/usr/share/pyshared/guiqwt/io.py is in python-guiqwt 2.3.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 | # -*- coding: utf-8 -*-
#
# Copyright © 2009-2012 CEA
# Pierre Raybaut
# Licensed under the terms of the CECILL License
# (see guiqwt/__init__.py for details)
# pylint: disable=C0103
"""
guiqwt.io
---------
The `io` module provides input/output helper functions:
* :py:func:`guiqwt.io.imread`: load an image (.png, .tiff,
.dicom, etc.) and return its data as a NumPy array
* :py:func:`guiqwt.io.imwrite`: save an array to an image file
* :py:func:`guiqwt.io.load_items`: load plot items from HDF5
* :py:func:`guiqwt.io.save_items`: save plot items to HDF5
Reference
~~~~~~~~~
.. autofunction:: imread
.. autofunction:: imwrite
.. autofunction:: load_items
.. autofunction:: save_items
"""
from __future__ import print_function
import sys
import re
import os.path as osp
import numpy as np
from guidata.py3compat import is_text_string, to_text_string
# Local imports
from guiqwt.config import _
def scale_data_to_dtype(data, dtype):
"""Scale array `data` to fit datatype `dtype` dynamic range
WARNING: modifies data in place"""
info = np.iinfo(dtype)
dmin = data.min()
dmax = data.max()
data -= dmin
data *= float(info.max-info.min)/(dmax-dmin)
data += float(info.min)
return np.array(data, dtype)
def eliminate_outliers(data, percent=2., bins=256):
"""Eliminate data histogram outliers"""
hist, bin_edges = np.histogram(data, bins)
from guiqwt.histogram import hist_range_threshold
vmin, vmax = hist_range_threshold(hist, bin_edges, percent)
return data.clip(vmin, vmax)
#===============================================================================
# I/O File type definitions
#===============================================================================
class FileType(object):
"""Filetype object:
* `name` : description of filetype,
* `read_func`, `write_func` : I/O callbacks,
* `extensions`: filename extensions (with a dot!) or filenames,
(list, tuple or space-separated string)
* `data_types`: supported data types"""
def __init__(self, name, extensions, read_func=None, write_func=None,
data_types=None, requires_template=False):
self.name = name
if is_text_string(extensions):
extensions = extensions.split()
self.extensions = [osp.splitext(' '+ext)[1] for ext in extensions]
self.read_func = read_func
self.write_func = write_func
self.data_types = data_types
self.requires_template = requires_template
def matches(self, action, dtype, template):
"""Return True if file type matches passed data type and template
(or if dtype is None)"""
assert action in ('load', 'save')
matches = dtype is None or self.data_types is None \
or dtype in self.data_types
if action == 'save' and self.requires_template:
matches = matches and template is not None
return matches
@property
def wcards(self):
return "*"+(" *".join(self.extensions))
def filters(self, action, dtype, template):
assert action in ('load', 'save')
if self.matches(action, dtype, template):
return '\n%s (%s)' % (self.name, self.wcards)
else:
return ''
class ImageIOHandler(object):
"""I/O handler: regroup all FileType objects"""
def __init__(self):
self.filetypes = []
def allfilters(self, action, dtype, template):
wcards = ' '.join([ftype.wcards for ftype in self.filetypes
if ftype.matches(action, dtype, template)])
return '%s (%s)' % (_("All supported files"), wcards)
def get_filters(self, action, dtype=None, template=None):
"""Return file type filters for `action` (string: 'save' or 'load'),
`dtype` data type (None: all data types), and `template` (True if save
function requires a template (e.g. DICOM files), False otherwise)"""
filters = self.allfilters(action, dtype, template)
for ftype in self.filetypes:
filters += ftype.filters(action, dtype, template)
return filters
def add(self, name, extensions, read_func=None, write_func=None,
import_func=None, data_types=None, requires_template=None):
if import_func is not None:
try:
import_func()
except ImportError:
return
assert read_func is not None or write_func is not None
ftype = FileType(name, extensions, read_func=read_func,
write_func=write_func, data_types=data_types,
requires_template=requires_template)
self.filetypes.append(ftype)
def _get_filetype(self, ext):
"""Return FileType object associated to file extension `ext`"""
for ftype in self.filetypes:
if ext.lower() in ftype.extensions:
return ftype
else:
raise RuntimeError("Unsupported file type: '%s'" % ext)
def get_readfunc(self, ext):
"""Return read function associated to file extension `ext`"""
ftype = self._get_filetype(ext)
if ftype.read_func is None:
raise RuntimeError("Unsupported file type (read): '%s'" % ext)
else:
return ftype.read_func
def get_writefunc(self, ext):
"""Return read function associated to file extension `ext`"""
ftype = self._get_filetype(ext)
if ftype.write_func is None:
raise RuntimeError("Unsupported file type (write): '%s'" % ext)
else:
return ftype.write_func
iohandler = ImageIOHandler()
#==============================================================================
# PIL-based Private I/O functions
#==============================================================================
if sys.byteorder == 'little':
_ENDIAN = '<'
else:
_ENDIAN = '>'
DTYPES = {
"1": ('|b1', None),
"L": ('|u1', None),
"I": ('%si4' % _ENDIAN, None),
"F": ('%sf4' % _ENDIAN, None),
"I;16": ('%su2' % _ENDIAN, None),
"I;16B": ('%su2' % _ENDIAN, None),
"I;16S": ('%si2' % _ENDIAN, None),
"P": ('|u1', None),
"RGB": ('|u1', 3),
"RGBX": ('|u1', 4),
"RGBA": ('|u1', 4),
"CMYK": ('|u1', 4),
"YCbCr": ('|u1', 4),
}
def _imread_pil(filename, to_grayscale=False):
"""Open image with PIL and return a NumPy array"""
import PIL.Image
import PIL.TiffImagePlugin # py2exe
PIL.TiffImagePlugin.OPEN_INFO[(PIL.TiffImagePlugin.II,
0, 1, 1, (16,), ())] = ("I;16", "I;16")
img = PIL.Image.open(filename)
if img.mode in ("CMYK", "YCbCr"):
# Converting to RGB
img = img.convert("RGB")
if to_grayscale and img.mode in ("RGB", "RGBA", "RGBX"):
# Converting to grayscale
img = img.convert("L")
elif img.mode == "P":
img = img.convert("RGB")
elif "A" in img.mode:
img = img.convert("RGBA")
try:
dtype, extra = DTYPES[img.mode]
except KeyError:
raise RuntimeError("%s mode is not supported" % img.mode)
shape = (img.size[1], img.size[0])
if extra is not None:
shape += (extra,)
try:
return np.array(img, dtype=np.dtype(dtype)).reshape(shape)
except SystemError:
return np.array(img.getdata(), dtype=np.dtype(dtype)).reshape(shape)
def _imwrite_pil(filename, arr):
"""Write `arr` NumPy array to `filename` using PIL"""
import PIL.Image
import PIL.TiffImagePlugin # py2exe
for mode, (dtype_str, _extra) in list(DTYPES.items()):
if dtype_str == arr.dtype.str:
break
else:
raise RuntimeError("Cannot determine PIL data type")
img = PIL.Image.fromarray(arr, mode)
img.save(filename)
#==============================================================================
# DICOM Private I/O functions
#==============================================================================
def _import_dcm():
"""DICOM Import function (checking for required libraries):
DICOM support requires library `pydicom`"""
import logging
logger = logging.getLogger("pydicom")
logger.setLevel(logging.CRITICAL)
import dicom # analysis:ignore
logger.setLevel(logging.WARNING)
def _imread_dcm(filename):
"""Open DICOM image with pydicom and return a NumPy array"""
import dicom
dcm = dicom.ReadFile(filename)
# **********************************************************************
# The following is necessary until pydicom numpy support is improved:
# (after that, a simple: 'arr = dcm.PixelArray' will work the same)
format_str = '%sint%s' % (('u', '')[dcm.PixelRepresentation],
dcm.BitsAllocated)
try:
dtype = np.dtype(format_str)
except TypeError:
raise TypeError("Data type not understood by NumPy: "
"PixelRepresentation=%d, BitsAllocated=%d" % (
dcm.PixelRepresentation, dcm.BitsAllocated))
arr = np.fromstring(dcm.PixelData, dtype)
try:
# pydicom 0.9.3:
dcm_is_little_endian = dcm.isLittleEndian
except AttributeError:
# pydicom 0.9.4:
dcm_is_little_endian = dcm.is_little_endian
if dcm_is_little_endian != (sys.byteorder == 'little'):
arr.byteswap(True)
if hasattr(dcm, 'NumberofFrames') and dcm.NumberofFrames > 1:
if dcm.SamplesperPixel > 1:
arr = arr.reshape(dcm.SamplesperPixel, dcm.NumberofFrames,
dcm.Rows, dcm.Columns)
else:
arr = arr.reshape(dcm.NumberofFrames, dcm.Rows, dcm.Columns)
else:
if dcm.SamplesperPixel > 1:
if dcm.BitsAllocated == 8:
arr = arr.reshape(dcm.SamplesperPixel, dcm.Rows, dcm.Columns)
else:
raise NotImplementedError("This code only handles "
"SamplesPerPixel > 1 if Bits Allocated = 8")
else:
arr = arr.reshape(dcm.Rows, dcm.Columns)
# **********************************************************************
return arr
def _imwrite_dcm(filename, arr, template=None):
"""Save a numpy array `arr` into a DICOM image file `filename`
based on DICOM structure `template`"""
# Note: due to IOHandler formalism, `template` has to be a keyword argument
assert template is not None,\
"The `template` keyword argument is required to save DICOM files\n"\
"(that is the template DICOM structure object)"
infos = np.iinfo(arr.dtype)
template.BitsAllocated = infos.bits
template.BitsStored = infos.bits
template.HighBit = infos.bits-1
template.PixelRepresentation = ('u', 'i').index(infos.kind)
data_vr = ('US', 'SS')[template.PixelRepresentation]
template.Rows = arr.shape[0]
template.Columns = arr.shape[1]
template.SmallestImagePixelValue = int(arr.min())
template[0x00280106].VR = data_vr
template.LargestImagePixelValue = int(arr.max())
template[0x00280107].VR = data_vr
if not template.PhotometricInterpretation.startswith('MONOCHROME'):
template.PhotometricInterpretation = 'MONOCHROME1'
template.PixelData = arr.tostring()
template[0x7fe00010].VR = 'OB'
template.save_as(filename)
#==============================================================================
# Text files Private I/O functions
#==============================================================================
def _imread_txt(filename):
"""Open text file image and return a NumPy array"""
for delimiter in ('\t', ',', ' ', ';'):
try:
return np.loadtxt(filename, delimiter=delimiter)
except ValueError:
continue
else:
raise
def _imwrite_txt(filename, arr):
"""Write `arr` NumPy array to text file `filename`"""
if arr.dtype in (np.int8, np.uint8, np.int16, np.uint16,
np.int32, np.uint32):
fmt = '%d'
else:
fmt = '%.18e'
ext = osp.splitext(filename)[1]
if ext.lower() in (".txt", ".asc", ""):
np.savetxt(filename, arr, fmt=fmt)
elif ext.lower() == ".csv":
np.savetxt(filename, arr, fmt=fmt, delimiter=',')
#==============================================================================
# Registering I/O functions
#==============================================================================
iohandler.add(_("PNG files"), '*.png',
read_func=_imread_pil, write_func=_imwrite_pil,
data_types=(np.uint8, np.uint16))
iohandler.add(_("TIFF files"), '*.tif *.tiff',
read_func=_imread_pil, write_func=_imwrite_pil)
iohandler.add(_("8-bit images"), '*.jpg *.gif',
read_func=_imread_pil, write_func=_imwrite_pil,
data_types=(np.uint8,))
iohandler.add(_("NumPy arrays"), '*.npy',
read_func=np.load, write_func=np.save)
iohandler.add(_("Text files"), '*.txt *.csv *.asc',
read_func=_imread_txt, write_func=_imwrite_txt)
iohandler.add(_("DICOM files"), '*.dcm', read_func=_imread_dcm,
write_func=_imwrite_dcm, import_func=_import_dcm,
data_types=(np.int8, np.uint8, np.int16, np.uint16),
requires_template=True)
#==============================================================================
# Generic image read/write functions
#==============================================================================
def imread(fname, ext=None, to_grayscale=False):
"""Return a NumPy array from an image filename `fname`.
If `to_grayscale` is True, convert RGB images to grayscale
The `ext` (optional) argument is a string that specifies the file extension
which defines the input format: when not specified, the input format is
guessed from filename."""
if not is_text_string(fname):
fname = to_text_string(fname) # in case filename is a QString instance
if ext is None:
_base, ext = osp.splitext(fname)
arr = iohandler.get_readfunc(ext)(fname)
if to_grayscale and arr.ndim == 3:
# Converting to grayscale
return arr[..., :4].mean(axis=2)
else:
return arr
def imwrite(fname, arr, ext=None, dtype=None, max_range=None, **kwargs):
"""Save a NumPy array to an image filename `fname`.
If `to_grayscale` is True, convert RGB images to grayscale
The `ext` (optional) argument is a string that specifies the file extension
which defines the input format: when not specified, the input format is
guessed from filename.
If `max_range` is True, array data is scaled to fit the `dtype` (or data
type itself if `dtype` is None) dynamic range
Warning: option `max_range` changes data in place"""
if not is_text_string(fname):
fname = to_text_string(fname) # in case filename is a QString instance
if ext is None:
_base, ext = osp.splitext(fname)
if max_range:
arr = scale_data_to_dtype(arr, arr.dtype if dtype is None else dtype)
iohandler.get_writefunc(ext)(fname, arr, **kwargs)
#==============================================================================
# Deprecated functions
#==============================================================================
def imagefile_to_array(filename, to_grayscale=False):
"""
Return a NumPy array from an image file `filename`
If `to_grayscale` is True, convert RGB images to grayscale
"""
print("io.imagefile_to_array is deprecated: use io.imread instead", file=sys.stderr)
return imread(filename, to_grayscale=to_grayscale)
def array_to_imagefile(arr, filename, mode=None, max_range=False):
"""
Save a numpy array `arr` into an image file `filename`
Warning: option 'max_range' changes data in place
"""
print("io.array_to_imagefile is deprecated: use io.imwrite instead", file=sys.stderr)
return imwrite(filename, arr, mode=mode, max_range=max_range)
#==============================================================================
# guiqwt plot items I/O
#==============================================================================
SERIALIZABLE_ITEMS = []
ITEM_MODULES = {}
def register_serializable_items(modname, classnames):
"""Register serializable item from module name and class name"""
global SERIALIZABLE_ITEMS, ITEM_MODULES
SERIALIZABLE_ITEMS += classnames
ITEM_MODULES[modname] = ITEM_MODULES.setdefault(modname, []) + classnames
# Curves
register_serializable_items('guiqwt.curve',
['CurveItem', 'PolygonMapItem', 'ErrorBarCurveItem'])
# Images
register_serializable_items('guiqwt.image',
['RawImageItem', 'ImageItem', 'TrImageItem', 'XYImageItem',
'RGBImageItem', 'MaskedImageItem'])
# Shapes
register_serializable_items('guiqwt.shapes',
['PolygonShape', 'PointShape', 'SegmentShape', 'RectangleShape',
'ObliqueRectangleShape', 'EllipseShape', 'Axes'])
# Annotations
register_serializable_items('guiqwt.annotations',
['AnnotatedPoint', 'AnnotatedSegment', 'AnnotatedRectangle',
'AnnotatedObliqueRectangle', 'AnnotatedEllipse', 'AnnotatedCircle'])
# Labels
register_serializable_items('guiqwt.label',
['LabelItem', 'LegendBoxItem', 'SelectedLegendBoxItem'])
def item_class_from_name(name):
"""Return plot item class from class name"""
global SERIALIZABLE_ITEMS, ITEM_MODULES
assert name in SERIALIZABLE_ITEMS, "Unknown class %r" % name
for modname, names in list(ITEM_MODULES.items()):
if name in names:
return getattr(__import__(modname, fromlist=[name]), name)
def item_name_from_object(obj):
"""Return plot item class name from instance"""
return obj.__class__.__name__
def save_item(writer, group_name, item):
"""Save plot item to HDF5 group"""
with writer.group(group_name):
if item is None:
writer.write_none()
else:
item.serialize(writer)
with writer.group('item_class_name'):
writer.write_str(item_name_from_object(item))
def load_item(reader, group_name):
"""Load plot item from HDF5 group"""
with reader.group(group_name):
with reader.group('item_class_name'):
try:
klass_name = reader.read_str()
except ValueError:
# None was saved instead of a real item
return
klass = item_class_from_name(klass_name)
item = klass()
item.deserialize(reader)
return item
def save_items(writer, items):
"""Save items to HDF5 file:
* writer: :py:class:`guidata.hdf5io.HDF5Writer` object
* items: serializable plot items"""
counts = {}
names = []
def _get_name(item):
basename = item_name_from_object(item)
count = counts[basename] = counts.setdefault(basename, 0) + 1
name = '%s_%03d' % (basename, count)
names.append(name)
return name
for item in items:
with writer.group(_get_name(item)):
item.serialize(writer)
with writer.group('plot_items'):
writer.write_sequence(names)
def load_items(reader):
"""Load items from HDF5 file:
* reader: :py:class:`guidata.hdf5io.HDF5Reader` object"""
with reader.group('plot_items'):
names = reader.read_sequence()
items = []
for name in names:
klass_name = re.match(r'([A-Z]+[A-Za-z0-9\_]*)\_([0-9]*)',
name).groups()[0]
klass = item_class_from_name(klass_name)
item = klass()
with reader.group(name):
item.deserialize(reader)
items.append(item)
return items
if __name__ == '__main__':
# Test if items can all be constructed from their Python module
for name in SERIALIZABLE_ITEMS:
print(name, '-->', item_class_from_name(name))
|