This file is indexed.

/usr/share/pyshared/guiqwt/io.py is in python-guiqwt 2.3.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
# -*- coding: utf-8 -*-
#
# Copyright © 2009-2012 CEA
# Pierre Raybaut
# Licensed under the terms of the CECILL License
# (see guiqwt/__init__.py for details)

# pylint: disable=C0103

"""
guiqwt.io
---------

The `io` module provides input/output helper functions:
    * :py:func:`guiqwt.io.imread`: load an image (.png, .tiff, 
      .dicom, etc.) and return its data as a NumPy array
    * :py:func:`guiqwt.io.imwrite`: save an array to an image file
    * :py:func:`guiqwt.io.load_items`: load plot items from HDF5
    * :py:func:`guiqwt.io.save_items`: save plot items to HDF5

Reference
~~~~~~~~~

.. autofunction:: imread
.. autofunction:: imwrite
.. autofunction:: load_items
.. autofunction:: save_items
"""

from __future__ import print_function

import sys
import re
import os.path as osp
import numpy as np

from guidata.py3compat import is_text_string, to_text_string

# Local imports
from guiqwt.config import _

    
def scale_data_to_dtype(data, dtype):
    """Scale array `data` to fit datatype `dtype` dynamic range
    
    WARNING: modifies data in place"""
    info = np.iinfo(dtype)
    dmin = data.min()
    dmax = data.max()
    data -= dmin
    data *= float(info.max-info.min)/(dmax-dmin)
    data += float(info.min)
    return np.array(data, dtype)
        
def eliminate_outliers(data, percent=2., bins=256):
    """Eliminate data histogram outliers"""
    hist, bin_edges = np.histogram(data, bins)
    from guiqwt.histogram import hist_range_threshold
    vmin, vmax = hist_range_threshold(hist, bin_edges, percent)
    return data.clip(vmin, vmax)


#===============================================================================
# I/O File type definitions
#===============================================================================
class FileType(object):
    """Filetype object:
        * `name` : description of filetype,
        * `read_func`, `write_func` : I/O callbacks,
        * `extensions`: filename extensions (with a dot!) or filenames,
        (list, tuple or space-separated string)
        * `data_types`: supported data types"""        
    def __init__(self, name, extensions, read_func=None, write_func=None,
                 data_types=None, requires_template=False):
        self.name = name
        if is_text_string(extensions):
            extensions = extensions.split()
        self.extensions = [osp.splitext(' '+ext)[1] for ext in extensions]
        self.read_func = read_func
        self.write_func = write_func
        self.data_types = data_types
        self.requires_template = requires_template
    
    def matches(self, action, dtype, template):
        """Return True if file type matches passed data type and template
        (or if dtype is None)"""
        assert action in ('load', 'save')
        matches = dtype is None or self.data_types is None \
                  or dtype in self.data_types
        if action == 'save' and self.requires_template:
            matches = matches and template is not None
        return matches
    
    @property
    def wcards(self):
        return "*"+(" *".join(self.extensions))
    
    def filters(self, action, dtype, template):
        assert action in ('load', 'save')
        if self.matches(action, dtype, template):
            return '\n%s (%s)' % (self.name, self.wcards)
        else:
            return ''

class ImageIOHandler(object):
    """I/O handler: regroup all FileType objects"""
    def __init__(self):
        self.filetypes = []

    def allfilters(self, action, dtype, template):
        wcards = ' '.join([ftype.wcards for ftype in self.filetypes
                           if ftype.matches(action, dtype, template)])
        return '%s (%s)' % (_("All supported files"), wcards)
    
    def get_filters(self, action, dtype=None, template=None):
        """Return file type filters for `action` (string: 'save' or 'load'),
        `dtype` data type (None: all data types), and `template` (True if save 
        function requires a template (e.g. DICOM files), False otherwise)"""
        filters = self.allfilters(action, dtype, template)
        for ftype in self.filetypes:
            filters += ftype.filters(action, dtype, template)
        return filters
    
    def add(self, name, extensions, read_func=None, write_func=None,
            import_func=None, data_types=None, requires_template=None):
        if import_func is not None:
            try:
                import_func()
            except ImportError:
                return
        assert read_func is not None or write_func is not None
        ftype = FileType(name, extensions, read_func=read_func,
                         write_func=write_func, data_types=data_types,
                         requires_template=requires_template)
        self.filetypes.append(ftype)
    
    def _get_filetype(self, ext):
        """Return FileType object associated to file extension `ext`"""
        for ftype in self.filetypes:
            if ext.lower() in ftype.extensions:
                return ftype
        else:
            raise RuntimeError("Unsupported file type: '%s'" % ext)
    
    def get_readfunc(self, ext):
        """Return read function associated to file extension `ext`"""
        ftype = self._get_filetype(ext)
        if ftype.read_func is None:
            raise RuntimeError("Unsupported file type (read): '%s'" % ext)
        else:
            return ftype.read_func
    
    def get_writefunc(self, ext):
        """Return read function associated to file extension `ext`"""
        ftype = self._get_filetype(ext)
        if ftype.write_func is None:
            raise RuntimeError("Unsupported file type (write): '%s'" % ext)
        else:
            return ftype.write_func

iohandler = ImageIOHandler()


#==============================================================================
# PIL-based Private I/O functions
#==============================================================================
if sys.byteorder == 'little':
    _ENDIAN = '<'
else:
    _ENDIAN = '>'

DTYPES = {
          "1": ('|b1', None),
          "L": ('|u1', None),
          "I": ('%si4' % _ENDIAN, None),
          "F": ('%sf4' % _ENDIAN, None),
          "I;16": ('%su2' % _ENDIAN, None),
          "I;16B": ('%su2' % _ENDIAN, None),
          "I;16S": ('%si2' % _ENDIAN, None),
          "P": ('|u1', None),
          "RGB": ('|u1', 3),
          "RGBX": ('|u1', 4),
          "RGBA": ('|u1', 4),
          "CMYK": ('|u1', 4),
          "YCbCr": ('|u1', 4),
          }

def _imread_pil(filename, to_grayscale=False):
    """Open image with PIL and return a NumPy array"""
    import PIL.Image
    import PIL.TiffImagePlugin # py2exe
    PIL.TiffImagePlugin.OPEN_INFO[(PIL.TiffImagePlugin.II,
                                   0, 1, 1, (16,), ())] = ("I;16", "I;16")
    img = PIL.Image.open(filename)
    if img.mode in ("CMYK", "YCbCr"):
        # Converting to RGB
        img = img.convert("RGB")
    if to_grayscale and img.mode in ("RGB", "RGBA", "RGBX"):
        # Converting to grayscale
        img = img.convert("L")
    elif img.mode == "P":
        img = img.convert("RGB")
    elif "A" in img.mode:
        img = img.convert("RGBA")
    try:
        dtype, extra = DTYPES[img.mode]
    except KeyError:
        raise RuntimeError("%s mode is not supported" % img.mode)
    shape = (img.size[1], img.size[0])
    if extra is not None:
        shape += (extra,)
    try:
        return np.array(img, dtype=np.dtype(dtype)).reshape(shape)
    except SystemError:
        return np.array(img.getdata(), dtype=np.dtype(dtype)).reshape(shape)

def _imwrite_pil(filename, arr):
    """Write `arr` NumPy array to `filename` using PIL"""
    import PIL.Image
    import PIL.TiffImagePlugin # py2exe
    for mode, (dtype_str, _extra) in list(DTYPES.items()):
        if dtype_str == arr.dtype.str:
            break
    else:
        raise RuntimeError("Cannot determine PIL data type")
    img = PIL.Image.fromarray(arr, mode)
    img.save(filename)


#==============================================================================
# DICOM Private I/O functions
#==============================================================================
def _import_dcm():
    """DICOM Import function (checking for required libraries):
    DICOM support requires library `pydicom`"""
    import logging
    logger = logging.getLogger("pydicom")
    logger.setLevel(logging.CRITICAL)
    import dicom  # analysis:ignore
    logger.setLevel(logging.WARNING)

def _imread_dcm(filename):
    """Open DICOM image with pydicom and return a NumPy array"""
    import dicom
    dcm = dicom.ReadFile(filename)
    # **********************************************************************
    # The following is necessary until pydicom numpy support is improved:
    # (after that, a simple: 'arr = dcm.PixelArray' will work the same)
    format_str = '%sint%s' % (('u', '')[dcm.PixelRepresentation],
                              dcm.BitsAllocated)
    try:
        dtype = np.dtype(format_str)
    except TypeError:
        raise TypeError("Data type not understood by NumPy: "
                        "PixelRepresentation=%d, BitsAllocated=%d" % (
                        dcm.PixelRepresentation, dcm.BitsAllocated))
    arr = np.fromstring(dcm.PixelData, dtype)
    try:
        # pydicom 0.9.3:
        dcm_is_little_endian = dcm.isLittleEndian
    except AttributeError:
        # pydicom 0.9.4:
        dcm_is_little_endian = dcm.is_little_endian
    if dcm_is_little_endian != (sys.byteorder == 'little'):
        arr.byteswap(True)
    if hasattr(dcm, 'NumberofFrames') and dcm.NumberofFrames > 1:
        if dcm.SamplesperPixel > 1:
            arr = arr.reshape(dcm.SamplesperPixel, dcm.NumberofFrames,
                              dcm.Rows, dcm.Columns)
        else:
            arr = arr.reshape(dcm.NumberofFrames, dcm.Rows, dcm.Columns)
    else:
        if dcm.SamplesperPixel > 1:
            if dcm.BitsAllocated == 8:
                arr = arr.reshape(dcm.SamplesperPixel, dcm.Rows, dcm.Columns)
            else:
                raise NotImplementedError("This code only handles "
                            "SamplesPerPixel > 1 if Bits Allocated = 8")
        else:
            arr = arr.reshape(dcm.Rows, dcm.Columns)
    # **********************************************************************
    return arr

def _imwrite_dcm(filename, arr, template=None):
    """Save a numpy array `arr` into a DICOM image file `filename`
    based on DICOM structure `template`"""
    # Note: due to IOHandler formalism, `template` has to be a keyword argument
    assert template is not None,\
           "The `template` keyword argument is required to save DICOM files\n"\
           "(that is the template DICOM structure object)"
    infos = np.iinfo(arr.dtype)
    template.BitsAllocated = infos.bits
    template.BitsStored = infos.bits
    template.HighBit = infos.bits-1
    template.PixelRepresentation = ('u', 'i').index(infos.kind)
    data_vr = ('US', 'SS')[template.PixelRepresentation]
    template.Rows = arr.shape[0]
    template.Columns = arr.shape[1]
    template.SmallestImagePixelValue = int(arr.min())
    template[0x00280106].VR = data_vr
    template.LargestImagePixelValue = int(arr.max())
    template[0x00280107].VR = data_vr
    if not template.PhotometricInterpretation.startswith('MONOCHROME'):
        template.PhotometricInterpretation = 'MONOCHROME1'
    template.PixelData = arr.tostring()
    template[0x7fe00010].VR = 'OB'
    template.save_as(filename)


#==============================================================================
# Text files Private I/O functions
#==============================================================================
def _imread_txt(filename):
    """Open text file image and return a NumPy array"""
    for delimiter in ('\t', ',', ' ', ';'):
        try:
            return np.loadtxt(filename, delimiter=delimiter)
        except ValueError:
            continue
    else:
        raise

def _imwrite_txt(filename, arr):
    """Write `arr` NumPy array to text file `filename`"""
    if arr.dtype in (np.int8, np.uint8, np.int16, np.uint16,
                     np.int32, np.uint32):
        fmt = '%d'
    else:
        fmt = '%.18e'
    ext = osp.splitext(filename)[1]
    if ext.lower() in (".txt", ".asc", ""):
        np.savetxt(filename, arr, fmt=fmt)
    elif ext.lower() == ".csv":
        np.savetxt(filename, arr, fmt=fmt, delimiter=',')


#==============================================================================
# Registering I/O functions
#==============================================================================
iohandler.add(_("PNG files"), '*.png',
              read_func=_imread_pil, write_func=_imwrite_pil,
              data_types=(np.uint8, np.uint16))
iohandler.add(_("TIFF files"), '*.tif *.tiff',
              read_func=_imread_pil, write_func=_imwrite_pil)
iohandler.add(_("8-bit images"), '*.jpg *.gif',
              read_func=_imread_pil, write_func=_imwrite_pil,
              data_types=(np.uint8,))
iohandler.add(_("NumPy arrays"), '*.npy',
              read_func=np.load, write_func=np.save)
iohandler.add(_("Text files"), '*.txt *.csv *.asc',
              read_func=_imread_txt, write_func=_imwrite_txt)
iohandler.add(_("DICOM files"), '*.dcm', read_func=_imread_dcm,
              write_func=_imwrite_dcm, import_func=_import_dcm,
              data_types=(np.int8, np.uint8, np.int16, np.uint16),
              requires_template=True)


#==============================================================================
# Generic image read/write functions
#==============================================================================
def imread(fname, ext=None, to_grayscale=False):
    """Return a NumPy array from an image filename `fname`.
    
    If `to_grayscale` is True, convert RGB images to grayscale
    The `ext` (optional) argument is a string that specifies the file extension
    which defines the input format: when not specified, the input format is 
    guessed from filename."""
    if not is_text_string(fname):
        fname = to_text_string(fname) # in case filename is a QString instance
    if ext is None:
        _base, ext = osp.splitext(fname)
    arr = iohandler.get_readfunc(ext)(fname)
    if to_grayscale and arr.ndim == 3:
        # Converting to grayscale
        return arr[..., :4].mean(axis=2)
    else:
        return arr

def imwrite(fname, arr, ext=None, dtype=None, max_range=None, **kwargs):
    """Save a NumPy array to an image filename `fname`.
    
    If `to_grayscale` is True, convert RGB images to grayscale
    The `ext` (optional) argument is a string that specifies the file extension
    which defines the input format: when not specified, the input format is 
    guessed from filename.
    If `max_range` is True, array data is scaled to fit the `dtype` (or data 
    type itself if `dtype` is None) dynamic range
    Warning: option `max_range` changes data in place"""
    if not is_text_string(fname):
        fname = to_text_string(fname) # in case filename is a QString instance
    if ext is None:
        _base, ext = osp.splitext(fname)
    if max_range:
        arr = scale_data_to_dtype(arr, arr.dtype if dtype is None else dtype)
    iohandler.get_writefunc(ext)(fname, arr, **kwargs)


#==============================================================================
# Deprecated functions
#==============================================================================
def imagefile_to_array(filename, to_grayscale=False):
    """
    Return a NumPy array from an image file `filename`
    If `to_grayscale` is True, convert RGB images to grayscale
    """
    print("io.imagefile_to_array is deprecated: use io.imread instead", file=sys.stderr)
    return imread(filename, to_grayscale=to_grayscale)

def array_to_imagefile(arr, filename, mode=None, max_range=False):
    """
    Save a numpy array `arr` into an image file `filename`
    Warning: option 'max_range' changes data in place
    """
    print("io.array_to_imagefile is deprecated: use io.imwrite instead", file=sys.stderr)
    return imwrite(filename, arr, mode=mode, max_range=max_range)


#==============================================================================
# guiqwt plot items I/O
#==============================================================================

SERIALIZABLE_ITEMS = []
ITEM_MODULES = {}

def register_serializable_items(modname, classnames):
    """Register serializable item from module name and class name"""
    global SERIALIZABLE_ITEMS, ITEM_MODULES
    SERIALIZABLE_ITEMS += classnames
    ITEM_MODULES[modname] = ITEM_MODULES.setdefault(modname, []) + classnames

# Curves
register_serializable_items('guiqwt.curve',
       ['CurveItem', 'PolygonMapItem', 'ErrorBarCurveItem'])
# Images
register_serializable_items('guiqwt.image',
       ['RawImageItem', 'ImageItem', 'TrImageItem', 'XYImageItem',
        'RGBImageItem', 'MaskedImageItem'])
# Shapes
register_serializable_items('guiqwt.shapes',
       ['PolygonShape', 'PointShape', 'SegmentShape', 'RectangleShape',
        'ObliqueRectangleShape', 'EllipseShape', 'Axes'])
# Annotations
register_serializable_items('guiqwt.annotations',
       ['AnnotatedPoint', 'AnnotatedSegment', 'AnnotatedRectangle',
        'AnnotatedObliqueRectangle', 'AnnotatedEllipse', 'AnnotatedCircle'])
# Labels
register_serializable_items('guiqwt.label',
       ['LabelItem', 'LegendBoxItem', 'SelectedLegendBoxItem'])

def item_class_from_name(name):
    """Return plot item class from class name"""
    global SERIALIZABLE_ITEMS, ITEM_MODULES
    assert name in SERIALIZABLE_ITEMS, "Unknown class %r" % name
    for modname, names in list(ITEM_MODULES.items()):
        if name in names:
            return getattr(__import__(modname, fromlist=[name]), name)

def item_name_from_object(obj):
    """Return plot item class name from instance"""
    return obj.__class__.__name__

def save_item(writer, group_name, item):
    """Save plot item to HDF5 group"""
    with writer.group(group_name):
        if item is None:
            writer.write_none()
        else:
            item.serialize(writer)
            with writer.group('item_class_name'):
                writer.write_str(item_name_from_object(item))

def load_item(reader, group_name):
    """Load plot item from HDF5 group"""
    with reader.group(group_name):
        with reader.group('item_class_name'):
            try:
                klass_name = reader.read_str()
            except ValueError:
                # None was saved instead of a real item
                return
        klass = item_class_from_name(klass_name)
        item = klass()
        item.deserialize(reader)
    return item

def save_items(writer, items):
    """Save items to HDF5 file:
        * writer: :py:class:`guidata.hdf5io.HDF5Writer` object
        * items: serializable plot items"""
    counts = {}
    names = []
    def _get_name(item):
        basename = item_name_from_object(item)
        count = counts[basename] = counts.setdefault(basename, 0) + 1
        name = '%s_%03d' % (basename, count)
        names.append(name)
        return name
    for item in items:
        with writer.group(_get_name(item)):
            item.serialize(writer)
    with writer.group('plot_items'):
        writer.write_sequence(names)

def load_items(reader):
    """Load items from HDF5 file:
        * reader: :py:class:`guidata.hdf5io.HDF5Reader` object"""
    with reader.group('plot_items'):
        names = reader.read_sequence()
    items = []
    for name in names:
        klass_name = re.match(r'([A-Z]+[A-Za-z0-9\_]*)\_([0-9]*)',
                              name).groups()[0]
        klass = item_class_from_name(klass_name)
        item = klass()
        with reader.group(name):
            item.deserialize(reader)
        items.append(item)
    return items


if __name__ == '__main__':
    # Test if items can all be constructed from their Python module
    for name in SERIALIZABLE_ITEMS:
        print(name, '-->', item_class_from_name(name))