This file is indexed.

/usr/lib/python2.7/dist-packages/kiva/cairo.py is in python-enable 4.1.0-1ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
""" Implementation of the core2d drawing library, using cairo for rendering

    :Author:      Bryan Cole (bryan@cole.uklinux.net)
    :Copyright:   Bryan Cole (except parts copied from basecore2d)
    :License:     BSD Style

    This is currently under development and is not yet fully functional.

"""
from __future__ import absolute_import
import cairo
import copy
from itertools import izip
import numpy
import warnings

from .arc_conversion import arc_to_tangent_points
from . import basecore2d, constants


line_join = {constants.JOIN_BEVEL: cairo.LINE_JOIN_BEVEL,
             constants.JOIN_MITER: cairo.LINE_JOIN_MITER,
             constants.JOIN_ROUND: cairo.LINE_JOIN_ROUND
            }

line_cap = {constants.CAP_BUTT: cairo.LINE_CAP_BUTT,
            constants.CAP_ROUND: cairo.LINE_CAP_ROUND,
            constants.CAP_SQUARE: cairo.LINE_CAP_SQUARE
           }

font_slant = {"regular":cairo.FONT_SLANT_NORMAL,
              "bold":cairo.FONT_SLANT_NORMAL,
              "italic":cairo.FONT_SLANT_ITALIC,
              "bold italic":cairo.FONT_SLANT_ITALIC
             }

font_weight = {"regular":cairo.FONT_WEIGHT_NORMAL,
               "bold":cairo.FONT_WEIGHT_BOLD,
               "italic":cairo.FONT_WEIGHT_NORMAL,
               "bold italic":cairo.FONT_WEIGHT_BOLD
              }

spread_methods = {"pad":cairo.EXTEND_PAD,
                  "reflect":cairo.EXTEND_REFLECT,
                  "repeat":cairo.EXTEND_REPEAT
                 }

text_draw_modes = {'FILL': (constants.TEXT_FILL,
                            constants.TEXT_FILL_CLIP,
                            constants.TEXT_FILL_STROKE,
                            constants.TEXT_FILL_STROKE_CLIP),
                   'STROKE':(constants.TEXT_FILL_STROKE,
                            constants.TEXT_FILL_STROKE_CLIP,
                            constants.TEXT_STROKE,
                            constants.TEXT_STROKE_CLIP),
                   'CLIP':(constants.TEXT_CLIP,
                            constants.TEXT_FILL_CLIP,
                            constants.TEXT_FILL_STROKE_CLIP,
                            constants.TEXT_STROKE_CLIP),
                   'INVISIBLE': constants.TEXT_INVISIBLE
                  }

class PixelMap(object):

    def __init__(self, surface, width, height):
        self.surface = surface
        self.width = width
        self.height = height

    def draw_to_wxwindow(self, window, x, y):
        import wx
        window_dc = getattr(window,'_dc',None)
        if window_dc is None:
            window_dc = wx.PaintDC(window)
        arr = self.convert_to_rgbarray()
        image = wx.EmptyImage(self.width, self.height)
        image.SetDataBuffer(arr.data)
        bmp = wx.BitmapFromImage(image, depth=-1)

        window_dc.BeginDrawing()
        window_dc.DrawBitmap(bmp,x,y)
        window_dc.EndDrawing()
        return

    def convert_to_rgbarray(self):
        pixels = numpy.frombuffer(self.surface.get_data(), numpy.uint8)

        red = pixels[2::4]
        green = pixels[1::4]
        blue = pixels[0::4]
        return numpy.vstack((red, green, blue)).T.flatten()

    def convert_to_argbarray(self, flip=False):
        pixels = numpy.frombuffer(self.surface.get_data(), numpy.uint8)

        alpha = pixels[0::4]
        red = pixels[1::4]
        green = pixels[2::4]
        blue = pixels[3::4]
        if flip:
            return numpy.vstack((alpha, red, green, blue)).T\
                        .reshape((self.height, self.width, 4))[::-1,...].flatten()
        # no flip
        return numpy.vstack((alpha, red, green, blue)).T.flatten()

class GraphicsState(object):
    """ Holds information used by a graphics context when drawing.

        The Cairo state stores the following:

        * Operator (the blend mode)
        * Tolerance
        * Antialias (bool)
        * stroke style (line width, cap, join, mitre-limit, dash-style)
        * fill rule
        * font face
        * scaled font
        * font matrix (includes font size)
        * font options (antialias, subpixel order, hint style, hint metrics)
        * clip region
        * target surface and previous target surface
        * CTM, CTM-inverse, source CTM

        The Quartz2D state (which kiva follows AFAIK) includes:

        * CTM
        * stroke style (line width, cap, join, mitre, dash)
        * clip region
        * tolerance (accuracy)
        * anti-alias
        * \*fill- and stroke- colors
        * \*fill- and stroke- Color Space (RGB, HSV, CMYK etc.)
        * \*Rendering intent (something to do with Color Spaces)
        * \*alpha value
        * blend mode
        * text font
        * text font size
        * \*text drawing mode (stroked, filled, clipped and combinations of these)
        * \*text character spacing (extra space between glyphs)

        \*: items in the Quartz2D state that Cairo doesn't support directly.

        basecore2d GraphicsState includes:

        * ctm
        * line_color
        * line_width
        * line_join
        * line_cap
        * line_dash
        * fill_color
        * alpha
        * font
        * \*text_matrix
        * clipping_path
        * \*current_point
        * should_antialias
        * miter_limit
        * flatness
        * character_spacing
        * text_drawing_mode
        * rendering_intent (not yet implemented)

        \*: discrepancies compared to Quartz2D

    """
    def __init__(self):
        self.fill_color = [1,1,1]
        self.stroke_color = [1,1,1]
        self.alpha = 1.0
        self.text_drawing_mode = constants.TEXT_FILL
        self.has_gradient = False

        #not implemented yet...
        self.text_character_spacing = None
        self.fill_colorspace = None
        self.stroke_colorspace = None
        self.rendering_intent = None

    def copy(self):
        return copy.deepcopy(self)

class GraphicsContext(basecore2d.GraphicsContextBase):
    def __init__(self, size, *args, **kw):
        super(GraphicsContext, self).__init__(size, *args, **kw)
        w,h = size

        self.surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, w, h)
        self.surface.set_device_offset(0,h)

        if 'context' in kw:
            ctx = kw.pop('context')
        else:
            ctx = cairo.Context(self.surface)
            ctx.set_source_rgb(1,1,1)
            ctx.scale(1,-1)

        self._ctx = ctx
        self.state = GraphicsState()
        self.state_stack = []

        #the text-matrix includes the text position
        self.text_matrix = cairo.Matrix(1,0,0,-1,0,0) #not part of the graphics state

        self.pixel_map = PixelMap(self.surface, w, h)

    def clear(self, color=(1,1,1)):
        self.save_state()
        if len(color) == 4:
            self._ctx.set_source_rgba(*color)
        else:
            self._ctx.set_source_rgb(*color)
        self.rect(0, 0, self.width(), self.height())
        self.draw_path(constants.FILL)
        self.restore_state()

    def height(self):
        return self._ctx.get_target().get_height()

    def width(self):
        return self._ctx.get_target().get_width()

    def scale_ctm(self, sx, sy):
        """ Sets the coordinate system scale to the given values, (sx,sy).

            Parameters
            ----------
            sx : float
                The new scale factor for the x axis
            sy : float
                The new scale factor for the y axis
        """
        self._ctx.scale(sx, sy)

    def translate_ctm(self, tx, ty):
        """ Translates the coordinate system by the value given by (tx,ty)

            Parameters
            ----------
            tx : float
                The distance to move in the x direction
            ty : float
                The distance to move in the y direction
        """
        self._ctx.translate(tx, ty)

    def rotate_ctm(self, angle):
        """ Rotates the coordinate space for drawing by the given angle.

            Parameters
            ----------
            angle : float
                the angle, in radians, to rotate the coordinate system
        """
        self._ctx.rotate(angle)

    def concat_ctm(self, transform):
        """ Concatenates the transform to current coordinate transform matrix.

            Parameters
            ----------
            transform : affine_matrix
                the transform matrix to concatenate with
                the current coordinate matrix.
        """
        try:
            #assume transform is a cairo.Matrix object
            self._ctx.transform(transform)
        except TypeError:
            #now assume transform is a list of matrix elements (floats)
            self._ctx.transform(cairo.Matrix(*transform))


    def get_ctm(self):
        """ Returns the current coordinate transform matrix
            as a list of matrix elements
        """
        return list(self._ctx.get_matrix())

    #----------------------------------------------------------------
    # Save/Restore graphics state.
    #----------------------------------------------------------------

    def save_state(self):
        """ Saves the current graphic's context state.

            Always pair this with a `restore_state()`.
        """
        self._ctx.save()
        self.state_stack.append(self.state)
        self.state = self.state.copy()

    def restore_state(self):
        """ Restores the previous graphics state.
        """
        self._ctx.restore()
        self.state = self.state_stack.pop()

    #----------------------------------------------------------------
    # Manipulate graphics state attributes.
    #----------------------------------------------------------------

    def set_antialias(self,value):
        """ Sets/Unsets anti-aliasing for bitmap graphics context.

            Ignored on most platforms.
        """
        if bool(value):
            val = cairo.ANTIALIAS_DEFAULT
        else:
            val = cairo.ANTIALIAS_NONE
        self._ctx.set_antialias(val)

    def set_line_width(self,width):
        """ Sets the line width for drawing

            Parameters
            ----------
            width : float
                The new width for lines in user space units.
        """
        self._ctx.set_line_width(width)

    def set_line_join(self,style):
        """ Sets the style for joining lines in a drawing.

            Parameters
            ----------
            style : join_style
                The line joining style.  The available
                styles are JOIN_ROUND, JOIN_BEVEL, JOIN_MITER.
        """
        try:
            self._ctx.set_line_join(line_join[style])
        except KeyError:
            raise ValueError("Invalid line-join style")

    def set_miter_limit(self,limit):
        """ Specifies limits on line lengths for mitering line joins.

            If line_join is set to miter joins, the limit specifies which
            line joins should actually be mitered.  If lines are not mitered,
            they are joined with a bevel.  The line width is divided by
            the length of the miter.  If the result is greater than the
            limit, the bevel style is used.

            This is not implemented on most platforms.

            Parameters
            ----------
            limit : float
                limit for mitering joins. defaults to 1.0.
                (XXX is this the correct default?)
        """
        self._ctx.set_miter_limit(limit)

    def set_line_cap(self,style):
        """ Specifies the style of endings to put on line ends.

            Parameters
            ----------
            style : cap_style
                The line cap style to use. Available styles
                are CAP_ROUND, CAP_BUTT, CAP_SQUARE.
        """
        try:
            self._ctx.set_line_cap(line_cap[style])
        except KeyError:
            raise ValueError("Invalid line cap style")

    def set_line_dash(self,pattern,phase=0):
        """ Sets the line dash pattern and phase for line painting.

            Parameters
            ----------
            pattern : float array
                An array of floating point values
                specifing the lengths of on/off painting
                pattern for lines.
            phase : float
                Specifies how many units into dash pattern
                to start.  phase defaults to 0.
        """
        if pattern is not None:
            pattern = list(pattern)
            self._ctx.set_dash(pattern, phase)

    def set_flatness(self,flatness):
        """ Not implemented

            It is device dependent and therefore not recommended by
            the PDF documentation.

            flatness determines how accurately lines are rendered.  Setting it
            to values less than one will result in more accurate drawings, but
            they take longer.  It defaults to None
        """
        self._ctx.set_tolerance(flatness)

    #----------------------------------------------------------------
    # Sending drawing data to a device
    #----------------------------------------------------------------

    def flush(self):
        """ Sends all drawing data to the destination device.

            Currently this is a NOP for wxPython.
        """
        s = self._ctx.get_target()
        s.flush()

    def synchronize(self):
        """ Prepares drawing data to be updated on a destination device.

            Currently this is a NOP for all implementations.
        """
        pass

    #----------------------------------------------------------------
    # Page Definitions
    #----------------------------------------------------------------

    def begin_page(self):
        """ Creates a new page within the graphics context.

            Currently this is a NOP for all implementations.  The PDF
            backend should probably implement it, but the ReportLab
            Canvas uses the showPage() method to handle both
            begin_page and end_page issues.
        """
        pass

    def end_page(self):
        """ Ends drawing in the current page of the graphics context.

            Currently this is a NOP for all implementations.  The PDF
            backend should probably implement it, but the ReportLab
            Canvas uses the showPage() method to handle both
            begin_page and end_page issues.
        """
        pass


    def radial_gradient(self, cx, cy, r, fx, fy, stops, spreadMethod='pad',
                        units='userSpaceOnUse', transforms=None):
        """ Set a radial gradient as the fill color.
        """
        # TODO: handle transforms

        if units == 'objectBoundingBox':
            # transform from relative coordinates
            path_rect = self._ctx.path_extents()
            width = path_rect[2]-path_rect[0]
            height = path_rect[3]-path_rect[1]
            r = r * width
            cx = path_rect[0] + cx * width
            fx = path_rect[0] + fx * width
            cy = path_rect[1] + cy * height
            fy = path_rect[1] + fy * height

        gradient = cairo.RadialGradient(fx, fy, 0.0, cx, cy, r)

        gradient.set_extend(spread_methods.get(spreadMethod, cairo.EXTEND_NONE))

        for stop in stops:
            #FIXME: the stops are possibly being generated wrong if the offset is specified
            if stop.size == 10:
                start = tuple(stop[0:5])
                end = tuple(stop[5:10])
                gradient.add_color_stop_rgba(*start)
                gradient.add_color_stop_rgba(*end)
            else:
                start = tuple(stop[0:5])
                gradient.add_color_stop_rgba(*start)

        self.state.has_gradient = True
        self._ctx.set_source(gradient)

    def linear_gradient(self, x1, y1, x2, y2, stops, spreadMethod='pad',
                        units='userSpaceOnUse', transforms=None):
        """ Set a linear gradient as the fill color.
        """
        # TODO: handle transforms

        if units == 'objectBoundingBox':
            # transform from relative coordinates
            path_rect = self._ctx.path_extents()
            width = path_rect[2]-path_rect[0]
            height = path_rect[3]-path_rect[1]
            x1 = path_rect[0] + x1 * width
            x2 = path_rect[0] + x2 * width
            y1 = path_rect[1] + y1 * height
            y2 = path_rect[1] + y2 * height

        gradient = cairo.LinearGradient(x1, y1, x2, y2)

        gradient.set_extend(spread_methods.get(spreadMethod, cairo.EXTEND_NONE))

        for stop in stops:
            # FIXME: the stops are possibly being generated wrong if the offset is specified
            if stop.size == 10:
                start = tuple(stop[0:5])
                end = tuple(stop[5:10])
                gradient.add_color_stop_rgba(*start)
                gradient.add_color_stop_rgba(*end)
            else:
                start = tuple(stop[0:5])
                gradient.add_color_stop_rgba(*start)

        self.state.has_gradient = True
        self._ctx.set_source(gradient)


    #----------------------------------------------------------------
    # Building paths (contours that are drawn)
    #
    # + Currently, nothing is drawn as the path is built.  Instead, the
    #   instructions are stored and later drawn.  Should this be changed?
    #   We will likely draw to a buffer instead of directly to the canvas
    #   anyway.
    #
    #   Hmmm. No.  We have to keep the path around for storing as a
    #   clipping region and things like that.
    #
    # + I think we should keep the current_path_point hanging around.
    #
    #----------------------------------------------------------------

    def begin_path(self):
        """ Clears the current drawing path and begin a new one.
        """
        # Need to check here if the current subpath contains matrix
        # transforms.  If  it does, pull these out, and stick them
        # in the new subpath.
        self._ctx.new_path()

    def move_to(self,x,y):
        """ Starts a new drawing subpath and place the current point at (x,y).

            Notes:
                Not sure how to treat state.current_point.  Should it be the
                value of the point before or after the matrix transformation?
                It looks like before in the PDF specs.
        """
        self._ctx.move_to(x,y)

    def line_to(self,x,y):
        """ Adds a line from the current point to the given point (x,y).

            The current point is moved to (x,y).

            What should happen if move_to hasn't been called? Should it always
            begin at 0,0 or raise an error?

            Notes:
                See note in move_to about the current_point.
        """
        self._ctx.line_to(x,y)

    def lines(self,points):
        """ Adds a series of lines as a new subpath.

            Parameters
            ----------

            points
                an Nx2 array of x,y pairs

            The current_point is moved to the last point in 'points'
        """
        self._ctx.new_sub_path()
        for point in points:
            self._ctx.line_to(*point)

    def line_set(self, starts, ends):
        """ Adds a set of disjoint lines as a new subpath.

            Parameters
            ----------
            starts
                an Nx2 array of x,y pairs
            ends
                an Nx2 array of x,y pairs

            Starts and ends should have the same length.
            The current point is moved to the last point in 'ends'.

            N.B. Cairo cannot make disjointed lines as a single subpath,
            thus each line forms it's own subpath
        """
        for start, end in izip(starts, ends):
            self._ctx.move_to(*start)
            self._ctx.line_to(*end)

    def rect(self,x,y,sx,sy):
        """ Adds a rectangle as a new subpath.
        """
        self._ctx.rectangle(x,y,sx,sy)

#    def draw_rect(self, rect, mode):
#        self.rect(*rect)
#        self.draw_path(mode=mode)
#
#    def rects(self,rects):
#        """ Adds multiple rectangles as separate subpaths to the path.
#
#            Not very efficient -- calls rect multiple times.
#        """
#        for x,y,sx,sy in rects:
#            self.rect(x,y,sx,sy)

    def close_path(self,tag=None):
        """ Closes the path of the current subpath.

            Currently starts a new subpath -- is this what we want?
            ... Cairo starts a new subpath automatically.
        """
        self._ctx.close_path()

    def curve_to(self, x_ctrl1, y_ctrl1, x_ctrl2, y_ctrl2, x_to, y_to):
        """ Draw a cubic bezier curve from the current point.

        Parameters
        ----------
        x_ctrl1 : float
            X-value of the first control point.
        y_ctrl1 : float
            Y-value of the first control point.
        x_ctrl2 : float
            X-value of the second control point.
        y_ctrl2 : float
            Y-value of the second control point.
        x_to : float
            X-value of the ending point of the curve.
        y_to : float
            Y-value of the ending point of the curve.
        """
        self._ctx.curve_to(x_ctrl1, y_ctrl1, x_ctrl2, y_ctrl2, x_to, y_to)

#    def quad_curve_to(self, x_ctrl, y_ctrl, x_to, y_to):
#        """ Draw a quadratic bezier curve from the current point.
#
#        Parameters
#        ----------
#        x_ctrl : float
#            X-value of the control point
#        y_ctrl : float
#            Y-value of the control point.
#        x_to : float
#            X-value of the ending point of the curve
#        y_to : float
#            Y-value of the ending point of the curve.
#        """
#        # A quadratic Bezier curve is just a special case of the cubic. Reuse
#        # its implementation in case it has been implemented for the specific
#        # backend.
#        x0, y0 = self.state.current_point
#        xc1 = (x0 + x_ctrl + x_ctrl) / 3.0
#        yc1 = (y0 + y_ctrl + y_ctrl) / 3.0
#        xc2 = (x_to + x_ctrl + x_ctrl) / 3.0
#        yc2 = (y_to + y_ctrl + y_ctrl) / 3.0
#        self.curve_to(xc1, yc1, xc2, yc2, x_to, y_to)

    def arc(self, x, y, radius, start_angle, end_angle, cw=False):
        """ Draw a circular arc.

        If there is a current path and the current point is not the initial
        point of the arc, a line will be drawn to the start of the arc. If there
        is no current path, then no line will be drawn.

        Parameters
        ----------
        x : float
            X-value of the center of the arc.
        y : float
            Y-value of the center of the arc.
        radius : float
            The radius of the arc.
        start_angle : float
            The angle, in radians, that the starting point makes with respect
            to the positive X-axis from the center point.
        end_angle : float
            The angles, in radians, that the final point makes with
            respect to the positive X-axis from the center point.
        cw : bool, optional
            Whether the arc should be drawn clockwise or not.
        """
        if cw: #not sure if I've got this the right way round
            self._ctx.arc_negative( x, y, radius, start_angle, end_angle)
        else:
            self._ctx.arc( x, y, radius, start_angle, end_angle)

    def arc_to(self, x1, y1, x2, y2, radius):
        """ Draw an arc between the line segments from the current point
            to (x1,y1) and from (x1,y1) to (x2,y2). Straight lines are also
            added from the current point to the start of the curve and from the
            end of the curve to (x2,y2).
        """
        current_point = self.get_path_current_point()

        # Get the endpoints on the curve where it touches the line segments
        t1, t2 = arc_to_tangent_points(current_point, (x1,y1), (x2,y2), radius)

        # draw!
        self._ctx.line_to(*t1)
        self._ctx.curve_to(x1,y1, x1,y1, *t2)
        self._ctx.line_to(x2,y2)

    #----------------------------------------------------------------
    # Getting infomration on paths
    #----------------------------------------------------------------

    def is_path_empty(self):
        """ Tests to see whether the current drawing path is empty

        What does 'empty' mean???
        """
        p = self._ctx.copy_path()
        return any(a[0] for a in p)

    def get_path_current_point(self):
        """ Returns the current point from the graphics context.

            Note:
                Currently the current_point is only affected by move_to,
                line_to, and lines.  It should also be affected by text
                operations.  I'm not sure how rect and rects and friends
                should affect it -- will find out on Mac.
        """
        return self._ctx.get_current_point()

    def get_path_bounding_box(self):
        """
        cairo.Context.path_extents not yet implemented on my cairo version.
        It's in new ones though.

        What should this method return?
        """
        if self.is_path_empty():
            return [[0,0],[0,0]]
        p = [a[1] for a in self._ctx.copy_path()]
        p = numpy.array(p)
        return [p.min(axis=1), p.max(axis=1)]


    def add_path(self, path):
        """Draw a compiled path into this gc.
        In this case, a compiled path is a Cairo.Path"""
        if isinstance(path, CompiledPath):
            self.begin_path()
            for op_name, op_args in path.state:
                op = getattr(self, op_name)
                op(*op_args)
            self.close_path()



    #----------------------------------------------------------------
    # Clipping path manipulation
    #----------------------------------------------------------------

    def clip(self):
        """
        Should this use clip or clip_preserve
        """
        fr = self._ctx.get_fill_rule()
        self._ctx.set_fill_rule(cairo.FILL_RULE_WINDING)
        self._ctx.clip()
        self._ctx.set_fill_rule(fr)

    def even_odd_clip(self):
        """
        """
        fr = self._ctx.get_fill_rule()
        self._ctx.set_fill_rule(cairo.FILL_RULE_EVEN_ODD)
        self._ctx.clip()
        self._ctx.set_fill_rule(fr)


    def clip_to_rect(self,x,y,width,height):
        """
            Sets the clipping path to the intersection of the current clipping
            path with the area defined by the specified rectangle
        """
        ctx = self._ctx
        #get the current path
        p = ctx.copy_path()
        ctx.new_path()
        ctx.rectangle(x,y,width,height)
        ctx.clip()
        ctx.append_path(p)

#    def clip_to_rects(self):
#        """
#        """
#        pass

    def clear_clip_path(self):
        self._ctx.reset_clip()

    #----------------------------------------------------------------
    # Color space manipulation
    #
    # I'm not sure we'll mess with these at all.  They seem to
    # be for setting the color system.  Hard coding to RGB or
    # RGBA for now sounds like a reasonable solution.
    #----------------------------------------------------------------

    #def set_fill_color_space(self):
    #    """
    #    """
    #    pass

    #def set_stroke_color_space(self):
    #    """
    #    """
    #    pass

    #def set_rendering_intent(self):
    #    """
    #    """
    #    pass

    #----------------------------------------------------------------
    # Color manipulation
    #----------------------------------------------------------------

    def _set_source_color(self, color):
        if len(color) == 3:
            self._ctx.set_source_rgb(*color)
        else:
            self._ctx.set_source_rgba(*color)
        # gradients or other source patterns are blown away by set_source_rgb*
        self.state.has_gradient = False

    def set_fill_color(self,color):
        """
            set_fill_color takes a sequences of rgb or rgba values
            between 0.0 and 1.0
        """
        self.state.fill_color = color

    def set_stroke_color(self,color):
        """
            set_stroke_color takes a sequences of rgb or rgba values
            between 0.0 and 1.0
        """
        self.state.stroke_color = color

    def set_alpha(self,alpha):
        """
        """
        self.state.alpha = alpha

    #----------------------------------------------------------------
    # Drawing Images
    #----------------------------------------------------------------

    def draw_image(self,img,rect=None):
        """
        img is either a N*M*3 or N*M*4 numpy array, or a Kiva image

        rect - what is this? assume it's a tuple (x,y, w, h)
        Only works with numpy arrays. What is a "Kiva Image" anyway?
        Not Yet Tested.
        """
        from kiva import agg

        if type(img) == type(numpy.array([])):
            # Numeric array
            if img.shape[2]==3:
                format = cairo.FORMAT_RGB24
            elif img.shape[2]==4:
                format = cairo.FORMAT_ARGB32
            img_width, img_height = img.shape[:2]
            img_surface = cairo.ImageSurface.create_for_data(img.astype(numpy.uint8),
                                                             format, img_width, img_height)
        elif isinstance(img, agg.GraphicsContextArray):
            converted_img = img.convert_pixel_format('rgba32', inplace=0)
            flipped_array = numpy.flipud(converted_img.bmp_array)
            img_width, img_height = converted_img.width(), converted_img.height()
            img_surface = cairo.ImageSurface.create_for_data(flipped_array.flatten(),
                                                             cairo.FORMAT_RGB24,
                                                             img_width, img_height)
        elif isinstance(img, GraphicsContext):
            # Another cairo kiva context
            img_width, img_height = img.pixel_map.width, img.pixel_map.height
            img_surface = cairo.ImageSurface.create_for_data(img.pixel_map.convert_to_argbarray(flip=True),
                                                             cairo.FORMAT_ARGB32,
                                                             img_width, img_height)
        else:
            warnings.warn("Cannot render image of type '%r' into cairo context." % \
                    type(img))
            return

        ctx = self._ctx
        img_pattern = cairo.SurfacePattern(img_surface)
        if rect:
            x,y,sx,sy = rect
            if sx != img_width or sy != img_height:
                scaler = cairo.Matrix()
                scaler.scale(img_width/float(sx), img_height/float(sy))
                img_pattern.set_matrix(scaler)
                img_pattern.set_filter(cairo.FILTER_BEST)
            ctx.set_source(img_pattern)
            #p = ctx.copy_path() #need to save the path
            ctx.new_path()
            ctx.rectangle(x,y,sx,sy)
            ctx.fill()
        else:
            ctx.set_source(img_pattern)
            ctx.paint()


    #-------------------------------------------------------------------------
    # Drawing Text
    #
    # Font handling needs more attention.
    #
    #-------------------------------------------------------------------------

    def select_font(self,face_name,size=12,style="regular",encoding=None):
        """ Selects a new font for drawing text.

            Parameters
            ----------

            face_name
                The name of a font. E.g.: "Times New Roman"
                !! Need to specify a way to check for all the types
                size
                The font size in points.
            style
                One of "regular", "bold", "italic", "bold italic"
            encoding
                A 4 letter encoding name. Common ones are:

                    * "unic" -- unicode
                    * "armn" -- apple roman
                    * "symb" -- symbol

                 Not all fonts support all encodings.  If none is
                 specified, fonts that have unicode encodings
                 default to unicode.  Symbol is the second choice.
                 If neither are available, the encoding defaults
                 to the first one returned in the FreeType charmap
                 list for the font face.
        """
        # !! should check if name and encoding are valid.
        # self.state.font = freetype.FontInfo(face_name,size,style,encoding)
        self._ctx.select_font_face(face_name, font_slant[style], font_weight[style])
        self._ctx.set_font_size(size)


    def set_font(self,font):
        """ Set the font for the current graphics context.

            A device-specific font object. In this case, a cairo FontFace object.
            It's not clear how this can be used right now.
        """
        if font.weight in (constants.BOLD, constants.BOLD_ITALIC):
            weight = cairo.FONT_WEIGHT_BOLD
        else:
            weight = cairo.FONT_WEIGHT_NORMAL

        if font.style in (constants.ITALIC, constants.BOLD_ITALIC):
            style = cairo.FONT_SLANT_ITALIC
        else:
            style = cairo.FONT_SLANT_NORMAL

        face_name = font.face_name

        ctx = self._ctx
        ctx.select_font_face(face_name, style, weight)
        ctx.set_font_size(font.size)
        #facename = font.face_name
        #slant = font.style

        #self._ctx.set_font_face(font)

    def set_font_size(self,size):
        """ Sets the size of the font.

            The size is specified in user space coordinates.
        """
        self._ctx.set_font_size(size)

    def set_character_spacing(self,spacing):
        """ Sets the amount of additional spacing between text characters.

            Parameters
            ----------

            spacing : float
                units of space extra space to add between
                text coordinates.  It is specified in text coordinate
                system.

            Notes
            -----
            1.  I'm assuming this is horizontal spacing?
            2.  Not implemented in wxPython, or cairo (for the time being)
        """
        self.state.character_spacing = spacing


    def set_text_drawing_mode(self, mode):
        """ Specifies whether text is drawn filled or outlined or both.

            Parameters
            ----------

            mode
                determines how text is drawn to the screen.  If
                a CLIP flag is set, the font outline is added to the
                clipping path. Possible values:

                    TEXT_FILL
                        fill the text
                    TEXT_STROKE
                        paint the outline
                    TEXT_FILL_STROKE
                        fill and outline
                    TEXT_INVISIBLE
                        paint it invisibly ??
                    TEXT_FILL_CLIP
                        fill and add outline clipping path
                    TEXT_STROKE_CLIP
                        outline and add outline to clipping path
                    TEXT_FILL_STROKE_CLIP
                        fill, outline, and add to clipping path
                    TEXT_CLIP
                        add text outline to clipping path

            Note:
                wxPython currently ignores all but the INVISIBLE flag.
        """
        if mode not in (TEXT_FILL, TEXT_STROKE, TEXT_FILL_STROKE,
                        TEXT_INVISIBLE, TEXT_FILL_CLIP, TEXT_STROKE_CLIP,
                        TEXT_FILL_STROKE_CLIP, TEXT_CLIP, TEXT_OUTLINE):
            msg = "Invalid text drawing mode.  See documentation for valid modes"
            raise ValueError, msg
        self.state.text_drawing_mode = mode

    def set_text_position(self,x,y):
        """
        """
        m = list(self.text_matrix)
        m[4:6] = x,y
        self.text_matrix = cairo.Matrix(*m)

    def get_text_position(self):
        """
        """
        return tuple(self.text_matrix)[4:6]

    def set_text_matrix(self,ttm):
        """
        """
        if isinstance(ttm, cairo.Matrix):
            m = ttm
        else:
            m = cairo.Matrix(ttm)
        self.text_matrix = m

    def get_text_matrix(self):
        """
        """
        return copy.copy(self.text_matrix)

    def show_text(self,text, point=(0.0,0.0)):
        """ Draws text on the device at the current text position.
            Leaves the current point unchanged.
        """
        self.show_text_at_point(text, point[0], point[1])

    def show_glyphs(self):
        """
        """
        pass

    def show_text_at_point(self, text, x, y):
        """
        """
        ctx = self._ctx
        #print text, list(ctx.get_matrix())
        cur_path = ctx.copy_path()
        ctx.save()
        ctx.transform(self.text_matrix)
        ctx.transform(cairo.Matrix(1,0,0,1,x,y))
        ctx.new_path()
        ctx.text_path(text)
        #need to set up text drawing mode
        #'outline' and  'invisible' modes are not supported.
        mode = self.state.text_drawing_mode
        if mode in text_draw_modes['STROKE']:
            self._set_source_color(self.state.stroke_color)
            ctx.stroke_preserve()
        if mode in text_draw_modes['FILL']:
            self._set_source_color(self.state.fill_color)
            ctx.fill_preserve()
        if mode in text_draw_modes['CLIP']:
            ctx.clip_preserve()

        ctx.restore()
        ctx.new_path()
        ctx.append_path(cur_path)

    def show_glyphs_at_point(self):
        """
        """
        pass

    #----------------------------------------------------------------
    # Painting paths (drawing and filling contours)
    #----------------------------------------------------------------

    def draw_path(self, mode=constants.FILL_STROKE):
        """ Walks through all the drawing subpaths and draw each element.

            Each subpath is drawn separately.

            Parameters
            ----------
            mode
                Specifies how the subpaths are drawn.  The default is
                FILL_STROKE.  The following are valid values.

                    FILL
                        Paint the path using the nonzero winding rule
                        to determine the regions for painting.
                    EOF_FILL
                        Paint the path using the even-odd fill rule.
                    STROKE
                        Draw the outline of the path with the
                        current width, end caps, etc settings.
                    FILL_STROKE
                        First fill the path using the nonzero
                        winding rule, then stroke the path.
                    EOF_FILL_STROKE
                        First fill the path using the even-odd
                        fill method, then stroke the path.
        """
        ctx = self._ctx
        fr = ctx.get_fill_rule()
        if mode in [constants.EOF_FILL, constants.EOF_FILL_STROKE]:
            ctx.set_fill_rule(cairo.FILL_RULE_EVEN_ODD)
        else:
            ctx.set_fill_rule(cairo.FILL_RULE_WINDING)

        if mode in [constants.FILL, constants.EOF_FILL]:
            if not self.state.has_gradient:
                self._set_source_color(self.state.fill_color)
            ctx.fill()
        elif mode == constants.STROKE:
            if not self.state.has_gradient:
                self._set_source_color(self.state.stroke_color)
            ctx.stroke()
        elif mode in [constants.FILL_STROKE, constants.EOF_FILL_STROKE]:
            if not self.state.has_gradient:
                self._set_source_color(self.state.fill_color)
            ctx.fill_preserve()
            if not self.state.has_gradient:
                self._set_source_color(self.state.stroke_color)
            ctx.stroke()

        ctx.set_fill_rule(fr)

    def stroke_rect(self):
        """
        How does this affect the current path?
        """
        pass

    def stroke_rect_with_width(self):
        """
        """
        pass

    def fill_rect(self):
        """
        """
        pass

    def fill_rects(self):
        """
        """
        pass

    def clear_rect(self):
        """
        """
        pass

    def get_text_extent(self,textstring):
        """
            returns the width and height of the rendered text
        """
        xb, yb, w, h, xa, ya = self._ctx.text_extents(textstring)
        return xb, yb, w, h

    def get_full_text_extent(self,textstring):
        """
            How does this differ from 'get_text_extent' ???

            This just calls get_text_extent, for the time being.
        """
        x,y,w,h = self.get_text_extent(textstring)
        ascent, descent, height, maxx, maxy = self._ctx.font_extents()
        return w, ascent+descent, -descent, height

    def render_component(self, component, container_coords=False):
        """ Renders the given component.

        Parameters
        ----------
        component : Component
            The component to be rendered.
        container_coords : Boolean
            Whether to use coordinates of the component's container

        Description
        -----------
        If *container_coords* is False, then the (0,0) coordinate of this
        graphics context corresponds to the lower-left corner of the
        component's **outer_bounds**. If *container_coords* is True, then the
        method draws the component as it appears inside its container, i.e., it
        treats (0,0) of the graphics context as the lower-left corner of the
        container's outer bounds.
        """

        x, y = component.outer_position
        w, h = component.outer_bounds
        if not container_coords:
            x = -x
            y = -y
        self.translate_ctm(x, y)
        component.draw(self, view_bounds=(0, 0, w, h))
        return

    def save(self, filename, file_format=None):
        """ Save the GraphicsContext to a (PNG) file.
            file_format is ignored.
        """
        self.surface.flush()
        self.surface.write_to_png(filename)


class CompiledPath(object):

    def __init__(self):
        self.state = []

    def add_path(self, *args):
        self.state.append(('begin_path', args))

    def rect(self, *args):
        self.state.append(('rect', args))

    def move_to(self, *args):
        self.state.append(('move_to', args))

    def line_to(self, *args):
        self.state.append(('line_to', args))

    def close_path(self, *args):
        self.state.append(('close_path', args))

    def quad_curve_to(self, *args):
        self.state.append(('quad_curve_to', args))

    def curve_to(self, *args):
        self.state.append(('curve_to', args))

    def arc(self, *args):
        self.state.append(('arc', args))

    def total_vertices(self):
        return len(self.state) + 1

    def vertex(self, index):
        return (self.state[index-1][1][0:2],)


def font_metrics_provider():
    return GraphicsContext((1,1))

if __name__=="__main__":
    from numpy import fabs, linspace, pi, sin
    from scipy.special import jn

    from traits.api import false
    from chaco.api import ArrayPlotData, Plot, PlotGraphicsContext
    from chaco.example_support import COLOR_PALETTE

    from itertools import cycle, izip

    DPI = 72.0
    dpi_scale = DPI / 72.0

    def create_plot():
        numpoints = 100
        low = -5
        high = 15.0
        x = linspace(low, high, numpoints)
        pd = ArrayPlotData(index=x)
        p = Plot(pd, bgcolor="lightgray", padding=50, border_visible=True)
        for t,i in izip(cycle(['line','scatter']),range(10)):
            pd.set_data("y" + str(i), jn(i,x))
            p.plot(("index", "y" + str(i)), color=tuple(COLOR_PALETTE[i]),
                   width = 2.0 * dpi_scale, type=t)
        p.x_grid.visible = True
        p.x_grid.line_width *= dpi_scale
        p.y_grid.visible = True
        p.y_grid.line_width *= dpi_scale
        p.legend.visible = True
        return p

    container = create_plot()
    container.outer_bounds = [800,600]
    container.do_layout(force=True)

    def render_cairo_png():
        w,h = 800,600
        scale = 1.0
        s = cairo.ImageSurface(cairo.FORMAT_ARGB32, int(w*scale),int(h*scale))
        s.set_device_offset(0,h*scale)
        ctx = cairo.Context(s)
        ctx.set_source_rgb(1,1,1)
        ctx.paint()
        ctx.scale(1,-1)
        ctx.scale(scale,scale)
        gc = GraphicsContext((w,h), context=ctx)
        gc.render_component(container)
        s.flush()
        s.write_to_png("/tmp/kiva_cairo.png")

    def render_cairo_svg():
        w,h = 800,600
        scale = 1.0
        s = cairo.SVGSurface("/tmp/kiva_cairo.svg", w*scale,h*scale)
        s.set_device_offset(0,h*scale)
        ctx = cairo.Context(s)
        ctx.set_source_rgb(1,1,1)
        ctx.paint()
        ctx.scale(1,-1)
        ctx.scale(scale,scale)
        gc = GraphicsContext((w,h), context=ctx)
        gc.render_component(container)
        s.finish()

    def render_cairo_pdf():
        w,h = 800,600
        scale = 1.0
        s = cairo.PDFSurface("/tmp/kiva_cairo.pdf", w*scale,h*scale)
        s.set_device_offset(0,h*scale)
        ctx = cairo.Context(s)
        ctx.set_source_rgb(1,1,1)
        ctx.paint()
        ctx.scale(1,-1)
        ctx.scale(scale,scale)
        gc = GraphicsContext((w,h), context=ctx)
        gc.render_component(container)
        s.finish()

    def render_agg():
        gc2 = PlotGraphicsContext((800,600), dpi=DPI)
        gc2.render_component(container)
        gc2.save("/tmp/kiva_agg.png")

    #render_agg()
    render_cairo_png()
    render_cairo_svg()
    render_cairo_pdf()
    render_agg()