This file is indexed.

/usr/share/pyshared/guiqwt/histogram.py is in python-guiqwt 2.3.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
# -*- coding: utf-8 -*-
#
# Copyright © 2009-2010 CEA
# Pierre Raybaut
# Licensed under the terms of the CECILL License
# (see guiqwt/__init__.py for details)

# pylint: disable=C0103

"""
guiqwt.histogram
----------------

The `histogram` module provides histogram related objects:
    * :py:class:`guiqwt.histogram.HistogramItem`: an histogram plot item
    * :py:class:`guiqwt.histogram.ContrastAdjustment`: the `contrast 
      adjustment panel`
    * :py:class:`guiqwt.histogram.LevelsHistogram`: a curve plotting widget 
      used by the `contrast adjustment panel` to compute, manipulate and 
      display the image levels histogram

``HistogramItem`` objects are plot items (derived from QwtPlotItem) that may 
be displayed on a 2D plotting widget like :py:class:`guiqwt.curve.CurvePlot` 
or :py:class:`guiqwt.image.ImagePlot`.

Example
~~~~~~~

Simple histogram plotting example:

.. literalinclude:: ../guiqwt/tests/histogram.py

Reference
~~~~~~~~~

.. autoclass:: HistogramItem
   :members:
   :inherited-members:
.. autoclass:: ContrastAdjustment
   :members:
   :inherited-members:
.. autoclass:: LevelsHistogram
   :members:
   :inherited-members:
"""

import weakref
import numpy as np
from guidata.qt.QtCore import Qt
from guidata.qt.QtGui import QHBoxLayout, QVBoxLayout, QToolBar

from guidata.dataset.datatypes import DataSet
from guidata.dataset.dataitems import FloatItem
from guidata.utils import assert_interfaces_valid, update_dataset
from guidata.configtools import get_icon, get_image_layout
from guidata.qthelpers import add_actions, create_action

# Local imports
from guiqwt.transitional import QwtPlotCurve
from guiqwt.config import CONF, _
from guiqwt.interfaces import (IBasePlotItem, IHistDataSource,
                               IVoiImageItemType, IPanel)
from guiqwt.panels import PanelWidget, ID_CONTRAST
from guiqwt.curve import CurveItem, CurvePlot
from guiqwt.image import ImagePlot
from guiqwt.styles import HistogramParam, CurveParam
from guiqwt.shapes import XRangeSelection
from guiqwt.tools import (SelectTool, BasePlotMenuTool, SelectPointTool,
                          AntiAliasingTool)
from guiqwt.signals import (SIG_RANGE_CHANGED, SIG_VOI_CHANGED,
                            SIG_ITEM_SELECTION_CHANGED, SIG_ITEM_REMOVED,
                            SIG_ACTIVE_ITEM_CHANGED)
from guiqwt.plot import PlotManager


class HistDataSource(object):
    """
    An objects that provides an Histogram data source interface
    to a simple numpy array of data
    """
    __implements__ = (IHistDataSource,)
    def __init__(self, data):
        self.data = data

    def get_histogram(self, nbins):
        """Returns the histogram computed for nbins bins"""
        return np.histogram(self.data, nbins)

assert_interfaces_valid(HistDataSource)


def hist_range_threshold(hist, bin_edges, percent):
    hist = np.concatenate((hist, [0]))
    threshold = .5*percent/100*hist.sum()
    i_bin_min = np.cumsum(hist).searchsorted(threshold)
    i_bin_max = -1-np.cumsum(np.flipud(hist)).searchsorted(threshold)
    return bin_edges[i_bin_min], bin_edges[i_bin_max]

def lut_range_threshold(item, bins, percent):
    hist, bin_edges = item.get_histogram(bins)
    return hist_range_threshold(hist, bin_edges, percent)


class HistogramItem(CurveItem):
    """A Qwt item representing histogram data"""
    __implements__ = (IBasePlotItem,)
    
    def __init__(self, curveparam=None, histparam=None):
        self.hist_count = None
        self.hist_bins = None
        self.bins = None
        self.old_bins = None
        self.source = None
        self.logscale = None
        self.old_logscale = None
        if curveparam is None:
            curveparam = CurveParam(_("Curve"), icon='curve.png')
            curveparam.curvestyle = "Steps"
        if histparam is None:
            self.histparam = HistogramParam(title=_("Histogram"),
                                            icon='histogram.png')
        else:
            self.histparam = histparam
        CurveItem.__init__(self, curveparam)
        self.setCurveAttribute(QwtPlotCurve.Inverted)
            
    def set_hist_source(self, src):
        """Set histogram source
        (source: object with method 'get_histogram',
         e.g. objects derived from guiqwt.image.ImageItem)"""
        self.source = weakref.ref(src)
        self.update_histogram()

    def get_hist_source(self):
        """Return histogram source
        (source: object with method 'get_histogram',
         e.g. objects derived from guiqwt.image.ImageItem)"""
        if self.source is not None:
            return self.source()
        
    def set_hist_data(self, data):
        """Set histogram data"""
        self.set_hist_source(HistDataSource(data))

    def set_logscale(self, state):
        """Sets whether we use a logarithm or linear scale
        for the histogram counts"""
        self.logscale = state
        self.update_histogram()
        
    def get_logscale(self):
        """Returns the status of the scale"""
        return self.logscale

    def set_bins(self, n_bins):
        self.bins = n_bins
        self.update_histogram()
        
    def get_bins(self):
        return self.bins
        
    def compute_histogram(self):
        return self.get_hist_source().get_histogram(self.bins)
        
    def update_histogram(self):
        if self.get_hist_source() is None:
            return
        hist, bin_edges = self.compute_histogram()
        hist = np.concatenate((hist, [0]))
        if self.logscale:
            hist = np.log(hist+1)

        self.set_data(bin_edges, hist)
        # Autoscale only if logscale/bins have changed
        if self.bins != self.old_bins or self.logscale != self.old_logscale:
            if self.plot():
                self.plot().do_autoscale()
        self.old_bins = self.bins
        self.old_logscale = self.logscale
        
        plot = self.plot()
        if plot is not None:
            plot.do_autoscale(replot=True)

    def update_params(self):
        self.histparam.update_hist(self)
        CurveItem.update_params(self)

    def get_item_parameters(self, itemparams):
        CurveItem.get_item_parameters(self, itemparams)
        itemparams.add("HistogramParam", self, self.histparam)
    
    def set_item_parameters(self, itemparams):
        update_dataset(self.histparam, itemparams.get("HistogramParam"),
                       visible_only=True)
        self.histparam.update_hist(self)
        CurveItem.set_item_parameters(self, itemparams)

assert_interfaces_valid(HistogramItem)


class LevelsHistogram(CurvePlot):
    """Image levels histogram widget"""
    def __init__(self, parent=None):
        super(LevelsHistogram, self).__init__(parent=parent, title="",
                                              section="histogram")
        self.antialiased = False

        # a dict of dict : plot -> selected items -> HistogramItem
        self._tracked_items = {}
        self.curveparam = CurveParam(_("Curve"), icon="curve.png")
        self.curveparam.read_config(CONF, "histogram", "curve")
        
        self.histparam = HistogramParam(_("Histogram"), icon="histogram.png")
        self.histparam.logscale = False
        self.histparam.n_bins = 256

        self.range = XRangeSelection(0, 1)
        self.range_mono_color = self.range.shapeparam.sel_line.color
        self.range_multi_color = CONF.get("histogram",
                                          "range/multi/color", "red")
        
        self.add_item(self.range, z=5)
        self.connect(self, SIG_RANGE_CHANGED, self.range_changed)
        self.set_active_item(self.range)

        self.setMinimumHeight(80)
        self.setAxisMaxMajor(self.Y_LEFT, 5)
        self.setAxisMaxMinor(self.Y_LEFT, 0)

        if parent is None:
            self.set_axis_title('bottom', 'Levels')

    def connect_plot(self, plot):
        if not isinstance(plot, ImagePlot):
            # Connecting only to image plot widgets (allow mixing image and 
            # curve widgets for the same plot manager -- e.g. in pyplot)
            return
        self.connect(self, SIG_VOI_CHANGED, plot.notify_colormap_changed)
        self.connect(plot, SIG_ITEM_SELECTION_CHANGED, self.selection_changed)
        self.connect(plot, SIG_ITEM_REMOVED, self.item_removed)
        self.connect(plot, SIG_ACTIVE_ITEM_CHANGED, self.active_item_changed)

    def tracked_items_gen(self):
        for plot, items in list(self._tracked_items.items()):
            for item in list(items.items()):
                yield item # tuple item,curve

    def __del_known_items(self, known_items, items):
        del_curves = []
        for item in list(known_items.keys()):
            if item not in items:
                curve = known_items.pop(item)
                del_curves.append(curve)
        self.del_items(del_curves)

    def selection_changed(self, plot):
        items = plot.get_selected_items(item_type=IVoiImageItemType)
        known_items = self._tracked_items.setdefault(plot, {})

        if items:
            self.__del_known_items(known_items, items)
            if len(items) == 1:
                # Removing any cached item for other plots
                for other_plot, _items in list(self._tracked_items.items()):
                    if other_plot is not plot:
                        if not other_plot.get_selected_items(
                                                item_type=IVoiImageItemType):
                            other_known_items = self._tracked_items[other_plot]
                            self.__del_known_items(other_known_items, [])
        else:
            # if all items are deselected we keep the last known
            # selection (for one plot only)
            for other_plot, _items in list(self._tracked_items.items()):
                if other_plot.get_selected_items(item_type=IVoiImageItemType):
                    self.__del_known_items(known_items, [])
                    break
                
        for item in items:
            if item not in known_items:
                curve = HistogramItem(self.curveparam, self.histparam)
                curve.set_hist_source(item)
                self.add_item(curve, z=0)
                known_items[item] = curve

        nb_selected = len(list(self.tracked_items_gen()))
        if not nb_selected:
            self.replot()
            return
        self.curveparam.shade = 1.0/nb_selected
        for item, curve in self.tracked_items_gen():
            self.curveparam.update_curve(curve)
            self.histparam.update_hist(curve)

        self.active_item_changed(plot)

        # Rescaling histogram plot axes for better visibility
        ymax = None
        for item in known_items:
            curve = known_items[item]
            _x, y = curve.get_data()
            ymax0 = y.mean()+3*y.std()
            if ymax is None or ymax0 > ymax:
                ymax = ymax0
        ymin, _ymax = self.get_axis_limits("left")
        if ymax is not None:
            self.set_axis_limits("left", ymin, ymax)
            self.replot()

    def item_removed(self, item):
        for plot, items in list(self._tracked_items.items()):
            if item in items:
                items.pop(item)
                break

    def active_item_changed(self, plot):
        items = plot.get_selected_items(item_type=IVoiImageItemType)
        if not items:
            #XXX: workaround
            return
            
        active = plot.get_last_active_item(IVoiImageItemType)
        if active:
            active_range = active.get_lut_range()
        else:
            active_range = None
        
        multiple_ranges = False
        for item, curve in self.tracked_items_gen():
            if active_range != item.get_lut_range():
                multiple_ranges = True
        if active_range is not None:
            _m, _M = active_range
            self.set_range_style(multiple_ranges)
            self.range.set_range(_m, _M, dosignal=False)
        self.replot()
    
    def set_range_style(self, multiple_ranges):
        if multiple_ranges:
            self.range.shapeparam.sel_line.color = self.range_multi_color
        else:
            self.range.shapeparam.sel_line.color = self.range_mono_color
        self.range.shapeparam.update_range(self.range)

    def set_range(self, _min, _max):
        if _min < _max:
            self.set_range_style(False)
            self.range.set_range(_min, _max)
            self.replot()
            return True
        else:
            # Range was not changed
            return False

    def range_changed(self, _rangesel, _min, _max):
        for item, curve in self.tracked_items_gen():
            item.set_lut_range([_min, _max])
        self.emit(SIG_VOI_CHANGED)
        
    def set_full_range(self):
        """Set range bounds to image min/max levels"""
        _min = _max = None
        for item, curve in self.tracked_items_gen():
            imin, imax = item.get_lut_range_full()
            if _min is None or _min>imin:
                _min = imin
            if _max is None or _max<imax:
                _max = imax
        if _min is not None:
            self.set_range(_min, _max)

    def apply_min_func(self, item, curve, min):
        _min, _max = item.get_lut_range()
        return min, _max

    def apply_max_func(self, item, curve, max):
        _min, _max = item.get_lut_range()
        return _min, max

    def reduce_range_func(self, item, curve, percent):
        return lut_range_threshold(item, curve.bins, percent)
        
    def apply_range_function(self, func, *args, **kwargs):
        item = None
        for item, curve in self.tracked_items_gen():
            _min, _max = func(item, curve, *args, **kwargs)
            item.set_lut_range([_min, _max])
        self.emit(SIG_VOI_CHANGED)
        if item is not None:
            self.active_item_changed(item.plot())
        
    def eliminate_outliers(self, percent):
        """
        Eliminate outliers:
        eliminate percent/2*N counts on each side of the histogram
        (where N is the total count number)
        """
        self.apply_range_function(self.reduce_range_func, percent)
        
    def set_min(self, _min):
        self.apply_range_function(self.apply_min_func, _min)
    
    def set_max(self, _max):
        self.apply_range_function(self.apply_max_func, _max)
        

class EliminateOutliersParam(DataSet):
    percent = FloatItem(_("Eliminate outliers")+" (%)",
                        default=2., min=0., max=100.-1e-6)


class ContrastAdjustment(PanelWidget):
    """Contrast adjustment tool"""
    __implements__ = (IPanel,)
    PANEL_ID = ID_CONTRAST
    PANEL_TITLE = _("Contrast adjustment tool")
    PANEL_ICON = "contrast.png"

    def __init__(self, parent=None):
        super(ContrastAdjustment, self).__init__(parent)
        
        self.local_manager = None # local manager for the histogram plot
        self.manager = None # manager for the associated image plot
        
        # Storing min/max markers for each active image
        self.min_markers = {}
        self.max_markers = {}
        
        # Select point tools
        self.min_select_tool = None
        self.max_select_tool = None
        
        style = "<span style=\'color: #444444\'><b>%s</b></span>"
        layout, _label = get_image_layout(self.PANEL_ICON,
                                          style % self.PANEL_TITLE,
                                          alignment=Qt.AlignCenter)
        layout.setAlignment(Qt.AlignCenter)
        vlayout = QVBoxLayout()
        vlayout.addLayout(layout)
        self.local_manager = PlotManager(self)
        self.histogram = LevelsHistogram(parent)
        vlayout.addWidget(self.histogram)
        self.local_manager.add_plot(self.histogram)
        hlayout = QHBoxLayout()
        self.setLayout(hlayout)
        hlayout.addLayout(vlayout)
        
        self.toolbar = toolbar = QToolBar(self)
        toolbar.setOrientation(Qt.Vertical)
#        toolbar.setToolButtonStyle(Qt.ToolButtonTextBesideIcon)
        hlayout.addWidget(toolbar)
        
        # Add standard plot-related tools to the local manager
        lman = self.local_manager
        lman.add_tool(SelectTool)
        lman.add_tool(BasePlotMenuTool, "item")
        lman.add_tool(BasePlotMenuTool, "axes")
        lman.add_tool(BasePlotMenuTool, "grid")
        lman.add_tool(AntiAliasingTool)
        lman.get_default_tool().activate()
        
        self.outliers_param = EliminateOutliersParam(self.PANEL_TITLE)
        
    def register_panel(self, manager):
        """Register panel to plot manager"""
        self.manager = manager
        default_toolbar = self.manager.get_default_toolbar()
        self.manager.add_toolbar(self.toolbar, "contrast")
        self.manager.set_default_toolbar(default_toolbar)
        self.setup_actions()
        for plot in manager.get_plots():
            self.histogram.connect_plot(plot)
                         
    def configure_panel(self):
        """Configure panel"""
        self.min_select_tool = self.manager.add_tool(SelectPointTool,
                                       title=_("Minimum level"),
                                       on_active_item=True, mode="create",
                                       tip=_("Select minimum level on image"),
                                       toolbar_id="contrast",
                                       end_callback=self.apply_min_selection)
        self.max_select_tool = self.manager.add_tool(SelectPointTool,
                                       title=_("Maximum level"),
                                       on_active_item=True, mode="create",
                                       tip=_("Select maximum level on image"),
                                       toolbar_id="contrast",
                                       end_callback=self.apply_max_selection)        

    def get_plot(self):
        return self.manager.get_active_plot()

    def closeEvent(self, event):
        self.hide()
        event.ignore()
        
    def setup_actions(self):
        fullrange_ac = create_action(self, _("Full range"),
                                     icon=get_icon("full_range.png"),
                                     triggered=self.histogram.set_full_range,
                                     tip=_("Scale the image's display range "
                                           "according to data range") )
        autorange_ac = create_action(self, _("Eliminate outliers"),
                                     icon=get_icon("eliminate_outliers.png"),
                                     triggered=self.eliminate_outliers,
                                     tip=_("Eliminate levels histogram "
                                           "outliers and scale the image's "
                                           "display range accordingly") )
        add_actions(self.toolbar, [fullrange_ac, autorange_ac])
    
    def eliminate_outliers(self):
        def apply(param):
            self.histogram.eliminate_outliers(param.percent)
        if self.outliers_param.edit(self, apply=apply):
            apply(self.outliers_param)

    def apply_min_selection(self, tool):
        item = self.get_plot().get_last_active_item(IVoiImageItemType)
        point = self.min_select_tool.get_coordinates()
        z = item.get_data(*point)
        self.histogram.set_min(z)

    def apply_max_selection(self, tool):
        item = self.get_plot().get_last_active_item(IVoiImageItemType)
        point = self.max_select_tool.get_coordinates()
        z = item.get_data(*point)
        self.histogram.set_max(z)
        
    def set_range(self, _min, _max):
        """Set contrast panel's histogram range"""
        self.histogram.set_range(_min, _max)
        # Update the levels histogram in case active item data has changed:
        self.histogram.selection_changed(self.get_plot())

assert_interfaces_valid(ContrastAdjustment)