/usr/lib/python2.7/dist-packages/pyfits/column.py is in python-pyfits 1:3.2-1build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 | import copy
import operator
import re
import sys
import warnings
import weakref
import numpy as np
from numpy import char as chararray
from pyfits.card import Card
from pyfits.util import (lazyproperty, pairwise, _is_int, _convert_array,
encode_ascii)
from pyfits.verify import VerifyError
__all__ = ['Column', 'ColDefs', 'Delayed']
# mapping from TFORM data type to numpy data type (code)
# L: Logical (Boolean)
# B: Unsigned Byte
# I: 16-bit Integer
# J: 32-bit Integer
# K: 64-bit Integer
# E: Single-precision Floating Point
# D: Double-precision Floating Point
# C: Single-precision Complex
# M: Double-precision Complex
# A: Character
FITS2NUMPY = {'L': 'i1', 'B': 'u1', 'I': 'i2', 'J': 'i4', 'K': 'i8', 'E': 'f4',
'D': 'f8', 'C': 'c8', 'M': 'c16', 'A': 'a'}
# the inverse dictionary of the above
NUMPY2FITS = dict([(val, key) for key, val in FITS2NUMPY.iteritems()])
# Normally booleans are represented as ints in pyfits, but if passed in a numpy
# boolean array, that should be supported
NUMPY2FITS['b1'] = 'L'
# Add unsigned types, which will be stored as signed ints with a TZERO card.
NUMPY2FITS['u2'] = 'I'
NUMPY2FITS['u4'] = 'J'
NUMPY2FITS['u8'] = 'K'
# This is the order in which values are converted to FITS types
# Note that only double precision floating point/complex are supported
FORMATORDER = ['L', 'B', 'I', 'J', 'K', 'D', 'M', 'A']
# mapping from ASCII table TFORM data type to numpy data type
# A: Character
# I: Integer (32-bit)
# J: Integer (64-bit; non-standard)
# F: Float (32-bit; fixed decimal notation)
# E: Float (32-bit; exponential notation)
# D: Float (64-bit; exponential notation, always 64-bit by convention)
ASCII2NUMPY = {'A': 'a', 'I': 'i4', 'J': 'i8', 'F': 'f4', 'E': 'f4',
'D': 'f8'}
# Maps FITS ASCII column format codes to the appropriate Python string
# formatting codes for that type.
ASCII2STR = {'A': 's', 'I': 'd', 'J': 'd', 'F': 'f', 'E': 'E', 'D': 'E'}
# For each ASCII table format code, provides a default width (and decimal
# precision) for when one isn't given explicity in the column format
ASCII_DEFAULT_WIDTHS= {'A': (1, 0), 'I': (10, 0), 'J': (15, 0),
'E': (15, 7), 'F': (16, 7), 'D': (25, 17)}
# lists of column/field definition common names and keyword names, make
# sure to preserve the one-to-one correspondence when updating the list(s).
# Use lists, instead of dictionaries so the names can be displayed in a
# preferred order.
KEYWORD_NAMES = ['TTYPE', 'TFORM', 'TUNIT', 'TNULL', 'TSCAL', 'TZERO',
'TDISP', 'TBCOL', 'TDIM']
KEYWORD_ATTRIBUTES = ['name', 'format', 'unit', 'null', 'bscale', 'bzero',
'disp', 'start', 'dim']
# TFORMn regular expression
TFORMAT_RE = re.compile(r'(?P<repeat>^[0-9]*)(?P<format>[LXBIJKAEDCMPQ])'
r'(?P<option>[!-~]*)', re.I)
# TFORMn for ASCII tables; two different versions depending on whether
# the format is floating-point or not; allows empty values for width
# in which case defaults are used
TFORMAT_ASCII_RE = re.compile(r'(?:(?P<format>[AIJ])(?P<width>[0-9]+)?)|'
r'(?:(?P<formatf>[FED])'
r'(?:(?P<widthf>[0-9]+)\.'
r'(?P<precision>[0-9]+))?)')
# table definition keyword regular expression
TDEF_RE = re.compile(r'(?P<label>^T[A-Z]*)(?P<num>[1-9][0-9 ]*$)')
# table dimension keyword regular expression (fairly flexible with whitespace)
TDIM_RE = re.compile(r'\(\s*(?P<dims>(?:\d+,\s*)+\s*\d+)\s*\)\s*')
ASCIITNULL = 0 # value for ASCII table cell with value = TNULL
# this can be reset by user.
# The default placeholder to use for NULL values in ASCII tables when
# converting from binary to ASCII tables
DEFAULT_ASCII_TNULL = '---'
class Delayed(object):
"""Delayed file-reading data."""
def __init__(self, hdu=None, field=None):
self.hdu = weakref.proxy(hdu)
self.field = field
def __getitem__(self, key):
# This forces the data for the HDU to be read, which will replace
# the corresponding Delayed objects in the Tables Columns to be
# transformed into ndarrays. It will also return the value of the
# requested data element.
return self.hdu.data[key][self.field]
class _BaseColumnFormat(str):
"""
Base class for binary table column formats (just called _ColumnFormat)
and ASCII table column formats (_AsciiColumnFormat).
"""
def __eq__(self, other):
if not other:
return False
if isinstance(other, str):
if not isinstance(other, self.__class__):
try:
other = self.__class__(other)
except ValueError:
return False
else:
return False
return self.canonical == other.canonical
def __hash__(self):
return hash(self.canonical)
@classmethod
def from_column_format(cls, format):
"""Creates a column format object from another column format object
regardless of their type.
That is, this can convert a _ColumnFormat to an _AsciiColumnFormat
or vice versa at least in cases where a direct translation is possible.
"""
return cls.from_recformat(format.recformat)
class _ColumnFormat(_BaseColumnFormat):
"""
Represents a FITS binary table column format.
This is an enhancement over using a normal string for the format, since the
repeat count, format code, and option are available as separate attributes,
and smart comparison is used. For example 1J == J.
"""
def __new__(cls, format):
self = super(_ColumnFormat, cls).__new__(cls, format)
self.repeat, self.format, self.option = _parse_tformat(format)
self.format = self.format.upper()
if self.format in ('P', 'Q'):
# TODO: There should be a generic factory that returns either
# _FormatP or _FormatQ as appropriate for a given TFORMn
if self.format == 'P':
recformat = _FormatP.from_tform(format)
else:
recformat = _FormatQ.from_tform(format)
# Format of variable length arrays
self.p_format = recformat.format
else:
self.p_format = None
return self
@classmethod
def from_recformat(cls, recformat):
"""Creates a column format from a Numpy record dtype format."""
return cls(_convert_format(recformat, reverse=True))
@lazyproperty
def recformat(self):
"""Returns the equivalent Numpy record format string."""
return _convert_format(self)
@lazyproperty
def canonical(self):
"""
Returns a 'canonical' string representation of this format.
This is in the proper form of rTa where T is the single character data
type code, a is the optional part, and r is the repeat. If repeat == 1
(the default) it is left out of this representation.
"""
if self.repeat == 1:
repeat = ''
else:
repeat = str(self.repeat)
return '%s%s%s' % (repeat, self.format, self.option)
class _AsciiColumnFormat(_BaseColumnFormat):
"""Similar to _ColumnFormat but specifically for columns in ASCII tables.
The formats of ASCII table columns and binary table columns are inherently
incompatible in FITS. They don't support the same ranges and types of
values, and even reuse format codes in subtly different ways. For example
the format code 'Iw' in ASCII columns refers to any integer whose string
representation is at most w characters wide, so 'I' can represent
effectively any integer that will fit in a FITS columns. Whereas for
binary tables 'I' very explicitly refers to a 16-bit signed integer.
Conversions between the two column formats can be performed using the
``to/from_binary`` methods on this class, or the ``to/from_ascii``
methods on the `_ColumnFormat` class. But again, not all conversions are
possible and may result in a `ValueError`.
"""
def __new__(cls, format, strict=False):
self = super(_AsciiColumnFormat, cls).__new__(cls, format)
self.format, self.width, self.precision = \
_parse_ascii_tformat(format, strict)
# This is to support handling logical (boolean) data from binary tables
# in an ASCII table
self._pseudo_logical = False
return self
def __hash__(self):
return hash(self.canonical)
@classmethod
def from_column_format(cls, format):
inst = cls.from_recformat(format.recformat)
# Hack
if format.format == 'L':
inst._pseudo_logical = True
return inst
@classmethod
def from_recformat(cls, recformat):
"""Creates a column format from a Numpy record dtype format."""
return cls(_convert_ascii_format(recformat, reverse=True))
@lazyproperty
def recformat(self):
"""Returns the equivalent Numpy record format string."""
return _convert_ascii_format(self)
@lazyproperty
def canonical(self):
"""
Returns a 'canonical' string representation of this format.
This is in the proper form of Tw.d where T is the single character data
type code, w is the width in characters for this field, and d is the
number of digits after the decimal place (for format codes 'E', 'F',
and 'D' only).
"""
if self.format in ('E', 'F', 'D'):
return '%s%s.%s' % (self.format, self.width, self.precision)
return '%s%s' % (self.format, self.width)
class _FormatX(str):
"""For X format in binary tables."""
def __new__(cls, repeat=1):
nbytes = ((repeat - 1) // 8) + 1
# use an array, even if it is only ONE u1 (i.e. use tuple always)
obj = super(_FormatX, cls).__new__(cls, repr((nbytes,)) + 'u1')
obj.repeat = repeat
return obj
@property
def tform(self):
return '%sX' % self.repeat
# TODO: Table column formats need to be verified upon first reading the file;
# as it is, an invalid P format will raise a VerifyError from some deep,
# unexpected place
class _FormatP(str):
"""For P format in variable length table."""
# As far as I can tell from my reading of the FITS standard, a type code is
# *required* for P and Q formats; there is no default
_format_re_template = (r'(?P<repeat>\d+)?%s(?P<dtype>[LXBIJKAEDCM])'
'(?:\((?P<max>\d*)\))?')
_format_code = 'P'
_format_re = re.compile(_format_re_template % _format_code)
_descriptor_format = '2i4'
def __new__(cls, dtype, repeat=None, max=None):
obj = super(_FormatP, cls).__new__(cls, cls._descriptor_format)
obj.format = NUMPY2FITS[dtype]
obj.dtype = dtype
obj.repeat = repeat
obj.max = max
return obj
@classmethod
def from_tform(cls, format):
m = cls._format_re.match(format)
if not m or m.group('dtype') not in FITS2NUMPY:
raise VerifyError('Invalid column format: %s' % format)
repeat = m.group('repeat')
array_dtype = m.group('dtype')
max = m.group('max')
if not max:
max = None
return cls(FITS2NUMPY[array_dtype], repeat=repeat, max=max)
@property
def tform(self):
repeat = '' if self.repeat is None else self.repeat
max = '' if self.max is None else self.max
return '%s%s%s(%s)' % (repeat, self._format_code, self.format, max)
class _FormatQ(_FormatP):
"""Carries type description of the Q format for variable length arrays.
The Q format is like the P format but uses 64-bit integers in the array
descriptors, allowing for heaps stored beyond 2GB into a file.
"""
_format_code = 'Q'
_format_re = re.compile(_FormatP._format_re_template % _format_code)
_descriptor_format = '2l4'
class Column(object):
"""
Class which contains the definition of one column, e.g. `ttype`,
`tform`, etc. and the array containing values for the column.
Does not support `theap` yet.
"""
def __init__(self, name=None, format=None, unit=None, null=None,
bscale=None, bzero=None, disp=None, start=None, dim=None,
array=None, ascii=None):
"""
Construct a `Column` by specifying attributes. All attributes
except `format` can be optional.
Parameters
----------
name : str, optional
column name, corresponding to ``TTYPE`` keyword
format : str, optional
column format, corresponding to ``TFORM`` keyword
unit : str, optional
column unit, corresponding to ``TUNIT`` keyword
null : str, optional
null value, corresponding to ``TNULL`` keyword
bscale : int-like, optional
bscale value, corresponding to ``TSCAL`` keyword
bzero : int-like, optional
bzero value, corresponding to ``TZERO`` keyword
disp : str, optional
display format, corresponding to ``TDISP`` keyword
start : int, optional
column starting position (ASCII table only), corresponding
to ``TBCOL`` keyword
dim : str, optional
column dimension corresponding to ``TDIM`` keyword
array : iterable, optional
a `list`, `numpy.ndarray` (or other iterable that can be used to
initialize an ndarray) providing intial data for this column.
The array will be automatically converted, if possible, to the data
format of the column. In the case were non-trivial ``bscale``
and/or ``bzero`` arguments are given, the values in the array must
be the *physical* values--that is, the values of column as if the
scaling has already been applied (the array stored on the column
object will then be converted back to its storage values).
ascii : bool, optional
set `True` if this describes a column for an ASCII table; this
may be required to disambiguate the column format
"""
if format is None:
raise ValueError('Must specify format to construct Column.')
# any of the input argument (except array) can be a Card or just
# a number/string
for attr in KEYWORD_ATTRIBUTES:
value = locals()[attr] # get the argument's value
if isinstance(value, Card):
setattr(self, attr, value.value)
else:
setattr(self, attr, value)
# If the given format string is unabiguously a Numpy dtype or one of
# the Numpy record format type specifiers supported by PyFITS then that
# should take priority--otherwise assume it is a FITS format
if isinstance(format, np.dtype):
format, _, _ = _dtype_to_recformat(format)
# check format
if ascii is None and not isinstance(format, _BaseColumnFormat):
# We're just give a string which could be either a Numpy format
# code, or a format for a binary column array *or* a format for an
# ASCII column array--there may be many ambiguities here. Try
# our best to guess what the user intended.
format, recformat = self._guess_format(format)
elif not ascii and not isinstance(format, _BaseColumnFormat):
format, recformat = self._convert_format(format, _ColumnFormat)
elif ascii and not isinstance(format, _AsciiColumnFormat):
format, recformat = self._convert_format(format,
_AsciiColumnFormat)
self.format = format
# Zero-length formats are legal in the FITS format, but since they
# are not supported by numpy we mark columns that use them as
# "phantom" columns, that are not considered when reading the data
# as a record array.
if self.format[0] == '0' or \
(self.format[-1] == '0' and self.format[-2].isalpha()):
self._phantom = True
else:
self._phantom = False
# Awful hack to use for now to keep track of whether the column holds
# pseudo-unsigned int data
self._pseudo_unsigned_ints = False
# TODO: Perhaps offload option verification/handling to a separate
# method
# Validate null option
# Note: Enough code exists that thinks empty strings are sensible
# inputs for these options that we need to treat '' as None
if null is not None and null != '':
if isinstance(format, _AsciiColumnFormat):
null = str(null)
if len(null) > format.width:
warnings.warn(
"ASCII table null option (TNULLn) is longer than "
"the column's character width and will be truncated "
"(got %r)." % null)
else:
if not _is_int(null):
# Make this an exception instead of a warning, since any
# non-int value is meaningless
# TODO: We *might* be able to issue just a warning if we
# get an object that can be converted to an int, such as a
# string
raise TypeError('Column null option (TNULLn) must be an '
'integer for binary table columns '
'(got %r).' % null)
tnull_formats = ('B', 'I', 'J', 'K')
if not (format.format in tnull_formats or
(format.format in ('P', 'Q') and
format.p_format in tnull_formats)):
# TODO: We should also check that TNULLn's integer value
# is in the range allowed by the column's format
warnings.warn('Column null option (TNULLn) is invalid '
'for binary table columns of type %r '
'(got %r).' % (format, null))
# Validate the disp option
# TODO: Add full parsing and validation of TDISPn keywords
if disp is not None and null != '':
if not isinstance(disp, basestring):
raise TypeError('Column disp option (TDISPn) must be a '
'string (got %r).' % disp)
if (isinstance(format, _AsciiColumnFormat) and
disp[0].upper() == 'L'):
# disp is at least one character long and has the 'L' format
# which is not recognized for ASCII tables
warnings.warn("Column disp option (TDISPn) may not use the "
"'L' format with ASCII table columns.")
# Validate the start option
if start is not None and start != '':
if not isinstance(format, _AsciiColumnFormat):
# The 'start' option only applies to ASCII columns
warnings.warn('Column start option (TBCOLn) is not allowed '
'for binary table columns (got %r).' % start)
try:
start = int(start)
except (TypeError, ValueError):
pass
if not _is_int(start) and start < 1:
raise TypeError('Column start option (TBCOLn) must be a '
'positive integer (got %r).' % start)
# Process TDIMn options
# ASCII table columns can't have a TDIMn keyword associated with it;
# for now we just issue a warning and ignore it.
# TODO: This should be checked by the FITS verification code
if dim is not None and isinstance(format, _AsciiColumnFormat):
warnings.warn('Column dim option (TDIMn) is not allowed for ASCII '
'table columns (got %r).' % dim)
if isinstance(dim, basestring):
self._dims = _parse_tdim(dim)
elif isinstance(dim, tuple):
self._dims = dim
elif not dim:
self._dims = tuple()
else:
raise TypeError(
"`dim` argument must be a string containing a valid value "
"for the TDIMn header keyword associated with this column, "
"or a tuple containing the C-order dimensions for the column")
if self._dims:
if reduce(operator.mul, self._dims) > self.format.repeat:
raise ValueError(
"The repeat count of the column format %r for column %r "
"is fewer than the number of elements per the TDIM "
"argument %r." % (name, format, dim))
# if the column data is not ndarray, make it to be one, i.e.
# input arrays can be just list or tuple, not required to be ndarray
# does not include Object array because there is no guarantee
# the elements in the object array are consistent.
if not isinstance(array,
(np.ndarray, chararray.chararray, Delayed)):
try: # try to convert to a ndarray first
if array is not None:
array = np.array(array)
except:
try: # then try to convert it to a strings array
itemsize = int(recformat[1:])
array = chararray.array(array, itemsize=itemsize)
except ValueError:
# then try variable length array
# Note: This includes _FormatQ by inheritance
if isinstance(recformat, _FormatP):
array = _VLF(array, dtype=recformat.dtype)
else:
raise ValueError('Data is inconsistent with the '
'format `%s`.' % format)
array = self._convert_to_valid_data_type(array)
# We have required (through documentation) that arrays passed in to
# this constructor are already in their physical values, so we make
# note of that here
if isinstance(array, np.ndarray):
self._physical_values = True
else:
self._physical_values = False
self.array = array
def __repr__(self):
text = ''
for attr in KEYWORD_ATTRIBUTES:
value = getattr(self, attr)
if value is not None:
text += attr + ' = ' + repr(value) + '; '
return text[:-2]
def __eq__(self, other):
"""
Two columns are equal if their name and format are the same. Other
attributes aren't taken into account at this time.
"""
# According to the FITS standard column names must be case-insensitive
a = (self.name.lower(), self.format)
b = (other.name.lower(), other.format)
return a == b
def __hash__(self):
"""
Like __eq__, the hash of a column should be based on the unique column
name and format, and be case-insensitive with respect to the column
name.
"""
return hash((self.name.lower(), self.format))
@lazyproperty
def dtype(self):
return np.dtype(_convert_format(self.format))
def copy(self):
"""
Return a copy of this `Column`.
"""
tmp = Column(format='I') # just use a throw-away format
tmp.__dict__ = self.__dict__.copy()
return tmp
@staticmethod
def _convert_format(format, cls):
"""The format argument to this class's initializer may come in many
forms. This uses the given column format class ``cls`` to convert
to a format of that type.
TODO: There should be an abc base class for column format classes
"""
# Short circuit in case we're already a _BaseColumnFormat--there is at
# least one case in which this can happen
if isinstance(format, _BaseColumnFormat):
return format, format.recformat
if format in NUMPY2FITS:
try:
# legit recarray format?
recformat = format
format = cls.from_recformat(format)
except VerifyError:
pass
try:
# legit FITS format?
format = cls(format)
recformat = format.recformat
except VerifyError:
raise VerifyError('Illegal format `%s`.' % format)
return format, recformat
def _guess_format(self, format):
if self.start and self.dim:
# This is impossible; this can't be a valid FITS column
raise ValueError(
'Columns cannot have both a start (TCOLn) and dim '
'(TDIMn) option, since the former is only applies to '
'ASCII tables, and the latter is only valid for binary '
'tables.')
elif self.start:
# Only ASCII table columns can have a 'start' option
guess_format = _AsciiColumnFormat
elif self.dim:
# Only binary tables can have a dim option
guess_format = _ColumnFormat
else:
# If the format is *technically* a valid binary column format
# (i.e. it has a valid format code followed by arbitrary
# "optional" codes), but it is also strictly a valid ASCII
# table format, then assume an ASCII table column was being
# requested (the more likely case, after all).
try:
format = _AsciiColumnFormat(format, strict=True)
except VerifyError:
pass
# A safe guess which reflects the existing behavior of previous
# PyFITS versions
guess_format = _ColumnFormat
try:
format, recformat = self._convert_format(format, guess_format)
except VerifyError:
# For whatever reason our guess was wrong (for example if we got
# just 'F' that's not a valid binary format, but it an ASCII format
# code albeit with the width/precision ommitted
guess_format = (_AsciiColumnFormat
if guess_format is _ColumnFormat
else _ColumnFormat)
# If this fails too we're out of options--it is truly an invalid
# format, or at least not supported
format, recformat = self._convert_format(format, guess_format)
return format, recformat
def _convert_to_valid_data_type(self, array):
# Convert the format to a type we understand
if isinstance(array, Delayed):
return array
elif array is None:
return array
else:
format = self.format
dims = self._dims
if 'P' in format or 'Q' in format:
return array
elif 'A' in format:
if array.dtype.char in 'SU':
if dims:
# The 'last' dimension (first in the order given
# in the TDIMn keyword itself) is the number of
# characters in each string
fsize = dims[-1]
else:
fsize = np.dtype(format.recformat).itemsize
return chararray.array(array, itemsize=fsize)
else:
return _convert_array(array, np.dtype(format.recformat))
elif 'L' in format:
# boolean needs to be scaled back to storage values ('T', 'F')
if array.dtype == np.dtype('bool'):
return np.where(array == False, ord('F'), ord('T'))
else:
return np.where(array == 0, ord('F'), ord('T'))
elif 'X' in format:
return _convert_array(array, np.dtype('uint8'))
else:
# Preserve byte order of the original array for now; see #77
# TODO: For some reason we drop the format repeat here; need
# to investigate why that was and if it's something we can
# avoid doing...
new_format = _convert_format(format.format)
numpy_format = array.dtype.byteorder + new_format
# Handle arrays passed in as unsigned ints as pseudo-unsigned
# int arrays; blatantly tacked in here for now--we need columns
# to have explicit knowledge of whether they treated as
# pseudo-unsigned
bzeros = {2: np.uint16(2**15), 4: np.uint32(2**31),
8: np.uint64(2**63)}
if (array.dtype.kind == 'u' and
array.dtype.itemsize in bzeros and
self.bscale in (1, None, '') and
self.bzero == bzeros[array.dtype.itemsize]):
# Basically the array is uint, has scale == 1.0, and the
# bzero is the appropriate value for a pseudo-unsigned
# integer of the input dtype, then go ahead and assume that
# uint is assumed
numpy_format = numpy_format.replace('i', 'u')
self._pseudo_unsigned_ints = True
return _convert_array(array, np.dtype(numpy_format))
class ColDefs(object):
"""
Column definitions class.
It has attributes corresponding to the `Column` attributes
(e.g. `ColDefs` has the attribute `~ColDefs.names` while `Column`
has `~Column.name`). Each attribute in `ColDefs` is a list of
corresponding attribute values from all `Column` objects.
"""
_padding_byte = '\x00'
_col_format_cls = _ColumnFormat
def __new__(cls, input, tbtype='BinTableHDU'):
from pyfits.hdu.table import TableHDU
if tbtype == 'BinTableHDU':
klass = cls
elif tbtype == 'TableHDU':
klass = _AsciiColDefs
else:
raise ValueError('Invalid table type: %s.' % tbtype)
if isinstance(input, TableHDU):
klass = _AsciiColDefs
return object.__new__(klass)
def __init__(self, input, tbtype='BinTableHDU'):
"""
Parameters
----------
input :
An existing table HDU, an existing ColDefs, or recarray
**(Deprecated)** tbtype : str (optional)
which table HDU, ``"BinTableHDU"`` (default) or
``"TableHDU"`` (text table).
Now ColDefs for a normal (binary) table by default, but converted
automatically to ASCII table ColDefs in the appropriate contexts
(namely, when creating an ASCII table).
"""
from pyfits.hdu.table import _TableBaseHDU
self._tbtype = tbtype
if isinstance(input, ColDefs):
self._init_from_coldefs(input)
elif isinstance(input, (list, tuple)):
# if the input is a list of Columns
# TODO: Expand this to accept any iterable
self._init_from_sequence(input)
elif isinstance(input, np.ndarray) and input.dtype.fields is not None:
# Construct columns from the fields of a record array
self._init_from_array(input)
# Construct columns from fields in an HDU header
elif isinstance(input, _TableBaseHDU):
self._init_from_table(input)
else:
raise TypeError('Input to ColDefs must be a table HDU, a list '
'of Columns, or a record/field array.')
def _init_from_coldefs(self, coldefs):
"""Initialize from an existing ColDefs object (just copy the
columns and convert their formats if necessary).
"""
self.columns = [self._copy_column(col) for col in coldefs]
def _init_from_sequence(self, columns):
for col in columns:
if not isinstance(col, Column):
raise TypeError(
'Element %d in the ColDefs input is not a Column.'
% input.index(col))
self._init_from_coldefs(columns)
def _init_from_array(self, array):
self.columns = []
for idx in range(len(array.dtype)):
cname = array.dtype.names[idx]
ftype = array.dtype.fields[cname][0]
format = self._col_format_cls.from_recformat(ftype)
# Determine the appropriate dimensions for items in the column
# (typically just 1D)
dim = array.dtype[idx].shape[::-1]
if dim and (len(dim) > 1 or 'A' in format):
if 'A' in format:
# n x m string arrays must include the max string
# length in their dimensions (e.g. l x n x m)
dim = (array.dtype[idx].base.itemsize,) + dim
dim = repr(dim).replace(' ', '')
else:
dim = None
# Check for unsigned ints.
bzero = None
if 'I' in format and ftype == np.dtype('uint16'):
bzero = np.uint16(2**15)
elif 'J' in format and ftype == np.dtype('uint32'):
bzero = np.uint32(2**31)
elif 'K' in format and ftype == np.dtype('uint64'):
bzero = np.uint64(2**63)
c = Column(name=cname, format=format,
array=array.view(np.ndarray)[cname], bzero=bzero,
dim=dim)
self.columns.append(c)
def _init_from_table(self, table):
hdr = table._header
nfields = hdr['TFIELDS']
self._width = hdr['NAXIS1']
self._shape = hdr['NAXIS2']
# go through header keywords to pick out column definition keywords
# definition dictionaries for each field
col_attributes = [{} for i in range(nfields)]
for keyword, value in hdr.iteritems():
key = TDEF_RE.match(keyword)
try:
keyword = key.group('label')
except:
continue # skip if there is no match
if keyword in KEYWORD_NAMES:
col = int(key.group('num'))
if col <= nfields and col > 0:
idx = KEYWORD_NAMES.index(keyword)
attr = KEYWORD_ATTRIBUTES[idx]
if attr == 'format':
# Go ahead and convert the format value to the
# appropriate ColumnFormat container now
value = self._col_format_cls(value)
col_attributes[col - 1][attr] = value
# data reading will be delayed
for col in range(nfields):
col_attributes[col]['array'] = Delayed(table, col)
# now build the columns
self.columns = [Column(**attrs) for attrs in col_attributes]
self._listener = weakref.proxy(table)
def __copy__(self):
return self.__class__(self, self._tbtype)
def __deepcopy__(self, memo):
return self.__class__([copy.deepcopy(c, memo) for c in self.columns],
tbtype=self._tbtype)
def _copy_column(self, column):
"""Utility function used currently only by _init_from_coldefs
to help convert columns from binary format to ASCII format or vice
versa if necessary (otherwise performs a straight copy).
"""
if isinstance(column.format, self._col_format_cls):
# This column has a FITS format compatible with this column
# definitions class (that is ascii or binary)
return column.copy()
new_column = column.copy()
# Try to use the Numpy recformat as the equivalency between the
# two formats; if that conversion can't be made then these
# columns can't be transferred
# TODO: Catch exceptions here and raise an explicit error about
# column format conversion
new_column.format = self._col_format_cls.from_column_format(
column.format)
# Handle a few special cases of column format options that are not
# compatible between ASCII an binary tables
# TODO: This is sort of hacked in right now; we really neet
# separate classes for ASCII and Binary table Columns, and they
# should handle formatting issues like these
if not isinstance(new_column.format, _AsciiColumnFormat):
# the column is a binary table column...
new_column.start = None
if new_column.null is not None:
# We can't just "guess" a value to represent null
# values in the new column, so just disable this for
# now; users may modify it later
new_column.null = None
else:
# the column is an ASCII table column...
if new_column.null is not None:
new_column.null = DEFAULT_ASCII_TNULL
if (new_column.disp is not None and
new_column.disp.upper().startswith('L')):
# ASCII columns may not use the logical data display format;
# for now just drop the TDISPn option for this column as we
# don't have a systematic conversion of boolean data to ASCII
# tables yet
new_column.disp = None
return new_column
def __getattr__(self, name):
"""
Automatically returns the values for the given keyword attribute for
all `Column`s in this list.
Implements for example self.units, self.formats, etc.
"""
cname = name[:-1]
if cname in KEYWORD_ATTRIBUTES and name[-1] == 's':
attr = []
for col in self:
val = getattr(col, cname)
if val is not None:
attr.append(val)
else:
attr.append('')
return attr
raise AttributeError(name)
@lazyproperty
def dtype(self):
recformats = [f for idx, f in enumerate(self._recformats)
if not self[idx]._phantom]
formats = ','.join(recformats)
names = [n for idx, n in enumerate(self.names)
if not self[idx]._phantom]
return np.rec.format_parser(formats, names, None).dtype
@lazyproperty
def _arrays(self):
return [col.array for col in self.columns]
@lazyproperty
def _recformats(self):
return [fmt.recformat for fmt in self.formats]
@lazyproperty
def _dims(self):
"""Returns the values of the TDIMn keywords parsed into tuples."""
return [col._dims for col in self.columns]
def __getitem__(self, key):
x = self.columns[key]
if _is_int(key):
return x
else:
return ColDefs(x)
def __len__(self):
return len(self.columns)
def __repr__(self):
rep = 'ColDefs('
if hasattr(self, 'columns') and self.columns:
# The hasattr check is mostly just useful in debugging sessions
# where self.columns may not be defined yet
rep += '\n '
rep += '\n '.join([repr(c) for c in self.columns])
rep += '\n'
rep += ')'
return rep
def __add__(self, other, option='left'):
if isinstance(other, Column):
b = [other]
elif isinstance(other, ColDefs):
b = list(other.columns)
else:
raise TypeError('Wrong type of input.')
if option == 'left':
tmp = list(self.columns) + b
else:
tmp = b + list(self.columns)
return ColDefs(tmp)
def __radd__(self, other):
return self.__add__(other, 'right')
def __sub__(self, other):
if not isinstance(other, (list, tuple)):
other = [other]
_other = [_get_index(self.names, key) for key in other]
indx = range(len(self))
for x in _other:
indx.remove(x)
tmp = [self[i] for i in indx]
return ColDefs(tmp)
def _update_listener(self):
if hasattr(self, '_listener'):
try:
if self._listener._data_loaded:
del self._listener.data
self._listener.columns = self
except ReferenceError:
del self._listener
def add_col(self, column):
"""
Append one `Column` to the column definition.
.. warning::
*New in pyfits 2.3*: This function appends the new column
to the `ColDefs` object in place. Prior to pyfits 2.3,
this function returned a new `ColDefs` with the new column
at the end.
"""
assert isinstance(column, Column)
for cname in KEYWORD_ATTRIBUTES:
attr = getattr(self, cname + 's')
attr.append(getattr(column, cname))
self._arrays.append(column.array)
# Obliterate caches of certain things
del self.dtype
del self._recformats
del self._dims
self.columns.append(column)
# If this ColDefs is being tracked by a Table, inform the
# table that its data is now invalid.
self._update_listener()
return self
def del_col(self, col_name):
"""
Delete (the definition of) one `Column`.
col_name : str or int
The column's name or index
"""
indx = _get_index(self.names, col_name)
for cname in KEYWORD_ATTRIBUTES:
attr = getattr(self, cname + 's')
del attr[indx]
del self._arrays[indx]
# Obliterate caches of certain things
del self.dtype
del self._recformats
del self._dims
del self.columns[indx]
# If this ColDefs is being tracked by a Table, inform the
# table that its data is now invalid.
self._update_listener()
return self
def change_attrib(self, col_name, attrib, new_value):
"""
Change an attribute (in the commonName list) of a `Column`.
col_name : str or int
The column name or index to change
attrib : str
The attribute name
value : object
The new value for the attribute
"""
indx = _get_index(self.names, col_name)
getattr(self, attrib + 's')[indx] = new_value
# If this ColDefs is being tracked by a Table, inform the
# table that its data is now invalid.
self._update_listener()
def change_name(self, col_name, new_name):
"""
Change a `Column`'s name.
col_name : str
The current name of the column
new_name : str
The new name of the column
"""
if new_name != col_name and new_name in self.names:
raise ValueError('New name %s already exists.' % new_name)
else:
self.change_attrib(col_name, 'name', new_name)
# If this ColDefs is being tracked by a Table, inform the
# table that its data is now invalid.
self._update_listener()
def change_unit(self, col_name, new_unit):
"""
Change a `Column`'s unit.
col_name : str or int
The column name or index
new_unit : str
The new unit for the column
"""
self.change_attrib(col_name, 'unit', new_unit)
# If this ColDefs is being tracked by a Table, inform the
# table that its data is now invalid.
self._update_listener()
def info(self, attrib='all', output=None):
"""
Get attribute(s) information of the column definition.
Parameters
----------
attrib : str
Can be one or more of the attributes listed in
`KEYWORD_ATTRIBUTES`. The default is ``"all"`` which will print
out all attributes. It forgives plurals and blanks. If
there are two or more attribute names, they must be
separated by comma(s).
output : file, optional
File-like object to output to. Outputs to stdout by default.
If False, returns the attributes as a dict instead.
Notes
-----
This function doesn't return anything by default; it just prints to
stdout.
"""
if output is None:
output = sys.stdout
if attrib.strip().lower() in ['all', '']:
lst = KEYWORD_ATTRIBUTES
else:
lst = attrib.split(',')
for idx in range(len(lst)):
lst[idx] = lst[idx].strip().lower()
if lst[idx][-1] == 's':
lst[idx] = list[idx][:-1]
ret = {}
for attr in lst:
if output:
if attr not in KEYWORD_ATTRIBUTES:
output.write("'%s' is not an attribute of the column "
"definitions.\n" % attr)
continue
output.write("%s:\n" % attr)
output.write(' %s\n' % getattr(self, attr + 's'))
else:
ret[attr] = getattr(self, attr + 's')
if not output:
return ret
class _AsciiColDefs(ColDefs):
"""ColDefs implementation for ASCII tables."""
_padding_byte = ' '
_col_format_cls = _AsciiColumnFormat
def __init__(self, input, tbtype='TableHDU'):
super(_AsciiColDefs, self).__init__(input, tbtype)
# if the format of an ASCII column has no width, add one
if not isinstance(input, _AsciiColDefs):
self._update_field_metrics()
else:
for idx, s in enumerate(input.starts):
self.columns[idx].start = s
self._spans = input.spans
self._width = input._width
@lazyproperty
def dtype(self):
_itemsize = self.spans[-1] + self.starts[-1] - 1
dtype = {}
for j in range(len(self)):
data_type = 'S' + str(self.spans[j])
dtype[self.names[j]] = (data_type, self.starts[j] - 1)
return np.dtype(dtype)
@property
def spans(self):
"""A list of the widths of each field in the table."""
return self._spans
@lazyproperty
def _recformats(self):
if len(self) == 1:
widths = []
else:
widths = [y - x for x, y in pairwise(self.starts)]
# Widths is the width of each field *including* any space between
# fields; this is so that we can map the fields to string records in a
# Numpy recarray
widths.append(self._width - self.starts[-1] + 1)
return ['a' + str(w) for w in widths]
def add_col(self, column):
super(_AsciiColDefs, self).add_col(column)
self._update_field_metrics()
def del_col(self, col_name):
super(_AsciiColDefs, self).del_col(col_name)
self._update_field_metrics()
def _update_field_metrics(self):
"""
Updates the list of the start columns, the list of the widths of each
field, and the total width of each record in the table.
"""
spans = [0] * len(self.columns)
end_col = 0 # Refers to the ASCII text column, not the table col
for idx, col in enumerate(self.columns):
width = col.format.width
# Update the start columns and column span widths taking into
# account the case that the starting column of a field may not
# be the column immediately after the previous field
if not col.start:
col.start = end_col + 1
end_col = col.start + width - 1
spans[idx] = width
self._spans = spans
self._width = end_col
class _VLF(np.ndarray):
"""Variable length field object."""
def __new__(cls, input, dtype='a'):
"""
Parameters
----------
input
a sequence of variable-sized elements.
"""
if dtype == 'a':
try:
# this handles ['abc'] and [['a','b','c']]
# equally, beautiful!
input = [chararray.array(x, itemsize=1) for x in input]
except:
raise ValueError('Inconsistent input data array: %s' % input)
a = np.array(input, dtype=np.object)
self = np.ndarray.__new__(cls, shape=(len(input),), buffer=a,
dtype=np.object)
self.max = 0
self.element_dtype = dtype
return self
def __array_finalize__(self, obj):
if obj is None:
return
self.max = obj.max
self.element_dtype = obj.element_dtype
def __setitem__(self, key, value):
"""
To make sure the new item has consistent data type to avoid
misalignment.
"""
if isinstance(value, np.ndarray) and value.dtype == self.dtype:
pass
elif isinstance(value, chararray.chararray) and value.itemsize == 1:
pass
elif self.element_dtype == 'a':
value = chararray.array(value, itemsize=1)
else:
value = np.array(value, dtype=self.element_dtype)
np.ndarray.__setitem__(self, key, value)
self.max = max(self.max, len(value))
def _get_index(names, key):
"""
Get the index of the `key` in the `names` list.
The `key` can be an integer or string. If integer, it is the index
in the list. If string,
a. Field (column) names are case sensitive: you can have two
different columns called 'abc' and 'ABC' respectively.
b. When you *refer* to a field (presumably with the field
method), it will try to match the exact name first, so in
the example in (a), field('abc') will get the first field,
and field('ABC') will get the second field.
If there is no exact name matched, it will try to match the
name with case insensitivity. So, in the last example,
field('Abc') will cause an exception since there is no unique
mapping. If there is a field named "XYZ" and no other field
name is a case variant of "XYZ", then field('xyz'),
field('Xyz'), etc. will get this field.
"""
if _is_int(key):
indx = int(key)
elif isinstance(key, basestring):
# try to find exact match first
try:
indx = names.index(key.rstrip())
except ValueError:
# try to match case-insentively,
_key = key.lower().rstrip()
names = [n.lower().rstrip() for n in names]
count = names.count(_key) # occurrence of _key in names
if count == 1:
indx = names.index(_key)
elif count == 0:
raise KeyError("Key '%s' does not exist." % key)
else: # multiple match
raise KeyError("Ambiguous key name '%s'." % key)
else:
raise KeyError("Illegal key '%s'." % repr(key))
return indx
def _unwrapx(input, output, repeat):
"""
Unwrap the X format column into a Boolean array.
Parameters
----------
input
input ``Uint8`` array of shape (`s`, `nbytes`)
output
output Boolean array of shape (`s`, `repeat`)
repeat
number of bits
"""
pow2 = np.array([128, 64, 32, 16, 8, 4, 2, 1], dtype='uint8')
nbytes = ((repeat - 1) // 8) + 1
for i in range(nbytes):
_min = i * 8
_max = min((i + 1) * 8, repeat)
for j in range(_min, _max):
output[..., j] = np.bitwise_and(input[..., i], pow2[j - i * 8])
def _wrapx(input, output, repeat):
"""
Wrap the X format column Boolean array into an ``UInt8`` array.
Parameters
----------
input
input Boolean array of shape (`s`, `repeat`)
output
output ``Uint8`` array of shape (`s`, `nbytes`)
repeat
number of bits
"""
output[...] = 0 # reset the output
nbytes = ((repeat - 1) // 8) + 1
unused = nbytes * 8 - repeat
for i in range(nbytes):
_min = i * 8
_max = min((i + 1) * 8, repeat)
for j in range(_min, _max):
if j != _min:
np.left_shift(output[..., i], 1, output[..., i])
np.add(output[..., i], input[..., j], output[..., i])
# shift the unused bits
np.left_shift(output[..., i], unused, output[..., i])
def _makep(array, descr_output, format, nrows=None):
"""
Construct the P (or Q) format column array, both the data descriptors and
the data. It returns the output "data" array of data type `dtype`.
The descriptor location will have a zero offset for all columns
after this call. The final offset will be calculated when the file
is written.
Parameters
----------
array
input object array
descr_output
output "descriptor" array of data type int32 (for P format arrays) or
int64 (for Q format arrays)--must be nrows long in its first dimension
format
the _FormatP object representing the format of the variable array
nrows : int, optional
number of rows to create in the column; defaults to the number of rows
in the input array
"""
# TODO: A great deal of this is redundant with FITS_rec._convert_p; see if
# we can merge the two somehow.
_offset = 0
if not nrows:
nrows = len(array)
n = min(len(array), nrows)
data_output = _VLF([None] * nrows, dtype=format.dtype)
if format.dtype == 'a':
_nbytes = 1
else:
_nbytes = np.array([], dtype=format.dtype).itemsize
for idx in range(nrows):
if idx < len(array):
rowval = array[idx]
else:
if format.dtype == 'a':
rowval = ' ' * data_output.max
else:
rowval = [0] * data_output.max
if format.dtype == 'a':
data_output[idx] = chararray.array(encode_ascii(rowval),
itemsize=1)
else:
data_output[idx] = np.array(rowval, dtype=format.dtype)
descr_output[idx, 0] = len(data_output[idx])
descr_output[idx, 1] = _offset
_offset += len(data_output[idx]) * _nbytes
return data_output
def _parse_tformat(tform):
"""Parse ``TFORMn`` keyword for a binary table into a
``(repeat, format, option)`` tuple.
"""
try:
(repeat, format, option) = TFORMAT_RE.match(tform.strip()).groups()
except:
# TODO: Maybe catch this error use a default type (bytes, maybe?) for
# unrecognized column types. As long as we can determine the correct
# byte width somehow..
raise VerifyError('Format %r is not recognized.' % tform)
if repeat == '':
repeat = 1
else:
repeat = int(repeat)
return (repeat, format.upper(), option)
def _parse_ascii_tformat(tform, strict=False):
"""Parse the ``TFORMn`` keywords for ASCII tables into a
``(format, width, precision)`` tuple (the latter is zero unless
width is one of 'E', 'F', or 'D').
"""
match = TFORMAT_ASCII_RE.match(tform.strip())
if not match:
raise VerifyError('Format %r is not recognized.' % tform)
# Be flexible on case
format = match.group('format')
if format is None:
# Floating point format
format = match.group('formatf').upper()
width = match.group('widthf')
precision = match.group('precision')
if width is None or precision is None:
if strict:
raise VerifyError('Format %r is not unambiguously an ASCII '
'table format.')
else:
width = 0 if width is None else width
precision = 1 if precision is None else precision
else:
format = format.upper()
width = match.group('width')
if width is None:
if strict:
raise VerifyError('Format %r is not unambiguously an ASCII '
'table format.')
else:
# Just use a default width of 0 if unspecified
width = 0
precision = 0
def convert_int(val):
msg = ('Format %r is not valid--field width and decimal precision '
'must be positive integers.')
try:
val = int(val)
except (ValueError, TypeError):
raise VerifyError(msg % tform)
if val <= 0:
raise VerifyError(msg % tform)
return val
if width and precision:
# This should only be the case for floating-point formats
width, precision = convert_int(width), convert_int(precision)
elif width:
# Just for integer/string formats; ignore precision
width = convert_int(width)
else:
# For any format, if width was unspecified use the set defaults
width, precision = ASCII_DEFAULT_WIDTHS[format]
if precision >= width:
raise VerifyError("Format %r not valid--the number of decimal digits "
"must be less than the format's total width %s." &
(tform, width))
return format, width, precision
def _parse_tdim(tdim):
"""Parse the ``TDIM`` value into a tuple (may return an empty tuple if
the value ``TDIM`` value is empty or invalid).
"""
m = tdim and TDIM_RE.match(tdim)
if m:
dims = m.group('dims')
return tuple(int(d.strip()) for d in dims.split(','))[::-1]
# Ignore any dim values that don't specify a multidimensional column
return tuple()
def _scalar_to_format(value):
"""
Given a scalar value or string, returns the minimum FITS column format
that can represent that value. 'minimum' is defined by the order given in
FORMATORDER.
"""
# TODO: Numpy 1.6 and up has a min_scalar_type() function that can handle
# this; in the meantime we have to use our own implementation (which for
# now is pretty naive)
# First, if value is a string, try to convert to the appropriate scalar
# value
for type_ in (int, float, complex):
try:
value = type_(value)
break
except ValueError:
continue
if isinstance(value, int) and value in (0, 1):
# Could be a boolean
return 'L'
elif isinstance(value, int):
for char in ('B', 'I', 'J', 'K'):
type_ = np.dtype(FITS2NUMPY[char]).type
if type_(value) == value:
return char
elif isinstance(value, float):
# For now just assume double precision
return 'D'
elif isinstance(value, complex):
return 'M'
else:
return 'A' + str(len(value))
def _cmp_recformats(f1, f2):
"""
Compares two numpy recformats using the ordering given by FORMATORDER.
"""
if f1[0] == 'a' and f2[0] == 'a':
return cmp(int(f1[1:]), int(f2[1:]))
else:
f1, f2 = NUMPY2FITS[f1], NUMPY2FITS[f2]
return cmp(FORMATORDER.index(f1), FORMATORDER.index(f2))
def _convert_fits2record(format):
"""
Convert FITS format spec to record format spec.
"""
repeat, dtype, option = _parse_tformat(format)
if dtype in FITS2NUMPY:
if dtype == 'A':
output_format = FITS2NUMPY[dtype] + str(repeat)
# to accomodate both the ASCII table and binary table column
# format spec, i.e. A7 in ASCII table is the same as 7A in
# binary table, so both will produce 'a7'.
# Technically the FITS standard does not allow this but it's a very
# common mistake
if format.lstrip()[0] == 'A' and option != '':
# make sure option is integer
output_format = FITS2NUMPY[dtype] + str(int(option))
else:
repeat_str = ''
if repeat != 1:
repeat_str = str(repeat)
output_format = repeat_str + FITS2NUMPY[dtype]
elif dtype == 'X':
output_format = _FormatX(repeat)
elif dtype == 'P':
output_format = _FormatP.from_tform(format)
elif dtype == 'Q':
output_format = _FormatQ.from_tform(format)
elif dtype == 'F':
output_format = 'f8'
else:
raise ValueError('Illegal format %s.' % format)
return output_format
def _convert_record2fits(format):
"""
Convert record format spec to FITS format spec.
"""
recformat, kind, dtype = _dtype_to_recformat(format)
shape = dtype.shape
option = str(dtype.base.itemsize)
ndims = len(shape)
repeat = 1
if ndims > 0:
nel = np.array(shape, dtype='i8').prod()
if nel > 1:
repeat = nel
if kind == 'a':
# This is a kludge that will place string arrays into a
# single field, so at least we won't lose data. Need to
# use a TDIM keyword to fix this, declaring as (slength,
# dim1, dim2, ...) as mwrfits does
ntot = int(repeat) * int(option)
output_format = str(ntot) + 'A'
elif recformat in NUMPY2FITS: # record format
if repeat != 1:
repeat = str(repeat)
else:
repeat = ''
output_format = repeat + NUMPY2FITS[recformat]
else:
raise ValueError('Illegal format %s.' % format)
return output_format
def _dtype_to_recformat(dtype):
"""
Utility function for converting a dtype object or string that instantiates
a dtype (e.g. 'float32') into one of the two character Numpy format codes
that have been traditionally used by PyFITS.
In particular, use of 'a' to refer to character data is long since
deprecated in Numpy, but PyFITS remains heavily invested in its use
(something to try to get away from sooner rather than later).
"""
if not isinstance(dtype, np.dtype):
dtype = np.dtype(dtype)
kind = dtype.base.kind
itemsize = dtype.base.itemsize
recformat = kind + str(itemsize)
if kind in ('U', 'S'):
recformat = kind = 'a'
return recformat, kind, dtype
def _convert_format(format, reverse=False):
"""
Convert FITS format spec to record format spec. Do the opposite if
reverse=True.
"""
if reverse:
return _convert_record2fits(format)
else:
return _convert_fits2record(format)
def _convert_ascii_format(format, reverse=False):
"""Convert ASCII table format spec to record format spec."""
if reverse:
recformat, kind, dtype = _dtype_to_recformat(format)
itemsize = dtype.itemsize
if kind == 'a':
return 'A' + str(itemsize)
elif NUMPY2FITS.get(recformat) == 'L':
# Special case for logical/boolean types--for ASCII tables we
# represent these as single character columns containing 'T' or 'F'
# (a la the storage format for Logical columns in binary tables)
return 'A1'
elif kind == 'i':
# Use for the width the maximum required to represent integers
# of that byte size plus 1 for signs, but use a minumum of the
# default width (to keep with existing behavior)
width = 1 + len(str(2 ** (itemsize * 8)))
width = max(width, ASCII_DEFAULT_WIDTHS['I'][0])
return 'I' + str(width)
elif kind == 'f':
# This is tricky, but go ahead and use D if float-64, and E
# if float-32 with their default widths
if itemsize >= 8:
format = 'D'
else:
format = 'E'
width = '.'.join(str(w) for w in ASCII_DEFAULT_WIDTHS[format])
return format + width
# TODO: There may be reasonable ways to represent other Numpy types so
# let's see what other possibilities there are besides just 'a', 'i',
# and 'f'. If it doesn't have a reasonable ASCII representation then
# raise an exception
else:
format, width, precision = _parse_ascii_tformat(format)
# This gives a sensible "default" dtype for a given ASCII
# format code
recformat = ASCII2NUMPY[format]
# The following logic is taken from CFITSIO:
# For integers, if the width <= 4 we can safely use 16-bit ints for all
# values [for the non-standard J format code just always force 64-bit]
if format == 'I' and width <= 4:
recformat = 'i2'
elif format == 'F' and width > 7:
# 32-bit floats (the default) may not be accurate enough to support
# all values that can fit in this field, so upgrade to 64-bit
recformat = 'f8'
elif format == 'E' and precision > 6:
# Again upgrade to a 64-bit int if we require greater decimal
# precision
recformat = 'f8'
elif format == 'A':
recformat += str(width)
return recformat
|