This file is indexed.

/usr/share/pyshared/HTSeq/scripts/qa.py is in python-htseq 0.5.4p3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#!/usr/bin/env python

# HTSeq_QA.py
#
# (c) Simon Anders, European Molecular Biology Laboratory, 2010
# released under GNU General Public License

import sys, time, os.path, optparse
from itertools import *
import numpy
import HTSeq

def main():

   try:
      import matplotlib
   except ImportError:
      sys.stderr.write("This script needs the 'matplotlib' library, which ")
      sys.stderr.write("was not found. Please install it." )
   matplotlib.use('PDF')
   from matplotlib import pyplot


   # **** Parse command line ****

   optParser = optparse.OptionParser( usage = "%prog [options] read_file",
      description=
	 "This script take a file with high-throughput sequencing reads " +
	 "(supported formats: SAM, Solexa _export.txt, FASTQ, Solexa " +
	 "_sequence.txt) and performs a simply quality assessment by " +
	 "producing plots showing the distribution of called bases and " +
	 "base-call quality scores by position within the reads. The " +
	 "plots are output as a PDF file.",
      epilog = 
	 "Written by Simon Anders (sanders@fs.tum.de), European Molecular Biology " +
	 " Laboratory (EMBL). (c) 2010. Released under the terms of the GNU General " +
	 " Public License v3. Part of the 'HTSeq' framework, version %s." % HTSeq.__version__ )
   optParser.add_option( "-t", "--type", type="choice", dest="type",
      choices = ("sam", "bam", "solexa-export", "fastq", "solexa-fastq"),
      default = "sam", help="type of read_file (one of: sam [default], bam, " +
	 "solexa-export, fastq, solexa-fastq)" )
   optParser.add_option( "-o", "--outfile", type="string", dest="outfile",
      help="output filename (default is <read_file>.pdf)" )
   optParser.add_option( "-r", "--readlength", type="int", dest="readlen",
      help="the maximum read length (when not specified, the script guesses from the file" )
   optParser.add_option( "-g", "--gamma", type="float", dest="gamma", 
      default = 0.3,
      help="the gamma factor for the contrast adjustment of the quality score plot" )
   optParser.add_option( "-n", "--nosplit", action="store_true", dest="nosplit",
      help="do not split reads in unaligned and aligned ones" )
   optParser.add_option( "-m", "--maxqual", type="int", dest="maxqual", default=41,
      help="the maximum quality score that appears in the data (default: 41)" )

   if len( sys.argv ) == 1:
      optParser.print_help()
      sys.exit(1)

   (opts, args) = optParser.parse_args()

   if len( args ) != 1:
      sys.stderr.write( sys.argv[0] + ": Error: Please provide one argument (the read_file).\n" )
      sys.stderr.write( "  Call with '-h' to get usage information.\n" )
      sys.exit( 1 )

   readfilename = args[0]

   if opts.type == "sam":
      readfile = HTSeq.SAM_Reader( readfilename )
      isAlnmntFile = True
   elif opts.type == "bam":
      readfile = HTSeq.BAM_Reader( readfilename )
      isAlnmntFile = True
   elif opts.type == "solexa-export":
      readfile = HTSeq.SolexaExportReader( readfilename )
      isAlnmntFile = True
   elif opts.type == "fastq":
      readfile = HTSeq.FastqReader( readfilename )
      isAlnmntFile = False
   elif opts.type == "solexa-fastq":
      readfile = HTSeq.FastqReader( readfilename, "solexa" )
      isAlnmntFile = False
   else:
      sys.error( "Oops." )

   twoColumns = isAlnmntFile and not opts.nosplit

   if opts.outfile is None:
      outfilename = os.path.basename( readfilename ) + ".pdf"
   else:   
      outfilename = opts.outfile


   # **** Get read length ****

   if opts.readlen is not None:
      readlen = opts.readlen
   else:
      readlen = 0
      if isAlnmntFile:
	 reads = ( a.read for a in readfile )
      else:
	 reads = readfile
      for r in islice( reads, 10000 ):
	 if len( r ) > readlen:
            readlen = len( r )

   max_qual = opts.maxqual
   gamma = opts.gamma


   # **** Initialize count arrays ****

   base_arr_U = numpy.zeros( ( readlen, 5 ), numpy.int )
   qual_arr_U = numpy.zeros( ( readlen, max_qual+1 ), numpy.int )
   if twoColumns:
      base_arr_A = numpy.zeros( ( readlen, 5 ), numpy.int )
      qual_arr_A = numpy.zeros( ( readlen, max_qual+1 ), numpy.int )


   # **** Main counting loop ****

   i = 0
   try:
      for a in readfile:
	 if isAlnmntFile:
	    r = a.read
	 else:
	    r = a
	 if twoColumns and (isAlnmntFile and a.aligned):
	    r.add_bases_to_count_array( base_arr_A )
	    r.add_qual_to_count_array( qual_arr_A )
	 else:
	    r.add_bases_to_count_array( base_arr_U )
	    r.add_qual_to_count_array( qual_arr_U )   
	 i += 1
	 if i % 200000 == 0:
            print i, "reads processed"
   except:
      sys.stderr.write( "Error occured in: %s\n" %
         readfile.get_line_number_string() )
      raise
   print i, "reads processed"


   # **** Normalize result ****

   def norm_by_pos( arr ):
      arr = numpy.array( arr, numpy.float )
      arr_n = ( arr.T / arr.sum( 1 ) ).T
      arr_n[ arr == 0 ] = 0
      return arr_n

   def norm_by_start( arr ):
      arr = numpy.array( arr, numpy.float )
      arr_n = ( arr.T / arr.sum( 1 )[ 0 ] ).T
      arr_n[ arr == 0 ] = 0
      return arr_n


   base_arr_U_n = norm_by_pos( base_arr_U )
   qual_arr_U_n = norm_by_start( qual_arr_U )
   nreads_U = base_arr_U[0,:].sum()
   if twoColumns:
      base_arr_A_n = norm_by_pos( base_arr_A )
      qual_arr_A_n = norm_by_start( qual_arr_A )
      nreads_A = base_arr_A[0,:].sum()


   # **** Make plot ****

   def plot_bases( arr ):
      xg = numpy.arange( readlen )   
      pyplot.plot( xg, arr[ : , 0 ], marker='.', color='red')
      pyplot.plot( xg, arr[ : , 1 ], marker='.', color='darkgreen')
      pyplot.plot( xg, arr[ : , 2 ], marker='.',color='lightgreen')
      pyplot.plot( xg, arr[ : , 3 ], marker='.',color='orange')
      pyplot.plot( xg, arr[ : , 4 ], marker='.',color='grey')
      pyplot.axis( (0, readlen-1, 0, 1 ) )
      pyplot.text( readlen*.70, .9, "A", color="red" )
      pyplot.text( readlen*.75, .9, "C", color="darkgreen" )
      pyplot.text( readlen*.80, .9, "G", color="lightgreen" )
      pyplot.text( readlen*.85, .9, "T", color="orange" )
      pyplot.text( readlen*.90, .9, "N", color="grey" )

   pyplot.figure()
   pyplot.subplots_adjust( top=.85 )
   pyplot.suptitle( os.path.basename(readfilename), fontweight='bold' )

   if twoColumns:

      pyplot.subplot( 221 )
      plot_bases( base_arr_U_n )
      pyplot.ylabel( "proportion of base" )
      pyplot.title( "non-aligned reads\n%.0f%% (%.3f million)" % 
	 ( 100. * nreads_U / (nreads_U+nreads_A), nreads_U / 1e6 ) )

      pyplot.subplot( 222 )
      plot_bases( base_arr_A_n )
      pyplot.title( "aligned reads\n%.0f%% (%.3f million)" % 
	 ( 100. * nreads_A / (nreads_U+nreads_A), nreads_A / 1e6 ) )

      pyplot.subplot( 223 )
      pyplot.pcolor( qual_arr_U_n.T ** gamma, cmap=pyplot.cm.Greens,
	  norm=pyplot.normalize( 0, 1 ) )
      pyplot.axis( (0, readlen-1, 0, max_qual+1 ) )
      pyplot.xlabel( "position in read" )
      pyplot.ylabel( "base-call quality score" )

      pyplot.subplot( 224 )
      pyplot.pcolor( qual_arr_A_n.T ** gamma, cmap=pyplot.cm.Greens,
	   norm=pyplot.normalize( 0, 1 ) )
      pyplot.axis( (0, readlen-1, 0, max_qual+1 ) )
      pyplot.xlabel( "position in read" )

   else:

      pyplot.subplot( 211 )
      plot_bases( base_arr_U_n )
      pyplot.ylabel( "proportion of base" )
      pyplot.title( "%.3f million reads" % ( nreads_U / 1e6 ) )

      pyplot.subplot( 212 )
      pyplot.pcolor( qual_arr_U_n.T ** gamma, cmap=pyplot.cm.Greens,
	  norm=pyplot.normalize( 0, 1 ) )
      pyplot.axis( (0, readlen-1, 0, max_qual+1 ) )
      pyplot.xlabel( "position in read" )
      pyplot.ylabel( "base-call quality score" )


   pyplot.savefig( outfilename )

if __name__ == "__main__":
   main()