables used to restore the state in a latter session.
        self._state += ['accepted', 'rejected', '_trace_count', '_current_iter', 'C', 'proposal_sd',
        '_proposal_deviate', '_trace', 'shrink_if_necessary']
        self._tuning_info = ['C']

        self.proposal_sd = None
        self.shrink_if_necessary=shrink_if_necessary

        # Number of successful steps before the empirical covariance is computed
        self.delay = delay
        # Interval between covariance updates
        self.interval = interval
        # Flag for tallying only accepted jumps until delay reached
        self.greedy = greedy

        # Initialization methods
        self.check_type()
        self.dimension()
        
        # Set the initial covariance using cov, or the following fallback mechanisms:
        # 1. If scales is provided, use it. 
        # 2. If a trace is present, compute the covariance matrix empirically from it. 
        # 3. Use the stochastics value as a guess of the variance. 
        if cov is not None:
            self.C = cov
        elif scales:
            self.C = self.cov_from_scales(scales)
        else:
            try:
                self.C = self.cov_from_trace()
            except AttributeError:
                self.C = self.cov_from_value(100.)
    
        self.updateproposal_sd()

        # Keep track of the internal trace length
        # It may be different from the iteration count since greedy
        # sampling can be done during warm-up period.
        self._trace_count = 0
        self._current_iter = 0

        self._proposal_deviate = np.zeros(self.dim)
        self.chain_mean = np.asmatrix(np.zeros(self.dim))
        self._trace = []

        if self.verbose >= 2:
            print_("Initialization...")
            print_('Dimension: ', self.dim)
            print_("C_0: ", self.C)
            print_("Sigma: ", self.proposal_sd)


    @staticmethod
    def competence(stochastic):
        """
        The competence function for AdaptiveMetropolis.
        The AM algorithm is well suited to deal with multivariate
        parameters.
        """
        # if not stochastic.dtype in float_dtypes and not stochastic.dtype in integer_dtypes:
        #             return 0
        #             # Algorithm is not well-suited to sparse datasets. Dont use if less than
        #             # 25 percent of values are nonzero
        #         if not getattr(stochastic, 'mask', None) is None:
        #             return 0
        #         if np.alen(stochastic.value) == 1:
        #             return 0
        #         elif np.alen(stochastic.value) < 5:
        #             return 2
        #         elif (len(stochastic.value.nonzero()[0]) > 0.25*len(stochastic.value)):
        #             return 2
        #         else:
        #             return 0
        return 0
                
    def cov_from_value(self, scaling):
        """Return a covariance matrix for the jump distribution using 
        the actual value of the stochastic as a guess of their variance, 
        divided by the `scaling` argument. 
        
        Note that this is likely to return a poor guess. 
        """
        rv = []
        for s in self.stochastics:
            rv.extend(np.ravel(s.value).copy())
        
        # Remove 0 values since this would lead to quite small jumps... 
        arv = np.array(rv)
        arv[arv==0] = 1.

        # Create a diagonal covariance matrix using the scaling factor.
        return np.eye(self.dim)*np.abs(arv)/scaling


    def cov_from_scales(self, scales):
        """Return a covariance matrix built from a dictionary of scales.
        
        `scales` is a dictionary keyed by stochastic instances, and the 
        values refer are the variance of the jump distribution for each 
        stochastic. If a stochastic is a sequence, the variance must
        have the same length. 
        """
       
        # Get array of scales
        ord_sc = []
        for stochastic in self.stochastics:
            ord_sc.append(np.ravel(scales[stochastic]))
        ord_sc = np.concatenate(ord_sc)

        if np.squeeze(ord_sc).shape[0] != self.dim:
            raise ValueError("Improper initial scales, dimension don't match", \
                (np.squeeze(ord_sc), self.dim))
        
        # Scale identity matrix
        return np.eye(self.dim)*ord_sc

    def cov_from_trace(self, trace=slice(None)):
        """Define the jump distribution covariance matrix from the object's 
        stored trace.
        
        :Parameters:
        - `trace` : slice or int
          A slice for the stochastic object's trace in the last chain, or a 
          an integer indicating the how many of the last samples will be used.
          
        """
        n = []
        for s in self.stochastics:
            n.append(s.trace.length())
        n = set(n)
        if len(n) > 1:
            raise ValueError('Traces do not have the same length.')
        elif n == 0:
            raise AttributeError('Stochastic has no trace to compute covariance.')
        else:
            n = n.pop()
            
        if type(trace) is not slice:
            trace = slice(trace, n)
            
        a = self.trace2array(trace)
        
        return np.cov(a, rowvar=0)

    def check_type(self):
        """Make sure each stochastic has a correct type, and identify discrete stochastics."""
        self.isdiscrete = {}
        for stochastic in self.stochastics:
            if stochastic.dtype in integer_dtypes:
                self.isdiscrete[stochastic] = True
            elif stochastic.dtype in bool_dtypes:
                raise ValueError('Binary stochastics not supported by AdaptativeMetropolis.')
            else:
                self.isdiscrete[stochastic] = False


    def dimension(self):
        """Compute the dimension of the sampling space and identify the slices
        belonging to each stochastic.
        """
        self.dim = 0
        self._slices = {}
        for stochastic in self.stochastics:
            if isinstance(stochastic.value, np.matrix):
                p_len = len(stochastic.value.A.ravel())
            elif isinstance(stochastic.value, np.ndarray):
                p_len = len(stochastic.value.ravel())
            else:
                p_len = 1
            self._slices[stochastic] = slice(self.dim, self.dim + p_len)
            self.dim += p_len


    def update_cov(self):
        """Recursively compute the covariance matrix for the multivariate normal
        proposal distribution.

        This method is called every self.interval once self.delay iterations
        have been performed.
        """

        scaling = (2.4)**2/self.dim # Gelman et al. 1996.
        epsilon = 1.0e-5
        chain = np.asarray(self._trace)

        # Recursively compute the chain mean
        self.C, self.chain_mean = self.recursive_cov(self.C, self._trace_count,
            self.chain_mean, chain, scaling=scaling, epsilon=epsilon)

        # Shrink covariance if acceptance rate is too small
        acc_rate = self.accepted / (self.accepted + self.rejected)
        if self.shrink_if_necessary:
            if acc_rate < .001:
                self.C *= .01
            elif acc_rate < .01:
                self.C *= .25
            if self.verbose > 1:
                if acc_rate < .01:
                    print_('\tAcceptance rate was',acc_rate,'shrinking covariance')
        self.accepted = 0.
        self.rejected = 0.

        if self.verbose > 1:
            print_("\tUpdating covariance ...\n", self.C)
            print_("\tUpdating mean ... ", self.chain_mean)

        # Update state
        adjustmentwarning = '\n'+\
        'Covariance was not positive definite and proposal_sd cannot be computed by \n'+ \
        'Cholesky decomposition. The next jumps will be based on the last \n' + \
        'valid covariance matrix. This situation may have arisen because no \n' + \
        'jumps were accepted during the last `interval`. One solution is to \n' + \
        'increase the interval, or specify an initial covariance matrix with \n' + \
        'a smaller variance. For this simulation, each time a similar error \n' + \
        'occurs, proposal_sd will be reduced by a factor .9 to reduce the \n' + \
        'jumps and increase the likelihood of accepted jumps.'

        try:
            self.updateproposal_sd()
        except np.linalg.LinAlgError:
            warnings.warn(adjustmentwarning)
            self.covariance_adjustment(.9)

        self._trace_count += len(self._trace)
        self._trace = []

    def covariance_adjustment(self, f=.9):
        """Multiply self.proposal_sd by a factor f. This is useful when the current proposal_sd is too large and all jumps are rejected.
        """
        self.proposal_sd *= f

    def updateproposal_sd(self):
        """Compute the Cholesky decomposition of self.C."""
        self.proposal_sd = np.linalg.cholesky(self.C)

    def recursive_cov(self, cov, length, mean, chain, scaling=1, epsilon=0):
        r"""Compute the covariance recursively.

        Return the new covariance and the new mean.

        .. math::
            C_k & = \frac{1}{k-1} (\sum_{i=1}^k x_i x_i^T - k\bar{x_k}\bar{x_k}^T)
            C_n & = \frac{1}{n-1} (\sum_{i=1}^k x_i x_i^T + \sum_{i=k+1}^n x_i x_i^T - n\bar{x_n}\bar{x_n}^T)
                & = \frac{1}{n-1} ((k-1)C_k + k\bar{x_k}\bar{x_k}^T + \sum_{i=k+1}^n x_i x_i^T - n\bar{x_n}\bar{x_n}^T)

        :Parameters:
            -  cov : matrix
                Previous covariance matrix.
            -  length : int
                Length of chain used to compute the previous covariance.
            -  mean : array
                Previous mean.
            -  chain : array
                Sample used to update covariance.
            -  scaling : float
                Scaling parameter
            -  epsilon : float
                Set to a small value to avoid singular matrices.
        """
        n = length + len(chain)
        k = length
        new_mean = self.recursive_mean(mean, length, chain)

        t0 = k * np.outer(mean, mean)
        t1 = np.dot(chain.T, chain)
        t2 = n*np.outer(new_mean, new_mean)
        t3 = epsilon * np.eye(cov.shape[0])

        new_cov =  (k-1)/(n-1.)*cov + scaling/(n-1.) * (t0 + t1 - t2 + t3)
        return new_cov, new_mean

    def recursive_mean(self, mean, length, chain):
        r"""Compute the chain mean recursively.

        Instead of computing the mean :math:`\bar{x_n}` of the entire chain,
        use the last computed mean :math:`bar{x_j}` and the tail of the chain
        to recursively estimate the mean.

        .. math::
            \bar{x_n} & = \frac{1}{n} \sum_{i=1}^n x_i
                      & = \frac{1}{n} (\sum_{i=1}^j x_i + \sum_{i=j+1}^n x_i)
                      & = \frac{j\bar{x_j}}{n} + \frac{\sum_{i=j+1}^n x_i}{n}

        :Parameters:
            -  mean : array
                Previous mean.
            -  length : int
                Length of chain used to compute the previous mean.
            -  chain : array
                Sample used to update mean.
        """
        n = length + len(chain)
        return length * mean / n + chain.sum(0)/n


    def propose(self):
        """
        This method proposes values for stochastics based on the empirical
        covariance of the values sampled so far.

        The proposal jumps are drawn from a multivariate normal distribution.
        """

        arrayjump = np.dot(self.proposal_sd, np.random.normal(size=self.proposal_sd.shape[0]))
        if self.verbose > 2:
            print_('Jump :', arrayjump)

        # Update each stochastic individually.
        for stochastic in self.stochastics:
            jump = arrayjump[self._slices[stochastic]]
            if np.iterable(stochastic.value):
                jump = np.reshape(arrayjump[self._slices[stochastic]],np.shape(stochastic.value))
            if self.isdiscrete[stochastic]:
                jump = round_array(jump)
            stochastic.value = stochastic.value + jump

    def step(self):
        """
        Perform a Metropolis step.

        Stochastic parameters are block-updated using a multivariate normal
        distribution whose covariance is updated every self.interval once
        self.delay steps have been performed.

        The AM instance keeps a local copy of the stochastic parameter's trace.
        This trace is used to computed the empirical covariance, and is
        completely independent from the Database backend.

        If self.greedy is True and the number of iterations is smaller than
        self.delay, only accepted jumps are stored in the internal
        trace to avoid computing singular covariance matrices.
        """

        # Probability and likelihood for stochastic's current value:
        logp = self.logp_plus_loglike
        if self.verbose > 1:
            print_('Current value: ', self.stoch2array())
            print_('Current likelihood: ', logp)

        # Sample a candidate value
        self.propose()

        # Metropolis acception/rejection test
        accept = False
        try:
            # Probability and likelihood for stochastic's proposed value:
            logp_p = self.logp_plus_loglike
            if self.verbose > 2:
                print_('Current value: ', self.stoch2array())
                print_('Current likelihood: ', logp_p)

            if np.log(random()) < logp_p - logp:
                accept = True
                self.accepted += 1
                if self.verbose > 2:
                    print_('Accepted')
            else:
                self.rejected += 1
                if self.verbose > 2:
                    print_('Rejected')
        except ZeroProbability:
            self.rejected += 1
            logp_p = None
            if self.verbose > 2:
                    print_('Rejected with ZeroProbability Error.')

        if (not self._current_iter % self.interval) and self.verbose > 1:
            print_("Step ", self._current_iter)
            print_("\tLogprobability (current, proposed): ", logp, logp_p)
            for stochastic in self.stochastics:
                print_("\t", stochastic.__name__, stochastic.last_value, stochastic.value)
            if accept:
                print_("\tAccepted\t*******\n")
            else:
                print_("\tRejected\n")
            print_("\tAcceptance ratio: ", self.accepted/(self.accepted+self.rejected))

        if self._current_iter == self.delay:
            self.greedy = False

        if not accept:
            self.reject()

        if accept or not self.greedy:
            self.internal_tally()

        if self._current_iter>self.delay and self._current_iter%self.interval==0:
           self.update_cov()

        self._current_iter += 1

    # Please keep reject() factored out- helps RandomRealizations figure out what to do.
    def reject(self):
        for stochastic in self.stochastics:
            # stochastic.value = stochastic.last_value
            stochastic.revert()

    def internal_tally(self):
        """Store the trace of stochastics for the computation of the covariance.
        This trace is completely independent from the backend used by the
        sampler to store the samples."""
        chain = []
        for stochastic in self.stochastics:
            chain.append(np.ravel(stochastic.value))
        self._trace.append(np.concatenate(chain))

    def trace2array(self, sl):
        """Return an array with the trace of all stochastics, sliced by sl."""
        chain = []
        for stochastic in self.stochastics:
            tr = stochastic.trace.gettrace(slicing=sl)
            if tr is None:
                raise AttributeError
            chain.append(tr)
        return np.hstack(chain)

    def stoch2array(self):
        """Return the stochastic objects as an array."""
        a = np.empty(self.dim)
        for stochastic in self.stochastics:
            a[self._slices[stochastic]] = stochastic.value
        return a


    def tune(self, verbose=0):
        """Tuning is done during the entire run, independently from the Sampler
        tuning specifications. """
        return False


class TWalk(StepMethod):
    """
    The t-walk is a scale-independent, adaptive MCMC algorithm for arbitrary
    continuous distributions and correltation structures. The t-walk maintains 
    two independent points in the sample space, and moves are based on 
    proposals that are accepted or rejected with a standard M-H acceptance 
    probability on the product space. The t-walk is strictly non-adaptive on 
    the product space, but displays adaptive behaviour on the original state 
    space. There are four proposal distributions (walk, blow, hop, traverse) 
    that together offer an algorithm that is effective in sampling 
    distributions of arbitrary scale.
    
    The t-walk was devised by J.A. Christen and C. Fox (2010).
    
    :Parameters:
      - stochastic : Stochastic
          The variable over which self has jurisdiction.
      - kernel_probs (optional) : iterable
          The probabilities of choosing each kernel.
      - walk_theta (optional) : float
          Parameter for the walk move. Christen and Fox recommend
          values in [0.3, 2] (Defaults to 1.5).
      - traverse_theta (optional) : float
          Parameter for the traverse move. Christen and Fox recommend
          values in [2, 10] (Defaults to 6.0).
      - n1 (optional) : integer
          The number of elements to be moved at each iteration.
          Christen and Fox recommend values in [2, 20] (Defaults to 4).
      - support (optional) : function
          Function defining the support of the stochastic 
          (Defaults to real line).
      - verbose (optional) : integer
          Level of output verbosity: 0=none, 1=low, 2=medium, 3=high
      - tally (optional) : bool
          Flag for recording values for trace (Defaults to True).
    """
    def __init__(self, stochastic, inits=None, kernel_probs=[0.4918, 0.4918, 0.0082, 0.0082], walk_theta=1.5, traverse_theta=6.0, n1=4, support=lambda x: True, verbose=-1, tally=True):
        
        # Initialize superclass
        StepMethod.__init__(self, [stochastic], verbose=verbose, tally=tally)
        
        # Ordered list of proposal kernels
        self.kernels = [self.walk, self.traverse, self.blow, self.hop]
        
        # Kernel for current iteration
        self.current_kernel = None
        
        self.accepted = zeros(len(kernel_probs))
        self.rejected = zeros(len(kernel_probs))
        
        # Cumulative kernel probabilities
        self.cum_probs = np.cumsum(kernel_probs)
        
        self.walk_theta = walk_theta
        self.traverse_theta = traverse_theta
        
        # Set public attributes
        self.stochastic = stochastic
        if verbose > -1:
            self.verbose = verbose
        else:
            self.verbose = stochastic.verbose
        
        # Determine size of stochastic
        if isinstance(self.stochastic.value, ndarray):
            self._len = len(self.stochastic.value.ravel())
        else:
            self._len = 1
        
        # Create attribute for holding value and secondary value
        self.values = [self.stochastic.value]
        
        # Initialize to different value from stochastic or supplied values
        if inits is None:
            self.values.append(self.stochastic.random())
            # Reset original value
            self.stochastic.value = self.values[0]
        else:
            self.values.append(inits)
        
        # Flag for using second point in log-likelihood calculations
        self._prime = False
        
        # Proposal adjustment factor for current iteration
        self.hastings_factor = 0.0
        
        # Set probability of selecting any parameter
        self.p = 1.*min(self._len, n1)/self._len
        
        # Support function
        self._support = support
        
        self._state = ['accepted', 'rejected', 'p']
        
    def n1():
        doc = "Mean number of parameters to be selected for updating"
        def fget(self):
            return self._n1
        def fset(self, value):
            self._n1 = value
            self._calc_p()
        return locals()
    n1 = property(**n1())
    
    @staticmethod
    def competence(stochastic):
        """
        The competence function for TWalk.
        """
        # if stochastic.dtype in float_dtypes and np.alen(stochastic.value) > 4:
        #             if np.alen(stochastic.value) >=10:
        #                 return 2
        #             return 1
        return 0
    
    def walk(self):
        """Walk proposal kernel"""
        
        if self.verbose>1:
            print_('\t' + self._id + ' Running Walk proposal kernel')
        
        # Mask for values to move
        phi = self.phi
        
        theta = self.walk_theta
        
        u = random(len(phi))
        z = (theta / (1 + theta))*(theta*u**2 + 2*u - 1)

        if self._prime:
            xp, x = self.values
        else:
            x, xp = self.values
            
        if self.verbose>1:
            print_('\t' + 'Current value = ' + str(x))
        
        x = x + phi*(x - xp)*z
        
        if self.verbose>1:
            print_('\t' + 'Proposed value = ' + str(x))
        
        self.stochastic.value = x
        
        # Set proposal adjustment factor
        self.hastings_factor = 0.0
    
    def traverse(self):
        """Traverse proposal kernel"""
        
        if self.verbose>1:
            print_('\t' + self._id + ' Running Traverse proposal kernel')
        
        # Mask for values to move
        phi = self.phi
        
        theta = self.traverse_theta
        
        # Calculate beta
        if (random() < (theta-1)/(2*theta)):
            beta = exp(1/(theta + 1)*log(random()))
        else:
            beta = exp(1/(1 - theta)*log(random()))
        
        if self._prime:
            xp, x = self.values
        else:
            x, xp = self.values
            
        if self.verbose>1:
            print_('\t' + 'Current value = ' + str(x))
        
        x = (xp + beta*(xp - x))*phi + x*(phi==False)
        
        if self.verbose>1:
            print_('\t' + 'Proposed value = ' + str(x))
        
        self.stochastic.value = x
    
        # Set proposal adjustment factor
        self.hastings_factor = (sum(phi) - 2)*log(beta)
    
    def blow(self):
        """Blow proposal kernel"""
        
        if self.verbose>1:
            print_('\t' + self._id + ' Running Blow proposal kernel')
        
        # Mask for values to move
        phi = self.phi
        
        if self._prime:
            xp, x = self.values
        else:
            x, xp = self.values
            
        if self.verbose>1:
            print_('\t' + 'Current value ' + str(x))
        
        sigma = max(phi*abs(xp - x))

        x = x + phi*sigma*rnormal()
        
        if self.verbose>1:
            print_('\t' + 'Proposed value = ' + str(x))
        
        self.hastings_factor = self._g(x, xp, sigma) - self._g(self.stochastic.value, xp, sigma)

        self.stochastic.value = x

    def _g(self, h, xp, s):
        """Density function for blow and hop moves"""
        
        nphi = sum(self.phi)
        
        return (nphi/2.0)*log(2*pi) + nphi*log(s) + 0.5*sum((h - xp)**2)/(s**2)
    
    
    def hop(self):
        """Hop proposal kernel"""
        
        if self.verbose>1:
            print_('\t' + self._id + ' Running Hop proposal kernel')
        
        # Mask for values to move
        phi = self.phi
        
        if self._prime:
            xp, x = self.values
        else:
            x, xp = self.values
    
        if self.verbose>1:
            print_('\t' + 'Current value of x = ' + str(x))
        
        sigma = max(phi*abs(xp - x))/3.0

        x = (xp + sigma*rnormal())*phi + x*(phi==False)
        
        if self.verbose>1:
            print_('\t' + 'Proposed value = ' + str(x))
        
        self.hastings_factor = self._g(x, xp, sigma) - self._g(self.stochastic.value, xp, sigma)
        
        self.stochastic.value = x

    
    def reject(self):
        """Sets current s value to the last accepted value"""
        self.stochastic.revert()
        
        # Increment rejected count
        self.rejected[self.current_kernel] += 1
        
        if self.verbose>1:
            print_(self._id, "rejected, reverting to value =", self.stochastic.value)
    
    def propose(self):
        """This method is called by step() to generate proposed values"""
        
        # Generate uniform variate to choose kernel
        self.current_kernel = sum(self.cum_probs < random())
        kernel = self.kernels[self.current_kernel]
        
        # Parameters to move
        self.phi = (random(self._len) < self.p)

        # Propose new value
        kernel()

    
    def step(self):
        """Single iteration of t-walk algorithm"""
                
        valid_proposal = False
        
        # Use x or xprime as pivot
        self._prime = (random() < 0.5)
        
        if self.verbose>1:
            print_("\n\nUsing x%s as pivot" % (" prime"*self._prime or ""))
        
        if self._prime:
            # Set the value of the stochastic to the auxiliary
            self.stochastic.value = self.values[1]
            
            if self.verbose>1:
                print_(self._id, "setting value to auxiliary", self.stochastic.value)
        
        # Current log-probability
        logp = self.logp_plus_loglike
        if self.verbose>1:
            print_("Current logp", logp)
        
        try:
            # Propose new value
            while not valid_proposal:
                self.propose()
                # Check that proposed value lies in support
                valid_proposal = self._support(self.stochastic.value)
                
            if not sum(self.phi):
                raise ZeroProbability

            # Proposed log-probability
            logp_p = self.logp_plus_loglike
            if self.verbose>1:
                print_("Proposed logp", logp_p)
            
        except ZeroProbability:
            
            # Reject proposal
            if self.verbose>1:
                print_(self._id + ' rejecting due to ZeroProbability.')
            self.reject()
            
            if self._prime:
                # Update value list
                self.values[1] = self.stochastic.value
                # Revert to stochastic's value for next iteration
                self.stochastic.value = self.values[0]
            
                if self.verbose>1:
                    print_(self._id, "reverting stochastic to primary value", self.stochastic.value)
            else:
                # Update value list
                self.values[0] = self.stochastic.value

            if self.verbose>1:
                print_(self._id + ' returning.')
            return
        
        if self.verbose>1:
            print_('logp_p - logp: ', logp_p - logp)
        
        # Evaluate acceptance ratio
        if log(random()) > (logp_p - logp + self.hastings_factor):
            
            # Revert s if fail
            self.reject()

        else:
            # Increment accepted count
            self.accepted[self.current_kernel] += 1
            if self.verbose > 1:
                print_(self._id + ' accepting')
        
        if self._prime:
            # Update value list
            self.values[1] = self.stochastic.value
            # Revert to stochastic's value for next iteration
            self.stochastic.value = self.values[0]
            
            if self.verbose>1:
                print_(self._id, "reverting stochastic to primary value", self.stochastic.value)
                
        else:
            # Update value list
            self.values[0] = self.stochastic.value


class IIDSStepper(StepMethod):
    """
    See written documentation.
    """
    pass