This file is indexed.

/usr/share/pyshared/geographiclib/geodesic.py is in python-geographiclib 1.21-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
# geodesic.py
#
# This is a rather literal translation of the GeographicLib::Geodesic
# class to python.  See the documentation for the C++ class for more
# information at
#
#    http://geographiclib.sourceforge.net/html/annotated.html
#
# The algorithms are derived in
#
#    Charles F. F. Karney,
#    Geodesics on an ellipsoid of revolution, Feb. 2011,
#    http://arxiv.org/abs/1102.1215
#    errata: http://geographiclib.sourceforge.net/geod-errata.html
#
#    Charles F. F. Karney,
#    Algorithms for geodesics, Sept. 2011,
#    http://arxiv.org/abs/1109.4448
#
# Copyright (c) Charles Karney (2011, 2012) <charles@karney.com> and
# licensed under the MIT/X11 License.  For more information, see
# http://geographiclib.sourceforge.net/
#
# $Id: 95edebf1ac240458e1ba8a63577c589f330f849d $
######################################################################

import math
from geographiclib.geomath import Math
from geographiclib.constants import Constants
from geographiclib.geodesiccapability import GeodesicCapability

class Geodesic(object):
  """
  Solve geodesic problems.  The following illustrates its use

    import sys
    sys.path.append("/usr/local/lib/python/site-packages");
    from geographiclib.geodesic import Geodesic

    # The geodesic inverse problem
    Geodesic.WGS84.Inverse(-41.32, 174.81, 40.96, -5.50)

    # The geodesic direct problem
    Geodesic.WGS84.Direct(40.6, -73.8, 45, 10000e3)

    # How to obtain several points along a geodesic
    line = Geodesic.WGS84.Line(40.6, -73.8, 45)
    line.Position( 5000e3)
    line.Position(10000e3)

    # Computing the area of a geodesic polygon
    def p(lat,lon): return {'lat': lat, 'lon': lon}

    Geodesic.WGS84.Area([p(0, 0), p(0, 90), p(90, 0)])

  Documentation on these routines is available via

    help(Geodesic.__init__)
    help(Geodesic.Inverse)
    help(Geodesic.Direct)
    help(Geodesic.Line)
    help(line.Position)
    help(Geodesic.Area)
  """

  GEOD_ORD = 6
  nA1_ = GEOD_ORD
  nC1_ = GEOD_ORD
  nC1p_ = GEOD_ORD
  nA2_ = GEOD_ORD
  nC2_ = GEOD_ORD
  nA3_ = GEOD_ORD
  nA3x_ = nA3_
  nC3_ = GEOD_ORD
  nC3x_ = (nC3_ * (nC3_ - 1)) / 2
  nC4_ = GEOD_ORD
  nC4x_ = (nC4_ * (nC4_ + 1)) / 2
  maxit_ = 50

  tiny_ = math.sqrt(Math.minval)
  tol0_ = Math.epsilon
  tol1_ = 200 * tol0_
  tol2_ = math.sqrt(Math.epsilon)
  xthresh_ = 1000 * tol2_

  CAP_NONE = GeodesicCapability.CAP_NONE
  CAP_C1   = GeodesicCapability.CAP_C1
  CAP_C1p  = 1<<1
  CAP_C2   = 1<<2
  CAP_C3   = 1<<3
  CAP_C4   = 1<<4
  CAP_ALL  = 0x1F
  OUT_ALL  = 0x7F80
  NONE          = 0
  LATITUDE      = 1<<7  | CAP_NONE
  LONGITUDE     = 1<<8  | CAP_C3
  AZIMUTH       = 1<<9  | CAP_NONE
  DISTANCE      = 1<<10 | CAP_C1
  DISTANCE_IN   = 1<<11 | CAP_C1 | CAP_C1p
  REDUCEDLENGTH = 1<<12 | CAP_C1 | CAP_C2
  GEODESICSCALE = 1<<13 | CAP_C1 | CAP_C2
  AREA          = 1<<14 | CAP_C4
  ALL           = OUT_ALL| CAP_ALL

  def SinCosSeries(sinp, sinx, cosx, c, n):
    # Evaluate
    # y = sinp ? sum(c[i] * sin( 2*i    * x), i, 1, n) :
    #            sum(c[i] * cos((2*i+1) * x), i, 0, n-1) :
    # using Clenshaw summation.  N.B. c[0] is unused for sin series
    # Approx operation count = (n + 5) mult and (2 * n + 2) add
    k = (n + sinp)             # Point to one beyond last element
    ar = 2 * (cosx - sinx) * (cosx + sinx) # 2 * cos(2 * x)
    y1 = 0                                 # accumulators for sum
    if n & 1:
      k -= 1; y0 = c[k]
    else:
      y0 = 0
    # Now n is even
    n //= 2
    while n:                    # while n--:
      n -= 1
      # Unroll loop x 2, so accumulators return to their original role
      k -= 1; y1 = ar * y0 - y1 + c[k]
      k -= 1; y0 = ar * y1 - y0 + c[k]
    return ( 2 * sinx * cosx * y0 if sinp # sin(2 * x) * y0
             else cosx * (y0 - y1) )      # cos(x) * (y0 - y1)
  SinCosSeries = staticmethod(SinCosSeries)

  def AngNormalize(x):
    # Place angle in [-180, 180).  Assumes x is in [-540, 540).
    return (x - 360 if x >= 180 else
            (x + 360 if x < -180 else x))
  AngNormalize = staticmethod(AngNormalize)

  def AngRound(x):
    # The makes the smallest gap in x = 1/16 - nextafter(1/16, 0) = 1/2^57
    # for reals = 0.7 pm on the earth if x is an angle in degrees.  (This
    # is about 1000 times more resolution than we get with angles around 90
    # degrees.)  We use this to avoid having to deal with near singular
    # cases when x is non-zero but tiny (e.g., 1.0e-200).
    z = 0.0625                  # 1/16
    y = abs(x)
    # The compiler mustn't "simplify" z - (z - y) to y
    y = z - (z - y) if y < z else y
    return -y if x < 0 else y
  AngRound = staticmethod(AngRound)

  def SinCosNorm(sinx, cosx):
    r = math.hypot(sinx, cosx)
    return sinx/r, cosx/r
  SinCosNorm = staticmethod(SinCosNorm)

  def Astroid(x, y):
    # Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive root k.
    # This solution is adapted from Geocentric::Reverse.
    p = Math.sq(x)
    q = Math.sq(y)
    r = (p + q - 1) / 6
    if not(q == 0 and r <= 0):
      # Avoid possible division by zero when r = 0 by multiplying equations
      # for s and t by r^3 and r, resp.
      S = p * q / 4            # S = r^3 * s
      r2 = Math.sq(r)
      r3 = r * r2
      # The discrimant of the quadratic equation for T3.  This is zero on
      # the evolute curve p^(1/3)+q^(1/3) = 1
      disc = S * (S + 2 * r3)
      u = r
      if (disc >= 0):
        T3 = S + r3
        # Pick the sign on the sqrt to maximize abs(T3).  This minimizes loss
        # of precision due to cancellation.  The result is unchanged because
        # of the way the T is used in definition of u.
        T3 += -math.sqrt(disc) if T3 < 0 else math.sqrt(disc) # T3 = (r * t)^3
        # N.B. cbrt always returns the real root.  cbrt(-8) = -2.
        T = Math.cbrt(T3)       # T = r * t
        # T can be zero; but then r2 / T -> 0.
        u += T + (r2 / T if T != 0 else 0)
      else:
        # T is complex, but the way u is defined the result is real.
        ang = math.atan2(math.sqrt(-disc), -(S + r3))
        # There are three possible cube roots.  We choose the root which
        # avoids cancellation.  Note that disc < 0 implies that r < 0.
        u += 2 * r * math.cos(ang / 3)
      v = math.sqrt(Math.sq(u) + q) # guaranteed positive
      # Avoid loss of accuracy when u < 0.
      uv = q / (v - u) if u < 0 else u + v # u+v, guaranteed positive
      w = (uv - q) / (2 * v)               # positive?
      # Rearrange expression for k to avoid loss of accuracy due to
      # subtraction.  Division by 0 not possible because uv > 0, w >= 0.
      k = uv / (math.sqrt(uv + Math.sq(w)) + w) # guaranteed positive
    else:                                       # q == 0 && r <= 0
      # y = 0 with |x| <= 1.  Handle this case directly.
      # for y small, positive root is k = abs(y)/sqrt(1-x^2)
      k = 0
    return k
  Astroid = staticmethod(Astroid)

  def A1m1f(eps):
    eps2 = Math.sq(eps)
    t = eps2*(eps2*(eps2+4)+64)/256
    return (t + eps) / (1 - eps)
  A1m1f = staticmethod(A1m1f)

  def C1f(eps, c):
    eps2 = Math.sq(eps)
    d = eps
    c[1] = d*((6-eps2)*eps2-16)/32
    d *= eps
    c[2] = d*((64-9*eps2)*eps2-128)/2048
    d *= eps
    c[3] = d*(9*eps2-16)/768
    d *= eps
    c[4] = d*(3*eps2-5)/512
    d *= eps
    c[5] = -7*d/1280
    d *= eps
    c[6] = -7*d/2048
  C1f = staticmethod(C1f)

  def C1pf(eps, c):
    eps2 = Math.sq(eps)
    d = eps
    c[1] = d*(eps2*(205*eps2-432)+768)/1536
    d *= eps
    c[2] = d*(eps2*(4005*eps2-4736)+3840)/12288
    d *= eps
    c[3] = d*(116-225*eps2)/384
    d *= eps
    c[4] = d*(2695-7173*eps2)/7680
    d *= eps
    c[5] = 3467*d/7680
    d *= eps
    c[6] = 38081*d/61440
  C1pf = staticmethod(C1pf)

  def A2m1f(eps):
    eps2 = Math.sq(eps)
    t = eps2*(eps2*(25*eps2+36)+64)/256
    return t * (1 - eps) - eps
  A2m1f = staticmethod(A2m1f)

  def C2f(eps, c):
    eps2 = Math.sq(eps)
    d = eps
    c[1] = d*(eps2*(eps2+2)+16)/32
    d *= eps
    c[2] = d*(eps2*(35*eps2+64)+384)/2048
    d *= eps
    c[3] = d*(15*eps2+80)/768
    d *= eps
    c[4] = d*(7*eps2+35)/512
    d *= eps
    c[5] = 63*d/1280
    d *= eps
    c[6] = 77*d/2048
  C2f = staticmethod(C2f)

  def __init__(self, a, f):
    """
    Construct a Geodesic object for ellipsoid with major radius a and
    flattening f.
    """

    self._a = float(a)
    self._f = float(f) if f <= 1 else 1.0/f
    self._f1 = 1 - self._f
    self._e2 = self._f * (2 - self._f)
    self._ep2 = self._e2 / Math.sq(self._f1) # e2 / (1 - e2)
    self._n = self._f / ( 2 - self._f)
    self._b = self._a * self._f1
    # authalic radius squared
    self._c2 = (Math.sq(self._a) + Math.sq(self._b) *
                (1 if self._e2 == 0 else
                 (Math.atanh(math.sqrt(self._e2)) if self._e2 > 0 else
                  math.atan(math.sqrt(-self._e2))) /
                 math.sqrt(abs(self._e2))))/2
    # The sig12 threshold for "really short"
    self._etol2 = 10 * Geodesic.tol2_ / max(0.1, math.sqrt(abs(self._e2)))
    if not(Math.isfinite(self._a) and self._a > 0):
      raise ValueError("Major radius is not positive")
    if not(Math.isfinite(self._b) and self._b > 0):
      raise ValueError("Minor radius is not positive")
    self._A3x = range(Geodesic.nA3x_)
    self._C3x = range(Geodesic.nC3x_)
    self._C4x = range(Geodesic.nC4x_)
    self.A3coeff()
    self.C3coeff()
    self.C4coeff()

  def A3coeff(self):
    _n = self._n
    self._A3x[0] = 1
    self._A3x[1] = (_n-1)/2
    self._A3x[2] = (_n*(3*_n-1)-2)/8
    self._A3x[3] = ((-_n-3)*_n-1)/16
    self._A3x[4] = (-2*_n-3)/64
    self._A3x[5] = -3/128.0

  def C3coeff(self):
    _n = self._n
    self._C3x[0] = (1-_n)/4
    self._C3x[1] = (1-_n*_n)/8
    self._C3x[2] = ((3-_n)*_n+3)/64
    self._C3x[3] = (2*_n+5)/128
    self._C3x[4] = 3/128.0
    self._C3x[5] = ((_n-3)*_n+2)/32
    self._C3x[6] = ((-3*_n-2)*_n+3)/64
    self._C3x[7] = (_n+3)/128
    self._C3x[8] = 5/256.0
    self._C3x[9] = (_n*(5*_n-9)+5)/192
    self._C3x[10] = (9-10*_n)/384
    self._C3x[11] = 7/512.0
    self._C3x[12] = (7-14*_n)/512
    self._C3x[13] = 7/512.0
    self._C3x[14] = 21/2560.0

  def C4coeff(self):
    _ep2 = self._ep2
    self._C4x[0] = (_ep2*(_ep2*(_ep2*((832-640*_ep2)*_ep2-1144)+1716)-3003)+
                    30030)/45045
    self._C4x[1] = (_ep2*(_ep2*((832-640*_ep2)*_ep2-1144)+1716)-3003)/60060
    self._C4x[2] = (_ep2*((208-160*_ep2)*_ep2-286)+429)/18018
    self._C4x[3] = ((104-80*_ep2)*_ep2-143)/10296
    self._C4x[4] = (13-10*_ep2)/1430
    self._C4x[5] = -1/156.0
    self._C4x[6] = (_ep2*(_ep2*(_ep2*(640*_ep2-832)+1144)-1716)+3003)/540540
    self._C4x[7] = (_ep2*(_ep2*(160*_ep2-208)+286)-429)/108108
    self._C4x[8] = (_ep2*(80*_ep2-104)+143)/51480
    self._C4x[9] = (10*_ep2-13)/6435
    self._C4x[10] = 5/3276.0
    self._C4x[11] = (_ep2*((208-160*_ep2)*_ep2-286)+429)/900900
    self._C4x[12] = ((104-80*_ep2)*_ep2-143)/257400
    self._C4x[13] = (13-10*_ep2)/25025
    self._C4x[14] = -1/2184.0
    self._C4x[15] = (_ep2*(80*_ep2-104)+143)/2522520
    self._C4x[16] = (10*_ep2-13)/140140
    self._C4x[17] = 5/45864.0
    self._C4x[18] = (13-10*_ep2)/1621620
    self._C4x[19] = -1/58968.0
    self._C4x[20] = 1/792792.0

  def A3f(self, eps):
    # Evaluation sum(_A3c[k] * eps^k, k, 0, nA3x_-1) by Horner's method
    v = 0
    for i in range(Geodesic.nA3x_-1, -1, -1):
      v = eps * v + self._A3x[i]
    return v

  def C3f(self, eps, c):
    # Evaluation C3 coeffs by Horner's method
    # Elements c[1] thru c[nC3_ - 1] are set
    j = Geodesic.nC3x_; k = Geodesic.nC3_ - 1
    while k:
      t = 0
      for i in range(Geodesic.nC3_ - k):
        j -= 1
        t = eps * t + self._C3x[j]
      c[k] = t
      k -= 1

    mult = 1
    for k in range(1, Geodesic.nC3_):
      mult *= eps
      c[k] *= mult

  def C4f(self, k2, c):
    # Evaluation C4 coeffs by Horner's method
    # Elements c[0] thru c[nC4_ - 1] are set
    j = Geodesic.nC4x_; k = Geodesic.nC4_
    while k:
      t = 0
      for i in range(Geodesic.nC4_ - k + 1):
        j -= 1
        t = k2 * t + self._C4x[j]
      k -= 1
      c[k] = t

    mult = 1
    for k in range(1, Geodesic.nC4_):
      mult *= k2
      c[k] *= mult

  # return s12b, m12a, m0, M12, M21
  def Lengths(self, eps, sig12,
              ssig1, csig1, ssig2, csig2, cbet1, cbet2, scalep,
              # Scratch areas of the right size
              C1a, C2a):
    # Return m12a = (reduced length)/_a; also calculate s12b = distance/_b,
    # and m0 = coefficient of secular term in expression for reduced length.
    Geodesic.C1f(eps, C1a)
    Geodesic.C2f(eps, C2a)
    A1m1 = Geodesic.A1m1f(eps)
    AB1 = (1 + A1m1) * (
      Geodesic.SinCosSeries(True, ssig2, csig2, C1a, Geodesic.nC1_) -
      Geodesic.SinCosSeries(True, ssig1, csig1, C1a, Geodesic.nC1_))
    A2m1 = Geodesic.A2m1f(eps)
    AB2 = (1 + A2m1) * (
      Geodesic.SinCosSeries(True, ssig2, csig2, C2a, Geodesic.nC2_) -
      Geodesic.SinCosSeries(True, ssig1, csig1, C2a, Geodesic.nC2_))
    cbet1sq = Math.sq(cbet1)
    cbet2sq = Math.sq(cbet2)
    w1 = math.sqrt(1 - self._e2 * cbet1sq)
    w2 = math.sqrt(1 - self._e2 * cbet2sq)
    # Make sure it's OK to have repeated dummy arguments
    m0x = A1m1 - A2m1
    J12 = m0x * sig12 + (AB1 - AB2)
    m0 = m0x
    # Missing a factor of _a.
    # Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure accurate
    # cancellation in the case of coincident points.
    m12a = ((w2 * (csig1 * ssig2) - w1 * (ssig1 * csig2))
            - self._f1 * csig1 * csig2 * J12)
    # Missing a factor of _b
    s12b = (1 + A1m1) * sig12 + AB1
    if scalep:
      csig12 = csig1 * csig2 + ssig1 * ssig2
      J12 *= self._f1
      M12 = csig12 + (self._e2 * (cbet1sq - cbet2sq) * ssig2 / (w1 + w2)
                      - csig2 * J12) * ssig1 / w1
      M21 = csig12 - (self._e2 * (cbet1sq - cbet2sq) * ssig1 / (w1 + w2)
                        - csig1 * J12) * ssig2 / w2
    else:
      M12 = M21 = Math.nan
    return s12b, m12a, m0, M12, M21

  # return sig12, salp1, calp1, salp2, calp2
  def InverseStart(self, sbet1, cbet1, sbet2, cbet2, lam12,
                   # Scratch areas of the right size
                   C1a, C2a):
    # Return a starting point for Newton's method in salp1 and calp1 (function
    # value is -1).  If Newton's method doesn't need to be used, return also
    # salp2 and calp2 and function value is sig12.
    sig12 = -1; salp2 = calp2 = Math.nan # Return values
    # bet12 = bet2 - bet1 in [0, pi); bet12a = bet2 + bet1 in (-pi, 0]
    sbet12 = sbet2 * cbet1 - cbet2 * sbet1
    cbet12 = cbet2 * cbet1 + sbet2 * sbet1
    # Volatile declaration needed to fix inverse cases
    # 88.202499451857 0 -88.202499451857 179.981022032992859592
    # 89.262080389218 0 -89.262080389218 179.992207982775375662
    # 89.333123580033 0 -89.333123580032997687 179.99295812360148422
    # which otherwise fail with g++ 4.4.4 x86 -O3
    sbet12a = sbet2 * cbet1
    sbet12a += cbet2 * sbet1

    shortline = cbet12 >= 0 and sbet12 < 0.5 and lam12 <= math.pi / 6
    omg12 = (lam12 if not shortline else
             lam12 / math.sqrt(1 - self._e2 * Math.sq((cbet1 + cbet2) / 2)))
    somg12 = math.sin(omg12); comg12 = math.cos(omg12)

    salp1 = cbet2 * somg12
    calp1 = (
      sbet12 + cbet2 * sbet1 * Math.sq(somg12) / (1 + comg12) if comg12 >= 0
      else sbet12a - cbet2 * sbet1 * Math.sq(somg12) / (1 - comg12))

    ssig12 = math.hypot(salp1, calp1)
    csig12 = sbet1 * sbet2 + cbet1 * cbet2 * comg12

    if shortline and ssig12 < self._etol2:
      # really short lines
      salp2 = cbet1 * somg12
      calp2 = sbet12 - cbet1 * sbet2 * Math.sq(somg12) / (1 + comg12)
      salp2, calp2 = Geodesic.SinCosNorm(salp2, calp2)
      # Set return value
      sig12 = math.atan2(ssig12, csig12)
    elif csig12 >= 0 or ssig12 >= 3 * abs(self._f) * math.pi * Math.sq(cbet1):
      # Nothing to do, zeroth order spherical approximation is OK
      pass
    else:
      # Scale lam12 and bet2 to x, y coordinate system where antipodal point
      # is at origin and singular point is at y = 0, x = -1.
      # real y, lamscale, betscale
      # Volatile declaration needed to fix inverse case
      # 56.320923501171 0 -56.320923501171 179.664747671772880215
      # which otherwise fails with g++ 4.4.4 x86 -O3
      # volatile real x
      if self._f >= 0:            # In fact f == 0 does not get here
        # x = dlong, y = dlat
        k2 = Math.sq(sbet1) * self._ep2
        eps = k2 / (2 * (1 + math.sqrt(1 + k2)) + k2)
        lamscale = self._f * cbet1 * self.A3f(eps) * math.pi
        betscale = lamscale * cbet1
        x = (lam12 - math.pi) / lamscale
        y = sbet12a / betscale
      else:                     # _f < 0
        # x = dlat, y = dlong
        cbet12a = cbet2 * cbet1 - sbet2 * sbet1
        bet12a = math.atan2(sbet12a, cbet12a)
        # real m12a, m0, dummy
        # In the case of lon12 = 180, this repeats a calculation made in
        # Inverse.
        dummy, m12a, m0, dummy, dummy = self.Lengths(
          self._n, math.pi + bet12a, sbet1, -cbet1, sbet2, cbet2,
          cbet1, cbet2, dummy, False, C1a, C2a)
        x = -1 + m12a/(self._f1 * cbet1 * cbet2 * m0 * math.pi)
        betscale = (sbet12a / x if x < -real(0.01)
                    else -self._f * Math.sq(cbet1) * math.pi)
        lamscale = betscale / cbet1
        y = (lam12 - math.pi) / lamscale

      if y > -Geodesic.tol1_ and x > -1 - Geodesic.xthresh_:
        # strip near cut
        if self._f >= 0:
          salp1 = min(1.0, -x); calp1 = - math.sqrt(1 - Math.sq(salp1))
        else:
          calp1 = max((0.0 if x > -Geodesic.tol1_ else -1.0), x)
          salp1 = math.sqrt(1 - Math.sq(calp1))
      else:
        # Estimate alp1, by solving the astroid problem.
        #
        # Could estimate alpha1 = theta + pi/2, directly, i.e.,
        #   calp1 = y/k; salp1 = -x/(1+k);  for _f >= 0
        #   calp1 = x/(1+k); salp1 = -y/k;  for _f < 0 (need to check)
        #
        # However, it's better to estimate omg12 from astroid and use
        # spherical formula to compute alp1.  This reduces the mean number of
        # Newton iterations for astroid cases from 2.24 (min 0, max 6) to 2.12
        # (min 0 max 5).  The changes in the number of iterations are as
        # follows:
        #
        # change percent
        #    1       5
        #    0      78
        #   -1      16
        #   -2       0.6
        #   -3       0.04
        #   -4       0.002
        #
        # The histogram of iterations is (m = number of iterations estimating
        # alp1 directly, n = number of iterations estimating via omg12, total
        # number of trials = 148605):
        #
        #  iter    m      n
        #    0   148    186
        #    1 13046  13845
        #    2 93315 102225
        #    3 36189  32341
        #    4  5396      7
        #    5   455      1
        #    6    56      0
        #
        # Because omg12 is near pi, estimate work with omg12a = pi - omg12
        k = Geodesic.Astroid(x, y)
        omg12a = lamscale * ( -x * k/(1 + k) if self._f >= 0
                               else -y * (1 + k)/k )
        somg12 = math.sin(omg12a); comg12 = -math.cos(omg12a)
        # Update spherical estimate of alp1 using omg12 instead of lam12
        salp1 = cbet2 * somg12
        calp1 = sbet12a - cbet2 * sbet1 * Math.sq(somg12) / (1 - comg12)
    salp1, calp1 = Geodesic.SinCosNorm(salp1, calp1)
    return sig12, salp1, calp1, salp2, calp2

  # return lam12, salp2, calp2, sig12, ssig1, csig1, ssig2, csig2, eps,
  # domg12, dlam12
  def Lambda12(self, sbet1, cbet1, sbet2, cbet2, salp1, calp1, diffp,
               # Scratch areas of the right size
               C1a, C2a, C3a):

    if sbet1 == 0 and calp1 == 0:
      # Break degeneracy of equatorial line.  This case has already been
      # handled.
      calp1 = -Geodesic.tiny_

    # sin(alp1) * cos(bet1) = sin(alp0)
    salp0 = salp1 * cbet1
    calp0 = math.hypot(calp1, salp1 * sbet1) # calp0 > 0

    # real somg1, comg1, somg2, comg2, omg12, lam12
    # tan(bet1) = tan(sig1) * cos(alp1)
    # tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1)
    ssig1 = sbet1; somg1 = salp0 * sbet1
    csig1 = comg1 = calp1 * cbet1
    ssig1, csig1 = Geodesic.SinCosNorm(ssig1, csig1)
    # SinCosNorm(somg1, comg1); -- don't need to normalize!

    # Enforce symmetries in the case abs(bet2) = -bet1.  Need to be careful
    # about this case, since this can yield singularities in the Newton
    # iteration.
    # sin(alp2) * cos(bet2) = sin(alp0)
    salp2 = salp0 / cbet2 if cbet2 != cbet1 else salp1
    # calp2 = sqrt(1 - sq(salp2))
    #       = sqrt(sq(calp0) - sq(sbet2)) / cbet2
    # and subst for calp0 and rearrange to give (choose positive sqrt
    # to give alp2 in [0, pi/2]).
    calp2 = (math.sqrt(Math.sq(calp1 * cbet1) +
                       ((cbet2 - cbet1) * (cbet1 + cbet2) if cbet1 < -sbet1
                        else (sbet1 - sbet2) * (sbet1 + sbet2))) / cbet2
             if cbet2 != cbet1 or abs(sbet2) != -sbet1 else abs(calp1))
    # tan(bet2) = tan(sig2) * cos(alp2)
    # tan(omg2) = sin(alp0) * tan(sig2).
    ssig2 = sbet2; somg2 = salp0 * sbet2
    csig2 = comg2 = calp2 * cbet2
    ssig2, csig2 = Geodesic.SinCosNorm(ssig2, csig2)
    # SinCosNorm(somg2, comg2); -- don't need to normalize!

    # sig12 = sig2 - sig1, limit to [0, pi]
    sig12 = math.atan2(max(csig1 * ssig2 - ssig1 * csig2, 0.0),
                       csig1 * csig2 + ssig1 * ssig2)

    # omg12 = omg2 - omg1, limit to [0, pi]
    omg12 = math.atan2(max(comg1 * somg2 - somg1 * comg2, 0.0),
                       comg1 * comg2 + somg1 * somg2)
    # real B312, h0
    k2 = Math.sq(calp0) * self._ep2
    eps = k2 / (2 * (1 + math.sqrt(1 + k2)) + k2)
    self.C3f(eps, C3a)
    B312 = (Geodesic.SinCosSeries(True, ssig2, csig2, C3a, Geodesic.nC3_-1) -
            Geodesic.SinCosSeries(True, ssig1, csig1, C3a, Geodesic.nC3_-1))
    h0 = -self._f * self.A3f(eps)
    domg12 = salp0 * h0 * (sig12 + B312)
    lam12 = omg12 + domg12

    if diffp:
      if calp2 == 0:
        dlam12 = - 2 * math.sqrt(1 - self._e2 * Math.sq(cbet1)) / sbet1
      else:
        dummy, dlam12, dummy, dummy, dummy = self.Lengths(
          eps, sig12, ssig1, csig1, ssig2, csig2, cbet1, cbet2, False, C1a, C2a)
        dlam12 /= calp2 * cbet2
    else:
      dlam12 = Math.nan

    return (lam12, salp2, calp2, sig12, ssig1, csig1, ssig2, csig2, eps,
            domg12, dlam12)

  # return a12, s12, azi1, azi2, m12, M12, M21, S12
  def GenInverse(self, lat1, lon1, lat2, lon2, outmask):
    a12 = s12 = azi1 = azi2 = m12 = M12 = M21 = S12 = Math.nan # return vals

    outmask &= Geodesic.OUT_ALL
    lon1 = Geodesic.AngNormalize(lon1)
    lon12 = Geodesic.AngNormalize(Geodesic.AngNormalize(lon2) - lon1)
    # If very close to being on the same meridian, then make it so.
    # Not sure this is necessary...
    lon12 = Geodesic.AngRound(lon12)
    # Make longitude difference positive.
    lonsign = 1 if lon12 >= 0 else -1
    lon12 *= lonsign
    if lon12 == 180:
      lonsign = 1
    # If really close to the equator, treat as on equator.
    lat1 = Geodesic.AngRound(lat1)
    lat2 = Geodesic.AngRound(lat2)
    # Swap points so that point with higher (abs) latitude is point 1
    swapp = 1 if abs(lat1) >= abs(lat2) else -1
    if swapp < 0:
      lonsign *= -1
      lat2, lat1 = lat1, lat2
    # Make lat1 <= 0
    latsign = 1 if lat1 < 0 else -1
    lat1 *= latsign
    lat2 *= latsign
    # Now we have
    #
    #     0 <= lon12 <= 180
    #     -90 <= lat1 <= 0
    #     lat1 <= lat2 <= -lat1
    #
    # longsign, swapp, latsign register the transformation to bring the
    # coordinates to this canonical form.  In all cases, 1 means no change was
    # made.  We make these transformations so that there are few cases to
    # check, e.g., on verifying quadrants in atan2.  In addition, this
    # enforces some symmetries in the results returned.

    # real phi, sbet1, cbet1, sbet2, cbet2, s12x, m12x

    phi = lat1 * Math.degree
    # Ensure cbet1 = +epsilon at poles
    sbet1 = self._f1 * math.sin(phi)
    cbet1 = Geodesic.tiny_ if lat1 == -90 else math.cos(phi)
    sbet1, cbet1 = Geodesic.SinCosNorm(sbet1, cbet1)

    phi = lat2 * Math.degree
    # Ensure cbet2 = +epsilon at poles
    sbet2 = self._f1 * math.sin(phi)
    cbet2 = Geodesic.tiny_ if abs(lat2) == 90 else math.cos(phi)
    sbet2, cbet2 = Geodesic.SinCosNorm(sbet2, cbet2)

    # If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the
    # |bet1| - |bet2|.  Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is
    # a better measure.  This logic is used in assigning calp2 in Lambda12.
    # Sometimes these quantities vanish and in that case we force bet2 = +/-
    # bet1 exactly.  An example where is is necessary is the inverse problem
    # 48.522876735459 0 -48.52287673545898293 179.599720456223079643
    # which failed with Visual Studio 10 (Release and Debug)

    if cbet1 < -sbet1:
      if cbet2 == cbet1:
        sbet2 = sbet1 if sbet2 < 0 else -sbet1
    else:
      if abs(sbet2) == -sbet1:
        cbet2 = cbet1

    lam12 = lon12 * Math.degree
    slam12 = 0 if lon12 == 180 else math.sin(lam12)
    clam12 = math.cos(lam12)      # lon12 == 90 isn't interesting

    # real a12, sig12, calp1, salp1, calp2, salp2
    # index zero elements of these arrays are unused
    C1a = range(Geodesic.nC1_ + 1)
    C2a = range(Geodesic.nC2_ + 1)
    C3a = range(Geodesic.nC3_)

    meridian = lat1 == -90 or slam12 == 0

    if meridian:

      # Endpoints are on a single full meridian, so the geodesic might lie on
      # a meridian.

      calp1 = clam12; salp1 = slam12 # Head to the target longitude
      calp2 = 1; salp2 = 0           # At the target we're heading north

      # tan(bet) = tan(sig) * cos(alp)
      ssig1 = sbet1; csig1 = calp1 * cbet1
      ssig2 = sbet2; csig2 = calp2 * cbet2

      # sig12 = sig2 - sig1
      sig12 = math.atan2(max(csig1 * ssig2 - ssig1 * csig2, 0.0),
                         csig1 * csig2 + ssig1 * ssig2)

      s12x, m12x, dummy, M12, M21 = self.Lengths(
        self._n, sig12, ssig1, csig1, ssig2, csig2, cbet1, cbet2,
        (outmask & Geodesic.GEODESICSCALE) != 0, C1a, C2a)

      # Add the check for sig12 since zero length geodesics might yield m12 <
      # 0.  Test case was
      #
      #    echo 20.001 0 20.001 0 | Geod -i
      #
      # In fact, we will have sig12 > pi/2 for meridional geodesic which is
      # not a shortest path.
      if sig12 < 1 or m12x >= 0:
        m12x *= self._a
        s12x *= self._b
        a12 = sig12 / Math.degree
      else:
        # m12 < 0, i.e., prolate and too close to anti-podal
        meridian = False
    # end if meridian:

    #real omg12
    if (not meridian and
        sbet1 == 0 and   # and sbet2 == 0
        # Mimic the way Lambda12 works with calp1 = 0
        (self._f <= 0 or lam12 <= math.pi - self._f * math.pi)):

      # Geodesic runs along equator
      calp1 = calp2 = 0; salp1 = salp2 = 1
      s12x = self._a * lam12
      m12x = self._b * math.sin(lam12 / self._f1)
      if outmask & Geodesic.GEODESICSCALE:
        M12 = M21 = math.cos(lam12 / self._f1)
      a12 = lon12 / self._f1
      sig12 = omg12 = lam12 / self._f1

    elif not meridian:

      # Now point1 and point2 belong within a hemisphere bounded by a
      # meridian and geodesic is neither meridional or equatorial.

      # Figure a starting point for Newton's method
      sig12, salp1, calp1, salp2, calp2 = self.InverseStart(
        sbet1, cbet1, sbet2, cbet2, lam12, C1a, C2a)

      if sig12 >= 0:
        # Short lines (InverseStart sets salp2, calp2)
        wm = math.sqrt(1 - self._e2 * Math.sq((cbet1 + cbet2) / 2))
        s12x = sig12 * self._a * wm
        m12x = (Math.sq(wm) * self._a / self._f1 *
                math.sin(sig12 * self._f1 / wm))
        if outmask & Geodesic.GEODESICSCALE:
          M12 = M21 = math.cos(sig12 * self._f1 / wm)
        a12 = sig12 / Math.degree
        omg12 = lam12 / wm
      else:

        # Newton's method
        # real ssig1, csig1, ssig2, csig2, eps
        ov = numit = trip = 0

        while numit < Geodesic.maxit_:
          (nlam12, salp2, calp2, sig12, ssig1, csig1, ssig2, csig2,
           eps, omg12, dv) = self.Lambda12(
            sbet1, cbet1, sbet2, cbet2, salp1, calp1, trip < 1, C1a, C2a, C3a)
          v = nlam12 - lam12
          if not(abs(v) > Geodesic.tiny_) or not(trip < 1):
            if not(abs(v) <= max(Geodesic.tol1_, ov)):
              numit = Geodesic.maxit_
            break
          dalp1 = -v/dv
          sdalp1 = math.sin(dalp1); cdalp1 = math.cos(dalp1)
          nsalp1 = salp1 * cdalp1 + calp1 * sdalp1
          calp1 = calp1 * cdalp1 - salp1 * sdalp1
          salp1 = max(0.0, nsalp1)
          salp1, calp1 = Geodesic.SinCosNorm(salp1, calp1)
          # In some regimes we don't get quadratic convergence because slope
          # -> 0.  So use convergence conditions based on epsilon instead of
          # sqrt(epsilon).  The first criterion is a test on abs(v) against
          # 100 * epsilon.  The second takes credit for an anticipated
          # reduction in abs(v) by v/ov (due to the latest update in alp1) and
          # checks this against epsilon.
          if not(abs(v) >= Geodesic.tol1_ and
                 Math.sq(v) >= ov * Geodesic.tol0_):
            trip += 1
          ov = abs(v)
          numit += 1

        if numit >= Geodesic.maxit_:
          # Signal failure.
          return a12, s12, azi1, azi2, m12, M12, M21, S12

        s12x, m12x, dummy, M12, M21 = self.Lengths(
          eps, sig12, ssig1, csig1, ssig2, csig2, cbet1, cbet2,
          (outmask & Geodesic.GEODESICSCALE) != 0, C1a, C2a)

        m12x *= self._a
        s12x *= self._b
        a12 = sig12 / Math.degree
        omg12 = lam12 - omg12
    # end elif not meridian

    if outmask & Geodesic.DISTANCE:
      s12 = 0 + s12x           # Convert -0 to 0

    if outmask & Geodesic.REDUCEDLENGTH:
      m12 = 0 + m12x           # Convert -0 to 0

    if outmask & Geodesic.AREA:
      # From Lambda12: sin(alp1) * cos(bet1) = sin(alp0)
      salp0 = salp1 * cbet1
      calp0 = math.hypot(calp1, salp1 * sbet1) # calp0 > 0
      # real alp12
      if calp0 != 0 and salp0 != 0:
        # From Lambda12: tan(bet) = tan(sig) * cos(alp)
        ssig1 = sbet1; csig1 = calp1 * cbet1
        ssig2 = sbet2; csig2 = calp2 * cbet2
        k2 = Math.sq(calp0) * self._ep2
        # Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0).
        A4 = Math.sq(self._a) * calp0 * salp0 * self._e2
        ssig1, csig1 = Geodesic.SinCosNorm(ssig1, csig1)
        ssig2, csig2 = Geodesic.SinCosNorm(ssig2, csig2)
        C4a = range(Geodesic.nC4_)
        self.C4f(k2, C4a)
        B41 = Geodesic.SinCosSeries(False, ssig1, csig1, C4a, Geodesic.nC4_)
        B42 = Geodesic.SinCosSeries(False, ssig2, csig2, C4a, Geodesic.nC4_)
        S12 = A4 * (B42 - B41)
      else:
        # Avoid problems with indeterminate sig1, sig2 on equator
        S12 = 0
      if (not meridian and
          omg12 < 0.75 * math.pi and # Long difference too big
          sbet2 - sbet1 < 1.75):     # Lat difference too big
        # Use tan(Gamma/2) = tan(omg12/2)
        # * (tan(bet1/2)+tan(bet2/2))/(1+tan(bet1/2)*tan(bet2/2))
        # with tan(x/2) = sin(x)/(1+cos(x))
        somg12 = math.sin(omg12); domg12 = 1 + math.cos(omg12)
        dbet1 = 1 + cbet1; dbet2 = 1 + cbet2
        alp12 = 2 * math.atan2( somg12 * ( sbet1 * dbet2 + sbet2 * dbet1 ),
                                domg12 * ( sbet1 * sbet2 + dbet1 * dbet2 ) )
      else:
        # alp12 = alp2 - alp1, used in atan2 so no need to normalize
        salp12 = salp2 * calp1 - calp2 * salp1
        calp12 = calp2 * calp1 + salp2 * salp1
        # The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz
        # salp12 = -0 and alp12 = -180.  However this depends on the sign
        # being attached to 0 correctly.  The following ensures the correct
        # behavior.
        if salp12 == 0 and calp12 < 0:
          salp12 = Geodesic.tiny_ * calp1
          calp12 = -1
        alp12 = math.atan2(salp12, calp12)
      S12 += self._c2 * alp12
      S12 *= swapp * lonsign * latsign
      # Convert -0 to 0
      S12 += 0

    # Convert calp, salp to azimuth accounting for lonsign, swapp, latsign.
    if swapp < 0:
      salp2, salp1 = salp1, salp2
      calp2, calp1 = calp1, calp2
      if outmask & Geodesic.GEODESICSCALE:
        M21, M12 = M12, M21

    salp1 *= swapp * lonsign; calp1 *= swapp * latsign
    salp2 *= swapp * lonsign; calp2 *= swapp * latsign

    if outmask & Geodesic.AZIMUTH:
      # minus signs give range [-180, 180). 0- converts -0 to +0.
      azi1 = 0 - math.atan2(-salp1, calp1) / Math.degree
      azi2 = 0 - math.atan2(-salp2, calp2) / Math.degree

    # Returned value in [0, 180]
    return a12, s12, azi1, azi2, m12, M12, M21, S12

  def CheckPosition(lat, lon):
    if not (abs(lat) <= 90):
      raise ValueError("latitude " + str(lat) + " not in [-90, 90]")
    if not (lon >= -180 and lon <= 360):
      raise ValueError("longitude " + str(lon) + " not in [-180, 360]")
    return Geodesic.AngNormalize(lon)
  CheckPosition = staticmethod(CheckPosition)

  def CheckAzimuth(azi):
    if not (azi >= -180 and azi <= 360):
      raise ValueError("azimuth " + str(azi) + " not in [-180, 360]")
    return Geodesic.AngNormalize(azi)
  CheckAzimuth = staticmethod(CheckAzimuth)

  def CheckDistance(s):
    if not (Math.isfinite(s)):
      raise ValueError("distance " + str(s) + " not a finite number")
  CheckDistance = staticmethod(CheckDistance)

  def Inverse(self, lat1, lon1, lat2, lon2, outmask = DISTANCE | AZIMUTH):
    """
    Solve the inverse geodesic problem.  Compute geodesic between
    (lat1, lon1) and (lat2, lon2).  Return a dictionary with (some) of
    the following entries:

      lat1 latitude of point 1
      lon1 longitude of point 1
      azi1 azimuth of line at point 1
      lat2 latitude of point 2
      lon2 longitude of point 2
      azi2 azimuth of line at point 2
      s12 distance from 1 to 2
      a12 arc length on auxiliary sphere from 1 to 2
      m12 reduced length of geodesic
      M12 geodesic scale 2 relative to 1
      M21 geodesic scale 1 relative to 2
      S12 area between geodesic and equator

    outmask determines which fields get included and if outmask is
    omitted, then only the basic geodesic fields are computed.  The mask
    is an or'ed combination of the following values

      Geodesic.LATITUDE
      Geodesic.LONGITUDE
      Geodesic.AZIMUTH
      Geodesic.DISTANCE
      Geodesic.REDUCEDLENGTH
      Geodesic.GEODESICSCALE
      Geodesic.AREA
      Geodesic.ALL
    """

    lon1 = Geodesic.CheckPosition(lat1, lon1)
    lon2 = Geodesic.CheckPosition(lat2, lon2)

    result = {'lat1': lat1, 'lon1': lon1, 'lat2': lat2, 'lon2': lon2}
    a12, s12, azi1, azi2, m12, M12, M21, S12 = self.GenInverse(
      lat1, lon1, lat2, lon2, outmask)
    outmask &= Geodesic.OUT_ALL
    result['a12'] = a12
    if outmask & Geodesic.DISTANCE: result['s12'] = s12
    if outmask & Geodesic.AZIMUTH:
      result['azi1'] = azi1; result['azi2'] = azi2
    if outmask & Geodesic.REDUCEDLENGTH: result['m12'] = m12
    if outmask & Geodesic.GEODESICSCALE:
      result['M12'] = M12; result['M21'] = M21
    if outmask & Geodesic.AREA: result['S12'] = S12
    return result

  # return a12, lat2, lon2, azi2, s12, m12, M12, M21, S12
  def GenDirect(self, lat1, lon1, azi1, arcmode, s12_a12, outmask):
    from geographiclib.geodesicline import GeodesicLine
    line = GeodesicLine(
      self, lat1, lon1, azi1,
      # Automatically supply DISTANCE_IN if necessary
      outmask | ( Geodesic.NONE if arcmode else Geodesic.DISTANCE_IN))
    return line.GenPosition(arcmode, s12_a12, outmask)

  def Direct(self, lat1, lon1, azi1, s12,
             outmask = LATITUDE | LONGITUDE | AZIMUTH):
    """
    Solve the direct geodesic problem.  Compute geodesic starting at
    (lat1, lon1) with azimuth azi1 and length s12.  Return a dictionary
    with (some) of the following entries:

      lat1 latitude of point 1
      lon1 longitude of point 1
      azi1 azimuth of line at point 1
      lat2 latitude of point 2
      lon2 longitude of point 2
      azi2 azimuth of line at point 2
      s12 distance from 1 to 2
      a12 arc length on auxiliary sphere from 1 to 2
      m12 reduced length of geodesic
      M12 geodesic scale 2 relative to 1
      M21 geodesic scale 1 relative to 2
      S12 area between geodesic and equator

    outmask determines which fields get included and if outmask is
    omitted, then only the basic geodesic fields are computed.  The mask
    is an or'ed combination of the following values

      Geodesic.LATITUDE
      Geodesic.LONGITUDE
      Geodesic.AZIMUTH
      Geodesic.DISTANCE
      Geodesic.REDUCEDLENGTH
      Geodesic.GEODESICSCALE
      Geodesic.AREA
      Geodesic.ALL
    """

    lon1 = Geodesic.CheckPosition(lat1, lon1)
    azi1 = Geodesic.CheckAzimuth(azi1)
    Geodesic.CheckDistance(s12)

    result = {'lat1': lat1, 'lon1': lon1, 'azi1': azi1, 's12': s12}
    a12, lat2, lon2, azi2, s12, m12, M12, M21, S12 = self.GenDirect(
      lat1, lon1, azi1, False, s12, outmask)
    outmask &= Geodesic.OUT_ALL
    result['a12'] = a12
    if outmask & Geodesic.LATITUDE: result['lat2'] = lat2
    if outmask & Geodesic.LONGITUDE: result['lon2'] = lon2
    if outmask & Geodesic.AZIMUTH: result['azi2'] = azi2
    if outmask & Geodesic.REDUCEDLENGTH: result['m12'] = m12
    if outmask & Geodesic.GEODESICSCALE:
      result['M12'] = M12; result['M21'] = M21
    if outmask & Geodesic.AREA: result['S12'] = S12
    return result

  def Line(self, lat1, lon1, azi1, caps = ALL):
    """
    Return a GeodesicLine object to compute points along a geodesic
    starting at lat1, lon1, with azimuth azi1.  caps is an or'ed
    combination of bit the following values indicating the capabilities
    of the return object

      Geodesic.LATITUDE
      Geodesic.LONGITUDE
      Geodesic.AZIMUTH
      Geodesic.DISTANCE
      Geodesic.REDUCEDLENGTH
      Geodesic.GEODESICSCALE
      Geodesic.AREA
      Geodesic.DISTANCE_IN
      Geodesic.ALL
    """

    from geographiclib.geodesicline import GeodesicLine
    lon1 = Geodesic.CheckPosition(lat1, lon1)
    azi1 = Geodesic.CheckAzimuth(azi1)
    return GeodesicLine(
      self, lat1, lon1, azi1,
      # Automatically supply DISTANCE_IN
      caps | Geodesic.DISTANCE_IN)

  def Area(self, points, polyline = False):
    """
    Compute the area of a geodesic polygon given by points, an array of
    dictionaries with entries lat and lon.  Return a dictionary with
    entries

      number the number of verices
      perimeter the perimeter
      area the area (counter-clockwise traversal positive)

    There is no need to "close" the polygon.  If polyline is set to
    True, then the points define a polyline instead of a polygon, the
    length is returned as the perimeter, and the area is not returned.
    """

    from geographiclib.polygonarea import PolygonArea
    for p in points:
      Geodesic.CheckPosition(p['lat'], p['lon'])
    num, perimeter, area = PolygonArea.Area(self, points, polyline)
    result = {'number': num, 'perimeter': perimeter}
    if not polyline: result['area'] = area
    return result

Geodesic.WGS84 = Geodesic(Constants.WGS84_a, Constants.WGS84_f)