This file is indexed.

/usr/lib/python2.7/dist-packages/fabio/fit2dmaskimage.py is in python-fabio 0.1.3-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
## Automatically adapted for numpy.oldnumeric Oct 05, 2007 by alter_code1.py

#!/usr/bin/env python
"""

Author: Andy Hammersley, ESRF
Translation into python/fabio: Jon Wright, ESRF
"""

import numpy

from fabioimage import fabioimage


class fit2dmaskimage(fabioimage):
    """ Read and try to write Andy Hammersley's mask format """


    def _readheader(self, infile):
        """
        Read in a header from an already open file
        """
        # 1024 bytes gives 256x32 bit integers
        header = infile.read(1024)
        for i, j in [ ("M", 0),
                      ("A", 4),
                      ("S", 8),
                      ("K", 12)  ]:
            if header[j] != i:
                raise Exception("Not a fit2d mask file")
        fit2dhdr = numpy.fromstring(header, numpy.int32)
        self.dim1 = fit2dhdr[4] # 1 less than Andy's fortran
        self.dim2 = fit2dhdr[5]


    def read(self, fname, frame=None):
        """
        Read in header into self.header and
            the data   into self.data
        """
        fin = self._open(fname)
        self._readheader(fin)
        # Compute image size
        self.bytecode = numpy.uint8
        self.bpp = len(numpy.array(0, self.bytecode).tostring())

        # integer division
        num_ints = (self.dim1 + 31) // 32
        total = self.dim2 * num_ints * 4
        data = fin.read(total)
        assert len(data) == total
        fin.close()

        # Now to unpack it
        data = numpy.fromstring(data, numpy.uint8)
        data = numpy.reshape(data, (self.dim2, num_ints * 4))

        result = numpy.zeros((self.dim2, num_ints * 4 * 8), numpy.uint8)

        # Unpack using bitwise comparisons to 2**n
        bits = numpy.ones((1), numpy.uint8)
        for i in range(8):
            temp = numpy.bitwise_and(bits, data)
            result[:, i::8] = temp.astype(numpy.uint8)
            bits = bits * 2
        # Extra rows needed for packing odd dimensions
        spares = num_ints * 4 * 8 - self.dim1
        if spares == 0:
            self.data = numpy.where(result == 0, 0, 1)
        else:
            self.data = numpy.where(result[:, :-spares] == 0, 0, 1)
        # Transpose appears to be needed to match edf reader (scary??)
#        self.data = numpy.transpose(self.data)
        self.data = numpy.reshape(self.data.astype(numpy.uint16),
                                    (self.dim2, self.dim1))
        self.pilimage = None
        return self



    def write(self, fname):
        """
        Try to write a file
        check we can write zipped also
        mimics that fabian was writing uint16 (we sometimes want floats)
        """
        raise Exception("Not implemented yet")

    @staticmethod
    def checkData(data=None):
        if data is None:
            return None
        else:
            return data.astype(int)