This file is indexed.

/usr/share/pyshared/guiqwt/tests/sift.py is in python-guiqwt 2.3.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
# -*- coding: utf-8 -*-
#
# Copyright © 2010-2011 CEA
# Pierre Raybaut
# Licensed under the terms of the CECILL License
# (see guiqwt/__init__.py for details)

"""
SIFT, the Signal and Image Filtering Tool
Simple signal and image processing application based on guiqwt and guidata
"""

from __future__ import unicode_literals

SHOW = True # Show test in GUI-based test launcher

from guidata.qt.QtGui import (QMainWindow, QMessageBox, QSplitter, QListWidget,
                              QVBoxLayout, QHBoxLayout, QWidget, QTabWidget,
                              QMenu, QApplication, QCursor, QFont)
from guidata.qt.QtCore import Qt, QT_VERSION_STR, PYQT_VERSION_STR, SIGNAL
from guidata.qt.compat import getopenfilenames, getsavefilename

import sys
import platform
import os.path as osp
import os
import numpy as np

from guidata.dataset.datatypes import DataSet, ValueProp
from guidata.dataset.dataitems import (IntItem, FloatArrayItem, StringItem,
                                       ChoiceItem, FloatItem, DictItem,
                                       BoolItem)
from guidata.dataset.qtwidgets import DataSetEditGroupBox
from guidata.configtools import get_icon
from guidata.qthelpers import create_action, add_actions, get_std_icon
from guidata.qtwidgets import DockableWidget, DockableWidgetMixin
from guidata.utils import update_dataset
from guidata.py3compat import to_text_string

from guiqwt.config import _
from guiqwt.plot import CurveWidget, ImageWidget
from guiqwt.builder import make

APP_NAME = _("Sift")
APP_DESC = _("""Signal and Image Filtering Tool<br>
Simple signal and image processing application based on guiqwt and guidata""")
VERSION = '0.2.6'


def normalize(yin, parameter='maximum'):
    """
    Normalize input array *yin* with respect to parameter *parameter*
    
    Support values for *parameter*:
        'maximum' (default), 'amplitude', 'sum', 'energy'
    """
    axis = len(yin.shape)-1
    if parameter == 'maximum':
        maximum = np.max(yin, axis)
        if axis == 1:
            maximum = maximum.reshape((len(maximum), 1))
        maxarray = np.tile(maximum, yin.shape[axis]).reshape(yin.shape)
        return yin / maxarray
    elif parameter == 'amplitude':
        ytemp = np.array(yin, copy=True)
        minimum = np.min(yin, axis)
        if axis == 1:
            minimum = minimum.reshape((len(minimum), 1))
        ytemp -= minimum
        return normalize(ytemp, parameter='maximum')
    elif parameter == 'sum':
        return yin/yin.sum()
    elif parameter == 'energy':
        return yin/(yin*yin.conjugate()).sum()
    else:
        raise RuntimeError("Unsupported parameter %s" % parameter)

def xy_fft(x, y):
    """Compute FFT on X,Y data"""
    y1 = np.fft.fft(y)
    x1 = np.fft.fftshift(np.fft.fftfreq(x.shape[-1], d=x[1]-x[0]))
    return x1, y1
    
def xy_ifft(x, y):
    """Compute iFFT on X,Y data"""
    y1 = np.fft.ifft(y)
    x1 = np.fft.fftshift(np.fft.fftfreq(x.shape[-1], d=x[1]-x[0]))
    return x1, y1
    
def flatfield(rawdata, flatdata):
    """Compute flat-field correction"""
    dtemp = np.array(rawdata, dtype=np.float64, copy=True)*flatdata.mean()
    dunif = np.array(flatdata, dtype=np.float64, copy=True)
    dunif[dunif == 0] = 1.
    return np.array(dtemp/dunif, dtype=rawdata.dtype)


class SignalParam(DataSet):
    title = StringItem(_("Title"), default=_("Untitled"))
    xydata = FloatArrayItem(_("Data"), transpose=True, minmax="rows")
    def copy_data_from(self, other, dtype=None):
        self.xydata = np.array(other.xydata, copy=True, dtype=dtype)
    def change_data_type(self, dtype):
        self.xydata = np.array(self.xydata, dtype=dtype)
    def get_data(self):
        if self.xydata is not None:
            return self.xydata[1]
    def set_data(self, data):
        self.xydata[1] = data
    data = property(get_data, set_data)

class SignalParamNew(DataSet):
    title = StringItem(_("Title"), default=_("Untitled"))
    xmin = FloatItem("Xmin", default=-10.)
    xmax = FloatItem("Xmax", default=10.)
    size = IntItem(_("Size"), help=_("Signal size (total number of points)"),
                   min=1, default=500)
    type = ChoiceItem(_("Type"),
                      (("rand", _("random")), ("zeros", _("zeros")),
                       ("gauss", _("gaussian"))))


class ImageParam(DataSet):
    title = StringItem(_("Title"), default=_("Untitled"))
    data = FloatArrayItem(_("Data"))
    metadata = DictItem(_("Metadata"), default=None)
    def copy_data_from(self, other, dtype=None):
        self.data = np.array(other.data, copy=True, dtype=dtype)
    def change_data_type(self, dtype):
        self.data = np.array(self.data, dtype=dtype)

class ImageParamNew(DataSet):
    title = StringItem(_("Title"), default=_("Untitled"))
    height = IntItem(_("Height"), help=_("Image height (total number of rows)"),
                     min=1, default=500)
    width = IntItem(_("Width"), help=_("Image width (total number of columns)"),
                    min=1, default=500)
    dtype = ChoiceItem(_("Data type"),
                       ((np.uint8, "uint8"), (np.int16, "uint16"),
                        (np.float32, "float32"), (np.float64, "float64"),
                        ))
    type = ChoiceItem(_("Type"),
                      (("zeros", _("zeros")), ("empty", _("empty")),
                       ("rand", _("random")),
                        ))


class ObjectFT(QSplitter):
    """Object handling the item list, the selected item properties and plot"""
    PARAMCLASS = None
    PREFIX = None
    def __init__(self, parent, plot):
        super(ObjectFT, self).__init__(Qt.Vertical, parent)
        self.plot = plot
        self.objects = [] # signals or images
        self.items = [] # associated plot items
        self.listwidget = None
        self.properties = None
        self._hsplitter = None
        
        self.file_actions = None
        self.edit_actions = None
        self.operation_actions = None
        self.processing_actions = None
        
        self.number = 0

        # Object selection dependent actions
        self.actlist_1more = []
        self.actlist_2more = []
        self.actlist_1 = []
        self.actlist_2 = []
        
    #------Setup widget, menus, actions
    def setup(self, toolbar):
        self.listwidget = QListWidget()
        self.listwidget.setAlternatingRowColors(True)
        self.listwidget.setSelectionMode(QListWidget.ExtendedSelection)
        self.properties = DataSetEditGroupBox(_("Properties"), self.PARAMCLASS)
        self.properties.setEnabled(False)

        self.connect(self.listwidget, SIGNAL("currentRowChanged(int)"),
                     self.current_item_changed)
        self.connect(self.listwidget, SIGNAL("itemSelectionChanged()"),
                     self.selection_changed)
        self.connect(self.properties, SIGNAL("apply_button_clicked()"),
                     self.properties_changed)
        
        properties_stretched = QWidget()
        hlayout = QHBoxLayout()
        hlayout.addWidget(self.properties)
#        hlayout.addStretch()
        vlayout = QVBoxLayout()
        vlayout.addLayout(hlayout)
        vlayout.addStretch()
        properties_stretched.setLayout(vlayout)
        
        self.addWidget(self.listwidget)
        self.addWidget(properties_stretched)

        # Edit actions
        duplicate_action = create_action(self, _("Duplicate"),
                                         icon=get_icon('copy.png'),
                                         triggered=self.duplicate_object)
        self.actlist_1 += [duplicate_action]
        remove_action = create_action(self, _("Remove"),
                                      icon=get_icon('delete.png'),
                                      triggered=self.remove_object)
        self.actlist_1more += [remove_action]
        self.edit_actions = [duplicate_action, remove_action]
        
        # Operation actions
        sum_action = create_action(self, _("Sum"), triggered=self.compute_sum)
        average_action = create_action(self, _("Average"),
                                       triggered=self.compute_average)
        diff_action = create_action(self, _("Difference"),
                                    triggered=self.compute_difference)
        prod_action = create_action(self, _("Product"),
                                    triggered=self.compute_product)
        div_action = create_action(self, _("Division"),
                                   triggered=self.compute_division)
        self.actlist_2more += [sum_action, average_action, prod_action]
        self.actlist_2 += [diff_action, div_action]
        self.operation_actions = [sum_action, average_action,
                                  diff_action, prod_action, div_action]

    #------GUI refresh/setup
    def current_item_changed(self, row):
        if row != -1:
            update_dataset(self.properties.dataset, self.objects[row])
            self.properties.get()

    def _get_selected_rows(self):
        return [index.row() for index in
                self.listwidget.selectionModel().selectedRows()]
        
    def selection_changed(self):
        """Signal list: selection changed"""
        row = self.listwidget.currentRow()
        self.properties.setDisabled(row == -1)
        self.refresh_plot()
        nbrows = len(self._get_selected_rows())
        for act in self.actlist_1more:
            act.setEnabled(nbrows >= 1)
        for act in self.actlist_2more:
            act.setEnabled(nbrows >= 2)
        for act in self.actlist_1:
            act.setEnabled(nbrows == 1)
        for act in self.actlist_2:
            act.setEnabled(nbrows == 2)
            
    def make_item(self, row):
        raise NotImplementedError
        
    def update_item(self, row):
        raise NotImplementedError
        
    def refresh_plot(self):
        for item in self.items:
            if item is not None:
                item.hide()
        for row in self._get_selected_rows():
            item = self.items[row]
            if item is None:
                item = self.make_item(row)
                self.plot.add_item(item)
            else:
                self.update_item(row)
                self.plot.set_item_visible(item, True)
                self.plot.set_active_item(item)
        self.plot.do_autoscale()
        
    def refresh_list(self, new_current_row='current'):
        """new_current_row: integer, 'first', 'last', 'current'"""
        row = self.listwidget.currentRow()
        self.listwidget.clear()
        self.listwidget.addItems(["%s%03d: %s" % (self.PREFIX, i, obj.title)
                                  for i, obj in enumerate(self.objects)])
        if new_current_row == 'first':
            row = 0
        elif new_current_row == 'last':
            row = self.listwidget.count()-1
        elif isinstance(new_current_row, int):
            row = new_current_row
        else:
            assert new_current_row == 'current'
        if row < self.listwidget.count():
            self.listwidget.setCurrentRow(row)
        
    def properties_changed(self):
        """The properties 'Apply' button was clicked: updating signal"""
        row = self.listwidget.currentRow()
        update_dataset(self.objects[row], self.properties.dataset)
        self.refresh_list(new_current_row='current')
        self.listwidget.setCurrentRow(row)
        self.refresh_plot()
    
    def add_object(self, obj):
        self.objects.append(obj)
        self.items.append(None)
        self.refresh_list(new_current_row='last')
        self.listwidget.setCurrentRow(len(self.objects)-1)
        self.emit(SIGNAL('object_added()'))
        
    #------Edit operations
    def duplicate_object(self):
        row = self._get_selected_rows()[0]
        obj = self.objects[row]
        objcopy = self.PARAMCLASS()
        objcopy.title = obj.title
        objcopy.copy_data_from(obj)
        self.objects.insert(row+1, objcopy)
        self.items.insert(row+1, None)
        self.refresh_list(new_current_row=row+1)
        self.refresh_plot()
    
    def remove_object(self):
        rows = sorted(self._get_selected_rows(), reverse=True)
        for row in rows:
            self.objects.pop(row)
            item = self.items.pop(row)
            self.plot.del_item(item)
        self.refresh_list(new_current_row='first')
        self.refresh_plot()
        
    #------Operations
    def compute_sum(self):
        rows = self._get_selected_rows()
        sumobj = self.PARAMCLASS()
        sumobj.title = "+".join(["%s%03d" % (self.PREFIX, row) for row in rows])
        try:
            for row in rows:
                obj = self.objects[row]
                if sumobj.data is None:
                    sumobj.copy_data_from(obj)
                else:
                    sumobj.data += obj.data
        except Exception as msg:
            import traceback
            traceback.print_exc()
            QMessageBox.critical(self.parent(), APP_NAME,
                                 _("Error:")+"\n%s" % str(msg))
            return
        self.add_object(sumobj)
    
    def compute_average(self):
        rows = self._get_selected_rows()
        sumobj = self.PARAMCLASS()
        title = ", ".join(["%s%03d" % (self.PREFIX, row) for row in rows])
        sumobj.title = _("Average")+("(%s)" % title)
        original_dtype = self.objects[rows[0]].data.dtype
        try:
            for row in rows:
                obj = self.objects[row]
                if sumobj.data is None:
                    sumobj.copy_data_from(obj, dtype=np.float64)
                else:
                    sumobj.data += obj.data
        except Exception as msg:
            import traceback
            traceback.print_exc()
            QMessageBox.critical(self.parent(), APP_NAME,
                                 _("Error:")+"\n%s" % str(msg))
            return
        sumobj.data /= float(len(rows))
        sumobj.change_data_type(dtype=original_dtype)
        self.add_object(sumobj)
    
    def compute_product(self):
        rows = self._get_selected_rows()
        sumobj = self.PARAMCLASS()
        sumobj.title = "*".join(["%s%03d" % (self.PREFIX, row) for row in rows])
        try:
            for row in rows:
                obj = self.objects[row]
                if sumobj.data is None:
                    sumobj.copy_data_from(obj)
                else:
                    sumobj.data *= obj.data
        except Exception as msg:
            import traceback
            traceback.print_exc()
            QMessageBox.critical(self.parent(), APP_NAME,
                                 _("Error:")+"\n%s" % str(msg))
            return
        self.add_object(sumobj)
    
    def compute_difference(self):
        rows = self._get_selected_rows()
        diffobj = self.PARAMCLASS()
        diffobj.title = "-".join(["%s%03d" % (self.PREFIX, row)
                                  for row in rows])
        try:
            obj0, obj1 = self.objects[rows[0]], self.objects[rows[1]]
            diffobj.copy_data_from(obj0)
            diffobj.data = obj0.data-obj1.data
        except Exception as msg:
            import traceback
            traceback.print_exc()
            QMessageBox.critical(self.parent(), APP_NAME,
                                 _("Error:")+"\n%s" % str(msg))
            return
        self.add_object(diffobj)
    
    def compute_division(self):
        rows = self._get_selected_rows()
        diffobj = self.PARAMCLASS()
        diffobj.title = "/".join(["%s%03d" % (self.PREFIX, row)
                                  for row in rows])
        try:
            obj0, obj1 = self.objects[rows[0]], self.objects[rows[1]]
            diffobj.copy_data_from(obj0)
            diffobj.data = obj0.data/obj1.data
        except Exception as msg:
            import traceback
            traceback.print_exc()
            QMessageBox.critical(self.parent(), APP_NAME,
                                 _("Error:")+"\n%s" % str(msg))
            return
        self.add_object(diffobj)
                                     
    #------Data Processing
    def apply_11_func(self, obj, orig, func, param):
        if param is None:
            obj.data = func(orig.data)
        else:
            obj.data = func(orig.data, param)
    
    def compute_11(self, name, func, param=None, one_param_for_all=True,
                   suffix=None):
        if param is not None and one_param_for_all:
            if not param.edit(parent=self.parent()):
                return
        rows = self._get_selected_rows()
        for row in rows:
            if param is not None and not one_param_for_all:
                if not param.edit(parent=self.parent()):
                    return
            orig = self.objects[row]
            obj = self.PARAMCLASS()
            obj.title = "%s(%s%03d)" % (name, self.PREFIX, row)
            if suffix is not None:
                obj.title += "|"+suffix(param)
            obj.copy_data_from(orig)
            self.emit(SIGNAL("status_message(QString)"),
                      _("Computing:")+" "+obj.title)
            QApplication.setOverrideCursor(QCursor(Qt.WaitCursor))
            self.repaint()
            try:
                self.apply_11_func(obj, orig, func, param)
            except Exception as msg:
                import traceback
                traceback.print_exc()
                QMessageBox.critical(self.parent(), APP_NAME,
                                     _("Error:")+"\n%s" % str(msg))
                return
            finally:
                self.emit(SIGNAL("status_message(QString)"), "")
                QApplication.restoreOverrideCursor()
            self.add_object(obj)
        
class SignalFT(ObjectFT):
    PARAMCLASS = SignalParam
    PREFIX = "s"
    #------ObjectFT API
    def setup(self, toolbar):
        ObjectFT.setup(self, toolbar)
        
        # File actions
        new_action = create_action(self, _("New signal..."),
                                   icon=get_icon('filenew.png'),
                                   tip=_("Create a new signal"),
                                   triggered=self.new_signal)
        open_action = create_action(self, _("Open signal..."),
                                    icon=get_icon('fileopen.png'),
                                    tip=_("Open a signal"),
                                    triggered=self.open_signal)
        save_action = create_action(self, _("Save signal..."),
                                    icon=get_icon('filesave.png'),
                                    tip=_("Save selected signal"),
                                    triggered=self.save_signal)
        self.actlist_1more += [save_action]
        self.file_actions = [new_action, open_action, save_action]

        # Operation actions
        roi_action = create_action(self, _("ROI extraction"),
                                   triggered=self.extract_roi)
        swapaxes_action = create_action(self, _("Swap X/Y axes"),
                                        triggered=self.swap_axes)
        self.actlist_1more += [roi_action, swapaxes_action]
        self.operation_actions += [None, roi_action, swapaxes_action]
        
        # Processing actions
        normalize_action = create_action(self, _("Normalize"),
                                         triggered=self.normalize)
        lincal_action = create_action(self, _("Linear calibration"),
                                      triggered=self.calibrate)
        gaussian_action = create_action(self, _("Gaussian filter"),
                                        triggered=self.compute_gaussian)
        wiener_action = create_action(self, _("Wiener filter"),
                                      triggered=self.compute_wiener)
        fft_action = create_action(self, _("FFT"),
                                   tip=_("Warning: only real part is plotted"),
                                   triggered=self.compute_fft)
        ifft_action = create_action(self, _("Inverse FFT"),
                                   tip=_("Warning: only real part is plotted"),
                                    triggered=self.compute_ifft)
        self.actlist_1more += [normalize_action, lincal_action,
                               gaussian_action, wiener_action,
                               fft_action, ifft_action]
        self.processing_actions = [normalize_action, lincal_action, None,
                                   gaussian_action, wiener_action,
                                   fft_action, ifft_action]
                                   
        add_actions(toolbar, [new_action, open_action, save_action])

    def make_item(self, row):
        signal = self.objects[row]
        data = signal.xydata
        if len(data) == 2: # x, y signal
            x, y = data
            item = make.mcurve(x, y.real, label=signal.title)
        elif len(data) == 4: # x, y, dx, dy error bar signal
            x, y, dx, dy = data
            item = make.merror(x, y.real, dx, dy, label=signal.title)
        else:
            raise RuntimeError("data not supported")
        self.items[row] = item
        return item
        
    def update_item(self, row):
        signal = self.objects[row]
        item = self.items[row]
        data = signal.xydata
        if len(data) == 2: # x, y signal
            x, y = data
            item.set_data(x, y.real)
        elif len(data) == 4: # x, y, dx, dy error bar signal
            x, y, dx, dy = data
            item.set_data(x, y.real, dx, dy)
        item.curveparam.label = signal.title
        
    #------Signal operations
    def extract_roi(self):
        class ROIParam(DataSet):
            row1 = IntItem(_("First row index"), default=0, min=-1)
            row2 = IntItem(_("Last row index"), default=-1, min=-1)
        param = ROIParam(_("ROI extraction"))
        self.compute_11("ROI", lambda x, y, p: (x.copy()[p.row1:p.row2],
                                                y.copy()[p.row1:p.row2]),
                        param, suffix=lambda p:
                                      "rows=%d:%d" % (p.row1, p.row2))
    
    def swap_axes(self):
        self.compute_11("SwapAxes", lambda x, y: (y, x))
    
    #------Signal Processing
    def apply_11_func(self, obj, signal, func, param):
        data = signal.xydata
        if len(data) == 2: # x, y signal
            x, y = data
            if param is None:
                obj.xydata = func(x, y)
            else:
                obj.xydata = func(x, y, param)
        elif len(data) == 4: # x, y, dx, dy error bar signal
            x, y, dx, dy = data
            if param is None:
                x2, y2 = func(x, y)
                _x3, dy2 = func(x, dy)
            else:
                x2, y2 = func(x, y, param)
                dx2, dy2 = func(dx, dy, param)
            obj.xydata = x2, y2, dx, dy2
            
    def normalize(self):
        methods = ((_("maximum"), 'maximum'),
                   (_("amplitude"), 'amplitude'),
                   (_("sum"), 'sum'),
                   (_("energy"), 'energy'))
        class NormalizeParam(DataSet):
            method = ChoiceItem(_("Normalize with respect to"), methods)
        param = NormalizeParam(_("Normalize"))
        def func(x, y, p):
            return x, normalize(y, p.method)
        self.compute_11("Normalize", func, param,
                        suffix=lambda p: "ref=%s" % p.method)
    
    def calibrate(self):
        axes = (('x', _("X-axis")), ('y', _("Y-axis")))
        class CalibrateParam(DataSet):
            axis = ChoiceItem(_("Calibrate"), axes, default='y')
            a = FloatItem('a', default=1.)
            b = FloatItem('b', default=0.)
        param = CalibrateParam(_("Linear calibration"), "y = a.x + b")
        def func(x, y, p):
            if p.axis == 'x':
                return p.a*x+p.b, y
            else:
                return x, p.a*y+p.b
        self.compute_11("LinearCal", func, param,
                        suffix=lambda p: "%s=%s*%s+%s" % (p.axis, p.a,
                                                          p.axis, p.b))
    
    def compute_wiener(self):
        import scipy.signal as sps
        def func(x, y):
            return x, sps.wiener(y)
        self.compute_11("WienerFilter", func)
    
    def compute_gaussian(self):
        class GaussianParam(DataSet):
            sigma = FloatItem("σ", default=1.)
        param = GaussianParam(_("Gaussian filter"))
        import scipy.ndimage as spi
        def func(x, y, p):
            return x, spi.gaussian_filter1d(y, p.sigma)
        self.compute_11("GaussianFilter", func, param,
                        suffix=lambda p: "σ=%.3f pixels" % p.sigma)
                         
    def compute_fft(self):
        self.compute_11("FFT", xy_fft)
                         
    def compute_ifft(self):
        self.compute_11("iFFT", xy_ifft)
                            
    #------I/O
    def new_signal(self):
        """Create a new signal"""
        signalnew = SignalParamNew(title=_("Create a new signal"))
        rows = self._get_selected_rows()
        if rows:
            signalnew.size = len(self.objects[rows[-1]].data)
        signalnew.title = "%s %d" % (signalnew.title, self.number+1)
        if not signalnew.edit(parent=self.parent()):
            return
        self.number += 1
        signal = SignalParam()
        signal.title = signalnew.title
        xarr = np.linspace(signalnew.xmin, signalnew.xmax, signalnew.size)
        if signalnew.type == 'zeros':
            signal.xydata = np.vstack((xarr, np.zeros(signalnew.size)))
        elif signalnew.type == 'rand':
            signal.xydata = np.vstack((xarr, np.random.rand(signalnew.size)-.5))
        elif signalnew.type == 'gauss':
            class GaussParam(DataSet):
                a = FloatItem("Norm", default=1.)
                x0 = FloatItem("X0", default=0.0)
                sigma = FloatItem("σ", default=5.)
            param = GaussParam(_("New gaussian function"))
            if not param.edit(parent=self.parent()):
                return
            ygauss = param.a*np.exp(-.5*((xarr-param.x0)/param.sigma)**2)
            signal.xydata = np.vstack((xarr, ygauss))
        self.add_object(signal)
    
    def open_signal(self):
        """Open signal file"""
        saved_in, saved_out, saved_err = sys.stdin, sys.stdout, sys.stderr
        sys.stdout = None
        filters = '%s (*.txt *.csv)\n%s (*.npy)'\
                  % (_("Text files"), _("NumPy arrays"))
        filenames, _filter = getopenfilenames(self.parent(), _("Open"), '',
                                              filters)
        sys.stdin, sys.stdout, sys.stderr = saved_in, saved_out, saved_err
        filenames = list(filenames)
        for filename in filenames:
            filename = to_text_string(filename)
            os.chdir(osp.dirname(filename))
            signal = SignalParam()
            signal.title = filename
            try:
                if osp.splitext(filename)[1] == ".npy":
                    xydata =np.load(filename)
                else:
                    for delimiter in ('\t', ',', ' ', ';'):
                        try:
                            xydata = np.loadtxt(filename, delimiter=delimiter)
                            break
                        except ValueError:
                            continue
                    else:
                        raise
                assert len(xydata.shape) in (1, 2), "Data not supported"
            except Exception as msg:
                import traceback
                traceback.print_exc()
                QMessageBox.critical(self.parent(), APP_NAME,
                     (_("%s could not be opened:") % osp.basename(filename))+\
                     "\n"+str(msg))
                return
            if len(xydata.shape) == 1:
                xydata = np.vstack( (np.arange(xydata.size), xydata) )
            else:
                rows, cols = xydata.shape
                for colnb in (2, 3, 4):
                    if cols == colnb and rows > colnb:
                        xydata = xydata.T
                        break
                if cols == 3:
                    # x, y, dy
                    xarr, yarr, dyarr = xydata
                    dxarr = np.zeros_like(dyarr)
                    xydata = np.vstack((xarr, yarr, dxarr, dyarr))
            signal.xydata = xydata
            self.add_object(signal)
            
    def save_signal(self):
        """Save selected signal"""
        rows = self._get_selected_rows()
        for row in rows:
            filename, _filter = getsavefilename(self, _("Save as"), '',
                                                _("CSV files")+" (*.csv)")
            if not filename:
                return
            filename = to_text_string(filename)
            os.chdir(osp.dirname(filename))
            obj = self.objects[row]
            try:
                np.savetxt(filename, obj.xydata, delimiter=',')
            except Exception as msg:
                import traceback
                traceback.print_exc()
                QMessageBox.critical(self.parent(), APP_NAME,
                     (_("%s could not be written:") % osp.basename(filename))+\
                     "\n"+str(msg))
                return

class ImageFT(ObjectFT):
    PARAMCLASS = ImageParam
    PREFIX = "i"
    #------ObjectFT API
    def setup(self, toolbar):
        ObjectFT.setup(self, toolbar)
        
        # File actions
        new_action = create_action(self, _("New image..."),
                                   icon=get_icon('filenew.png'),
                                   tip=_("Create a new image"),
                                   triggered=self.new_image)
        open_action = create_action(self, _("Open image..."),
                                    icon=get_icon('fileopen.png'),
                                    tip=_("Open an image"),
                                    triggered=self.open_image)
        save_action = create_action(self, _("Save image..."),
                                    icon=get_icon('filesave.png'),
                                    tip=_("Save selected image"),
                                    triggered=self.save_image)
        self.actlist_1more += [save_action]
        self.file_actions = [new_action, open_action, save_action]

        # Operation actions
        rotate_menu = QMenu(_("Rotation"), self)
        hflip_action = create_action(self, _("Flip horizontally"),
                                     triggered=self.flip_horizontally)
        vflip_action = create_action(self, _("Flip vertically"),
                                     triggered=self.flip_vertically)
        rot90_action = create_action(self, _("Rotate 90° right"),
                                     triggered=self.rotate_270)
        rot270_action = create_action(self, _("Rotate 90° left"),
                                      triggered=self.rotate_90)
        rotate_action = create_action(self, _("Rotate arbitrarily..."),
                                      triggered=self.rotate_arbitrarily)
        resize_action = create_action(self, _("Resize"),
                                      triggered=self.resize_image)
        roi_action = create_action(self, _("ROI extraction"),
                                    triggered=self.extract_roi)
        swapaxes_action = create_action(self, _("Swap X/Y axes"),
                                        triggered=self.swap_axes)
        flatfield_action = create_action(self, _("Flat-field correction"),
                                         triggered=self.flat_field_correction)
        self.actlist_1 += [resize_action]
        self.actlist_2 += [flatfield_action]
        self.actlist_1more += [roi_action, swapaxes_action,
                               hflip_action, vflip_action,
                               rot90_action, rot270_action, rotate_action]
        add_actions(rotate_menu, [hflip_action, vflip_action,
                                  rot90_action, rot270_action, rotate_action])
        self.operation_actions += [None, rotate_menu, None,
                                   resize_action, roi_action, swapaxes_action,
                                   None, flatfield_action]
        
        # Processing actions
        lincal_action = create_action(self, _("Linear calibration"),
                                      triggered=self.calibrate)
        threshold_action = create_action(self, _("Thresholding"),
                                         triggered=self.compute_threshold)
        clip_action = create_action(self, _("Clipping"),
                                    triggered=self.compute_clip)
        gaussian_action = create_action(self, _("Gaussian filter"),
                                        triggered=self.compute_gaussian)
        wiener_action = create_action(self, _("Wiener filter"),
                                      triggered=self.compute_wiener)
        fft_action = create_action(self, _("FFT"),
                                   tip=_("Warning: only real part is plotted"),
                                   triggered=self.compute_fft)
        ifft_action = create_action(self, _("Inverse FFT"),
                                   tip=_("Warning: only real part is plotted"),
                                    triggered=self.compute_ifft)
        self.actlist_1more += [lincal_action, threshold_action, clip_action,
                               gaussian_action, wiener_action,
                               fft_action, ifft_action]
        self.processing_actions = [lincal_action, threshold_action,
                                   clip_action, None,
                                   gaussian_action, wiener_action, fft_action,
                                   ifft_action]
                                   
        add_actions(toolbar, [new_action, open_action, save_action])
        
    def make_item(self, row):
        image = self.objects[row]
        item = make.image(image.data.real, title=image.title, colormap='gray',
                          eliminate_outliers=2.)
        self.items[row] = item
        return item
        
    def update_item(self, row):
        image = self.objects[row]
        item = self.items[row]
        lut_range = [item.min, item.max]
        item.set_data(image.data.real, lut_range=lut_range)
        item.imageparam.label = image.title
        item.plot().update_colormap_axis(item)
        
    #------Image operations
    def rotate_arbitrarily(self):
        boundaries = ('constant', 'nearest', 'reflect', 'wrap')
        prop = ValueProp(False)
        class RotateParam(DataSet):
            angle = FloatItem("%s (°)" % _("Angle"))
            mode = ChoiceItem(_("Mode"), list(zip(boundaries, boundaries)),
                              default=boundaries[0])
            cval = FloatItem(_("cval"), default=0.,
                             help=_("Value used for points outside the "
                                    "boundaries of the input if mode is "
                                    "'constant'"))
            reshape = BoolItem(_("Reshape the output array"), default=True,
                               help=_("Reshape the output array "
                                      "so that the input array is "
                                      "contained completely in the output"))
            prefilter = BoolItem(_("Prefilter the input image"),
                                 default=True).set_prop("display", store=prop)
            order = IntItem(_("Order"), default=3, min=0, max=5,
                            help=_("Spline interpolation order")
                            ).set_prop("display", active=prop)
        param = RotateParam(_("Rotation"))
        import scipy.ndimage as spi
        self.compute_11("Rotate",
                        lambda x, p:
                        spi.rotate(x, p.angle, reshape=p.reshape,
                                   order=p.order, mode=p.mode,
                                   cval=p.cval, prefilter=p.prefilter),
                        param, suffix=lambda p: "α=%.3f°, mode='%s'"\
                                                % (p.angle, p.mode))
    
    def rotate_90(self):
        self.compute_11("Rotate90", lambda x: np.rot90(x))
        
    def rotate_270(self):
        self.compute_11("Rotate270", lambda x: np.rot90(x, 3))
        
    def flip_horizontally(self):
        self.compute_11("HFlip", lambda x: np.fliplr(x))
        
    def flip_vertically(self):
        self.compute_11("VFlip", lambda x: np.flipud(x))
        
    def resize_image(self):
        rows = self._get_selected_rows()
        obj = self.objects[rows[0]]
        original_size = obj.data.shape[1], obj.data.shape[0]
        from guiqwt.widgets.resizedialog import ResizeDialog
        dlg = ResizeDialog(self.plot, new_size=original_size,
                           old_size=original_size,
                           text=_("Destination size:"))
        if not dlg.exec_():
            return
        boundaries = ('constant', 'nearest', 'reflect', 'wrap')
        prop = ValueProp(False)
        class ResizeParam(DataSet):
            zoom = FloatItem(_("Zoom"), default=dlg.get_zoom())
            mode = ChoiceItem(_("Mode"), list(zip(boundaries, boundaries)),
                              default=boundaries[0])
            cval = FloatItem(_("cval"), default=0.,
                             help=_("Value used for points outside the "
                                    "boundaries of the input if mode is "
                                    "'constant'"))
            prefilter = BoolItem(_("Prefilter the input image"),
                                 default=True).set_prop("display", store=prop)
            order = IntItem(_("Order"), default=3, min=0, max=5,
                            help=_("Spline interpolation order")
                            ).set_prop("display", active=prop)
        param = ResizeParam(_("Resize"))
        import scipy.ndimage as spi
        self.compute_11("Zoom", lambda x, p:
                        spi.interpolation.zoom(x, p.zoom, order=p.order,
                                               mode=p.mode, cval=p.cval,
                                               prefilter=p.prefilter),
                        param, suffix=lambda p: "zoom=%.3f" % p.zoom)
                        
    def extract_roi(self):
        class ROIParam(DataSet):
            row1 = IntItem(_("First row index"), default=0, min=-1)
            row2 = IntItem(_("Last row index"), default=-1, min=-1)
            col1 = IntItem(_("First column index"), default=0, min=-1)
            col2 = IntItem(_("Last column index"), default=-1, min=-1)
        param = ROIParam(_("ROI extraction"))
        self.compute_11("ROI", lambda x, p:
                        x.copy()[p.row1:p.row2, p.col1:p.col2],
                        param, suffix=lambda p: "rows=%d:%d,cols=%d:%d" 
                        % (p.row1, p.row2, p.col1, p.col2))
    
    def swap_axes(self):
        self.compute_11("SwapAxes", lambda z: z.T)
        
    def flat_field_correction(self):
        rows = self._get_selected_rows()
        robj = self.PARAMCLASS()
        robj.title = "FlatField("+(','.join(["%s%03d" % (self.PREFIX, row)
                                             for row in rows]))+")"
        try:
            robj.data = flatfield(self.objects[rows[0]].data,
                                  self.objects[rows[1]].data)
        except Exception as msg:
            import traceback
            traceback.print_exc()
            QMessageBox.critical(self.parent(), APP_NAME,
                                 _("Error:")+"\n%s" % str(msg))
            return
        self.add_object(robj)
        
    #------Image Processing
    def calibrate(self):
        class CalibrateParam(DataSet):
            a = FloatItem('a', default=1.)
            b = FloatItem('b', default=0.)
        param = CalibrateParam(_("Linear calibration"), "y = a.x + b")
        self.compute_11("LinearCal", lambda x, p: p.a*x+p.b, param,
                        suffix=lambda p: "z=%s*z+%s" % (p.a, p.b))
    
    def compute_threshold(self):
        class ThresholdParam(DataSet):
            value = FloatItem(_("Threshold"))
        self.compute_11("Threshold", lambda x, p: np.clip(x, p.value, x.max()),
                        ThresholdParam(_("Thresholding")),
                        suffix=lambda p: "min=%s lsb" % p.value)
                        
    def compute_clip(self):
        class ClipParam(DataSet):
            value = FloatItem(_("Clipping value"))
        self.compute_11("Clip", lambda x, p: np.clip(x, x.min(), p.value),
                        ClipParam(_("Clipping")),
                        suffix=lambda p: "max=%s lsb" % p.value)
                        
    def compute_wiener(self):
        import scipy.signal as sps
        self.compute_11("WienerFilter", sps.wiener)
    
    def compute_gaussian(self):
        class GaussianParam(DataSet):
            sigma = FloatItem("σ", default=1.)
        param = GaussianParam(_("Gaussian filter"))
        import scipy.ndimage as spi
        self.compute_11("GaussianFilter",
                        lambda x, p: spi.gaussian_filter(x, p.sigma), param,
                        suffix=lambda p: "σ=%.3f pixels" % p.sigma)
                         
    def compute_fft(self):
        self.compute_11("FFT", np.fft.fft2)
                         
    def compute_ifft(self):
        self.compute_11("iFFT", np.fft.ifft2)
                            
    #------I/O
    def new_image(self):
        """Create a new image"""
        imagenew = ImageParamNew(title=_("Create a new image"))
        rows = self._get_selected_rows()
        if rows:
            data = self.objects[rows[-1]].data
            imagenew.width = data.shape[1]
            imagenew.height = data.shape[0]
        imagenew.title = "%s %d" % (imagenew.title, self.number+1)
        if not imagenew.edit(parent=self.parent()):
            return
        self.number += 1
        image = ImageParam()
        image.title = imagenew.title
        shape = (imagenew.height, imagenew.width)
        dtype = imagenew.dtype
        if imagenew.type == 'zeros':
            image.data = np.zeros(shape, dtype=dtype)
        elif imagenew.type == 'empty':
            image.data = np.empty(shape, dtype=dtype)
        elif imagenew.type == 'rand':
            data = np.random.rand(*shape)
            from guiqwt import io
            image.data = io.scale_data_to_dtype(data, dtype)
        self.add_object(image)
    
    def open_image(self):
        """Open image file"""
        from guiqwt.qthelpers import exec_images_open_dialog
        for filename, data in exec_images_open_dialog(self, basedir='',
                                        app_name=APP_NAME, to_grayscale=True):
            os.chdir(osp.dirname(filename))
            image = ImageParam()
            image.title = filename
            image.data = data
            if osp.splitext(filename)[1].lower() == ".dcm":
                import dicom
                dcm = dicom.read_file(filename, stop_before_pixels=True)
                image.metadata = {}
                for attr_str in dir(dcm):
                    if attr_str != 'GroupLength':
                        image.metadata[attr_str] = getattr(dcm, attr_str)
            self.add_object(image)
            
    def save_image(self):
        """Save selected image"""
        rows = self._get_selected_rows()
        for row in rows:
            obj = self.objects[row]
            from guiqwt.qthelpers import exec_image_save_dialog
            filename = exec_image_save_dialog(obj.data, self, basedir='',
                                              app_name=APP_NAME)
            if filename:
                os.chdir(osp.dirname(filename))
        

class DockablePlotWidget(DockableWidget):
    LOCATION = Qt.RightDockWidgetArea
    def __init__(self, parent, plotwidgetclass, toolbar):
        super(DockablePlotWidget, self).__init__(parent)
        self.toolbar = toolbar
        layout = QVBoxLayout()
        self.plotwidget = plotwidgetclass()
        layout.addWidget(self.plotwidget)
        self.setLayout(layout)
        self.setup()
        
    def get_plot(self):
        return self.plotwidget.plot
        
    def setup(self):
        title = to_text_string(self.toolbar.windowTitle())
        self.plotwidget.add_toolbar(self.toolbar, title)
        if isinstance(self.plotwidget, ImageWidget):
            self.plotwidget.register_all_image_tools()
        else:
            self.plotwidget.register_all_curve_tools()
        
    #------DockableWidget API
    def visibility_changed(self, enable):
        """DockWidget visibility has changed"""
        DockableWidget.visibility_changed(self, enable)
        self.toolbar.setVisible(enable)
            

class DockableTabWidget(QTabWidget, DockableWidgetMixin):
    LOCATION = Qt.LeftDockWidgetArea
    def __init__(self, parent):
        QTabWidget.__init__(self, parent)
        DockableWidgetMixin.__init__(self, parent)


try:
    from spyderlib.widgets.internalshell import InternalShell
    class DockableConsole(InternalShell, DockableWidgetMixin):
        LOCATION = Qt.BottomDockWidgetArea
        def __init__(self, parent, namespace, message, commands=[]):
            InternalShell.__init__(self, parent=parent, namespace=namespace,
                                   message=message, commands=commands,
                                   multithreaded=True)
            DockableWidgetMixin.__init__(self, parent)
            self.setup()
            
        def setup(self):
            font = QFont("Courier new")
            font.setPointSize(10)
            self.set_font(font)
            self.set_codecompletion_auto(True)
            self.set_calltips(True)
            self.setup_calltips(size=600, font=font)
            self.setup_completion(size=(300, 180), font=font)
except ImportError:
    DockableConsole = None


class SiftProxy(object):
    def __init__(self, win):
        self.win = win
        self.s = self.win.signalft.objects
        self.i = self.win.imageft.objects
        

class MainWindow(QMainWindow):
    def __init__(self):
        QMainWindow.__init__(self)

        self.setWindowIcon(get_icon('sift.svg'))
        self.setWindowTitle(APP_NAME)
                
        # Welcome message in statusbar:
        status = self.statusBar()
        status.showMessage(_("Welcome to %s!") % APP_NAME, 5000)

        self.signal_toolbar = self.addToolBar(_("Signal Processing Toolbar"))
        self.image_toolbar = self.addToolBar(_("Image Processing Toolbar"))

        # Signals
        curveplot_toolbar = self.addToolBar(_("Curve Plotting Toolbar"))
        self.curvewidget = DockablePlotWidget(self, CurveWidget,
                                              curveplot_toolbar)
        curveplot = self.curvewidget.get_plot()
        curveplot.add_item(make.legend("TR"))
        self.signalft = SignalFT(self, plot=curveplot)
        self.signalft.setup(self.signal_toolbar)
        
        # Images
        imagevis_toolbar = self.addToolBar(_("Image Visualization Toolbar"))
        self.imagewidget = DockablePlotWidget(self, ImageWidget,
                                              imagevis_toolbar)
        self.imageft = ImageFT(self, self.imagewidget.get_plot())
        self.imageft.setup(self.image_toolbar)

        for objectft in (self.signalft, self.imageft):
            self.connect(objectft, SIGNAL("status_message(QString)"),
                         status.showMessage)
        
        # Main window widgets
        self.tabwidget = DockableTabWidget(self)
        self.tabwidget.setMaximumWidth(500)
        self.tabwidget.addTab(self.signalft, get_icon('curve.png'),
                              _("Signals"))
        self.tabwidget.addTab(self.imageft, get_icon('image.png'),
                              _("Images"))
        self.add_dockwidget(self.tabwidget, _("Main panel"))
#        self.setCentralWidget(self.tabwidget)
        self.curve_dock = self.add_dockwidget(self.curvewidget,
                                              title=_("Curve plotting panel"))
        self.image_dock = self.add_dockwidget(self.imagewidget,
                                          title=_("Image visualization panel"))
        self.tabifyDockWidget(self.curve_dock, self.image_dock)
        self.connect(self.tabwidget, SIGNAL('currentChanged(int)'),
                     self.tab_index_changed)
        self.connect(self.signalft, SIGNAL('object_added()'),
                     lambda: self.tabwidget.setCurrentIndex(0))
        self.connect(self.imageft, SIGNAL('object_added()'),
                     lambda: self.tabwidget.setCurrentIndex(1))
        
        # File menu
        self.quit_action = create_action(self, _("Quit"), shortcut="Ctrl+Q",
                                    icon=get_std_icon("DialogCloseButton"),
                                    tip=_("Quit application"),
                                    triggered=self.close)
        self.file_menu = self.menuBar().addMenu(_("File"))
        self.connect(self.file_menu, SIGNAL("aboutToShow()"),
                     self.update_file_menu)
        
        # Edit menu
        self.edit_menu = self.menuBar().addMenu(_("&Edit"))
        self.connect(self.edit_menu, SIGNAL("aboutToShow()"),
                     self.update_edit_menu)
        
        # Operation menu
        self.operation_menu = self.menuBar().addMenu(_("Operations"))
        self.connect(self.operation_menu, SIGNAL("aboutToShow()"),
                     self.update_operation_menu)
        
        # Processing menu
        self.proc_menu = self.menuBar().addMenu(_("Processing"))
        self.connect(self.proc_menu, SIGNAL("aboutToShow()"),
                     self.update_proc_menu)
        
        # View menu
        self.view_menu = view_menu = self.createPopupMenu()
        view_menu.setTitle(_("&View"))
        self.menuBar().addMenu(view_menu)
        
        # Help menu
        help_menu = self.menuBar().addMenu("?")
        about_action = create_action(self, _("About..."),
                                     icon=get_std_icon('MessageBoxInformation'),
                                     triggered=self.about)
        add_actions(help_menu, (about_action,))
        
        # Eventually add an internal console (requires 'spyderlib')
        self.sift_proxy = SiftProxy(self)
        if DockableConsole is None:
            self.console = None
        else:
            import time, scipy.signal as sps, scipy.ndimage as spi
            ns = {'sift': self.sift_proxy,
                  'np': np, 'sps': sps, 'spi': spi,
                  'os': os, 'sys': sys, 'osp': osp, 'time': time}
            msg = "Example: sift.s[0] returns signal object #0\n"\
                  "Modules imported at startup: "\
                  "os, sys, os.path as osp, time, "\
                  "numpy as np, scipy.signal as sps, scipy.ndimage as spi"
            self.console = DockableConsole(self, namespace=ns, message=msg)
            self.add_dockwidget(self.console, _("Console"))
            self.connect(self.console.interpreter.widget_proxy,
                         SIGNAL("new_prompt(QString)"),
                         lambda txt: self.refresh_lists())
        
        # Update selection dependent actions
        self.update_actions()
        
        # Show main window and raise the signal plot panel
        self.show()
        self.curve_dock.raise_()
                
    #------GUI refresh/setup
    def add_dockwidget(self, child, title):
        """Add QDockWidget and toggleViewAction"""
        dockwidget, location = child.create_dockwidget(title)
        self.addDockWidget(location, dockwidget)
        return dockwidget
        
    def refresh_lists(self):
        self.signalft.refresh_list()
        self.imageft.refresh_list()
        
    def update_actions(self):
        self.signalft.selection_changed()
        self.imageft.selection_changed()
        is_signal = self.tabwidget.currentWidget() is self.signalft
        self.signal_toolbar.setVisible(is_signal)
        self.image_toolbar.setVisible(not is_signal)
        
    def tab_index_changed(self, index):
        dock = (self.curve_dock, self.image_dock)[index]
        dock.raise_()
        self.update_actions()

    def update_file_menu(self):        
        self.file_menu.clear()
        objectft = self.tabwidget.currentWidget()
        actions = objectft.file_actions+[None, self.quit_action]
        add_actions(self.file_menu, actions)

    def update_edit_menu(self):        
        self.edit_menu.clear()
        objectft = self.tabwidget.currentWidget()
        add_actions(self.edit_menu, objectft.edit_actions)
        
    def update_operation_menu(self):
        self.operation_menu.clear()
        objectft = self.tabwidget.currentWidget()
        add_actions(self.operation_menu, objectft.operation_actions)
        
    def update_proc_menu(self):
        self.proc_menu.clear()
        objectft = self.tabwidget.currentWidget()
        add_actions(self.proc_menu, objectft.processing_actions)
                    
    #------?
    def about(self):
        QMessageBox.about( self, _("About ")+APP_NAME,
              """<b>%s</b> v%s<br>%s<p>%s Pierre Raybaut
              <br>Copyright &copy; 2010 CEA
              <p>Python %s, Qt %s, PyQt %s %s %s""" % \
              (APP_NAME, VERSION, APP_DESC, _("Developped by"),
               platform.python_version(),
               QT_VERSION_STR, PYQT_VERSION_STR, _("on"), platform.system()) )
               
    def closeEvent(self, event):
        if self.console is not None:
            self.console.exit_interpreter()
        event.accept()


def run():
    from guidata import qapplication
    app = qapplication()
    window = MainWindow()
    window.show()
    app.exec_()


if __name__ == '__main__':
    run()