This file is indexed.

/usr/share/pyshared/chemfp/fps_search.py is in python-chemfp 1.1p1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# Internal module to help with FPS-based searches
from __future__ import absolute_import

import ctypes
import itertools
import array

import _chemfp
from . import ChemFPError
from . import check_fp_problems, check_metadata_problems

class FPSFormatError(ChemFPError):
    def __init__(self, code, filename, lineno):
        self.code = code
        self.filename = filename
        self.lineno = lineno
        super(FPSFormatError, self).__init__(code, filename, lineno)
    def __repr__(self):
        return "FPSFormatError(%r, %r, %r)" % (self.code, self.filename, self.lineno)
    def __str__(self):
        return "%s at line %s of %r" % (_chemfp.strerror(self.code), self.lineno, self.filename)

def _chemfp_error(err, lineno, filename):
    if -40 <= err <= -30:
        return FPSFormatError(err, filename, lineno)
    elif err == -2:
        raise MemoryError(_chemfp.strerror(err))
    else:
        # This shouldn't happen
        return RuntimeError(_chemfp.strerror(err))

def require_matching_sizes(query_arena, target_reader):
    query_num_bits = query_arena.metadata.num_bits
    assert query_num_bits is not None, "arenas must define num_bits"
    target_num_bits = target_reader.metadata.num_bits
    if (target_num_bits is not None):
        if query_num_bits != target_num_bits:
            raise ValueError("query_arena has %d bits while target_reader has %d bits" % (query_num_bits, target_num_bits))

    query_num_bytes = query_arena.metadata.num_bytes
    assert query_num_bytes is not None, "arenas must define num_bytes"
    target_num_bytes = target_reader.metadata.num_bytes
    if target_num_bytes is None:
        raise ValueError("target_reader missing num_bytes metadata")
    if query_num_bytes != target_num_bytes:
        raise ValueError("query_arena uses %d bytes while target_reader uses %d bytes" % (query_num_bytes, target_num_bytes))


def report_errors(problem_report):
    for (severity, error, msg_template) in problem_report:
        if severity == "error":
            raise TypeError(msg_template % dict(metadata1 = "query",
                                                metadata2 = "target"))

######## count Tanimoto search #########

def _fp_to_arena(query_fp, metadata):
    assert len(query_fp) == metadata.num_bytes
    from . import arena
    return arena.FingerprintArena(metadata, 1, 0, 0, len(query_fp), query_fp, "", [None])

def count_tanimoto_hits_fp(query_fp, target_reader, threshold):
    return count_tanimoto_hits_arena(_fp_to_arena(query_fp, target_reader.metadata), target_reader, threshold)[0]

def count_tanimoto_hits_arena(query_arena, target_reader, threshold):
    require_matching_sizes(query_arena, target_reader)
    counts = array.array("i", (0 for i in xrange(len(query_arena))))

    lineno = target_reader._first_fp_lineno

    for block in target_reader.iter_blocks():
        err, num_lines = _chemfp.fps_count_tanimoto_hits(
            query_arena.metadata.num_bits,
            query_arena.start_padding, query_arena.end_padding,
            query_arena.storage_size, query_arena.arena, 0, -1,
            block, 0, -1,
            threshold, counts)
        lineno += num_lines
        if err:
            raise _chemfp_error(err, lineno, target_reader._filename)

    return list(counts)
    



######## threshold Tanimoto search #########

class TanimotoCell(ctypes.Structure):
    _fields_ = [("score", ctypes.c_double),
                ("query_index", ctypes.c_int),
                ("id_start", ctypes.c_int),
                ("id_end", ctypes.c_int)]


def threshold_tanimoto_search_fp(query_fp, target_reader, threshold):
    """Find matches in the target reader which are at least threshold similar to the query fingerprint

    The results is an FPSSearchResults instance contain the result.
    """
    ids = []
    scores = []
    fp_size = len(query_fp)
    num_bits = fp_size * 8
        
    NUM_CELLS = 1000
    cells = (TanimotoCell*NUM_CELLS)()

    lineno = target_reader._first_fp_lineno
    
    for block in target_reader.iter_blocks():
        start = 0
        end = len(block)
        while 1:
            err, start, num_lines, num_cells = _chemfp.fps_threshold_tanimoto_search(
                num_bits, 0, 0, fp_size, query_fp, 0, -1,
                block, start, end,
                threshold, cells)
            lineno += num_lines
            if err:
                raise _chemfp_error(err, lineno, target_reader._filename)
                
            for cell in itertools.islice(cells, 0, num_cells):
                    ids.append(block[cell.id_start:cell.id_end])
                    scores.append(cell.score)
            if start == end:
                break
    return FPSSearchResult(ids, scores)

def threshold_tanimoto_search_arena(query_arena, target_reader, threshold):
    """Find matches in the target reader which are at least threshold similar to the query arena fingerprints

    The results are a list in the form [search_results1, search_results2, ...]
    where search_results are in the same order as the fingerprints in the query_arena.
    """
    
    require_matching_sizes(query_arena, target_reader)

    if not query_arena:
        return FPSSearchResults([])
    results = [FPSSearchResult([], []) for i in xrange(len(query_arena))]
    
    # Compute at least 100 tanimotos per query, but at most 10,000 at a time
    # (That's about 200K of memory)
    NUM_CELLS = max(10000, len(query_arena) * 100)
    cells = (TanimotoCell*NUM_CELLS)()

    lineno = target_reader._first_fp_lineno

    for block in target_reader.iter_blocks():
        start = 0
        end = len(block)
        while 1:
            err, start, num_lines, num_cells = _chemfp.fps_threshold_tanimoto_search(
                query_arena.metadata.num_bits,
                query_arena.start_padding, query_arena.end_padding,
                query_arena.storage_size, query_arena.arena, 0, -1,
                block, start, end,
                threshold, cells)
            lineno += num_lines
            if err:
                raise _chemfp_error(err, lineno, target_reader._filename)
                
            for cell in itertools.islice(cells, 0, num_cells):
                id = block[cell.id_start:cell.id_end]
                result = results[cell.query_index]
                result.ids.append(id)
                result.scores.append(cell.score)
                
            if start == end:
                break

    return FPSSearchResults(results)
            
######### k-nearest Tanimoto search, with threshold


# Support for peering into the chemfp_fps_heap data structure

def _make_knearest_search(num_queries, k):
    class TanimotoHeap(ctypes.Structure):
        _fields_ = [("size", ctypes.c_int),
                    ("heap_state", ctypes.c_int),
                    ("indices", ctypes.POINTER(ctypes.c_int*k)),
                    ("ids", ctypes.POINTER(ctypes.c_char_p*k)),
                    ("scores", ctypes.POINTER(ctypes.c_double*k))]

    class KNearestSearch(ctypes.Structure):
        _fields_ = [("queries_start", ctypes.c_char_p),
                    ("num_queries", ctypes.c_int),
                    ("query_fp_size", ctypes.c_int),
                    ("query_storage_size", ctypes.c_int),
                    ("k", ctypes.c_int),
                    ("search_state", ctypes.c_int),
                    ("threshold", ctypes.c_double),
                    ("heaps", ctypes.POINTER(TanimotoHeap*num_queries)),
                    ("num_targets_processed", ctypes.c_int),
                    ("_all_ids", ctypes.c_void_p),
                    ("_all_scores", ctypes.c_void_p)]

    return KNearestSearch()


def knearest_tanimoto_search_fp(query_fp, target_reader, k, threshold):
    """Find k matches in the target reader which are at least threshold similar to the query fingerprint

    The results is an FPSSearchResults instance contain the result.
    """
    query_arena = _fp_to_arena(query_fp, target_reader.metadata)
    return knearest_tanimoto_search_arena(query_arena, target_reader, k, threshold)[0]

def knearest_tanimoto_search_arena(query_arena, target_reader, k, threshold):
    require_matching_sizes(query_arena, target_reader)
    if k < 0:
        raise ValueError("k must be non-negative")

    num_queries = len(query_arena)
    search = _make_knearest_search(num_queries, k)

    _chemfp.fps_knearest_search_init(
        search,
        query_arena.metadata.num_bits,
        query_arena.start_padding, query_arena.end_padding,
        query_arena.storage_size, query_arena.arena, 0, -1,
        k, threshold)

    try:
        for block in target_reader.iter_blocks():
            err = _chemfp.fps_knearest_tanimoto_search_feed(search, block, 0, -1)
            if err:
                lineno = target_reader._first_fp_lineno + search.num_targets_processed
                raise _chemfp_error(err, lineno, target_reader._filename)

        _chemfp.fps_knearest_search_finish(search)

        results = []
        for query_index in xrange(num_queries):
            heap = search.heaps[0][query_index]
            ids = []
            for i in xrange(heap.size):
                id = ctypes.string_at(heap.ids[0][i])
                ids.append(id)
            scores = heap.scores[0][:heap.size]
            results.append(FPSSearchResult(ids, scores))
        return FPSSearchResults(results)

    finally:
        _chemfp.fps_knearest_search_free(search)

def _reorder_row(ids, scores, name):
    indices = range(len(ids))
    if name == "decreasing-score":
        indices.sort(key=lambda i: (-scores[i], ids[i]))
    elif name == "increasing-score":
        indices.sort(key=lambda i: (scores[i], ids[i]))
    elif name == "decreasing-id":
        indices.sort(key=lambda i: ids[i], reverse=True)
    elif name == "increasing-id":
        indices.sort(key=lambda i: ids[i])
    elif name == "reverse":
        ids.reverse()
        scores.reverse()
        return
    elif name == "move-closest-first":
        if len(ids) <= 1:
            # Short-circuit when I don't need to do anything
            return
        x = max(scores)
        i = scores.index(x)
        ids[0], ids[i] = ids[i], ids[0]
        scores[0], scores[i] = scores[i], scores[0]
        return
    else:
        raise ValueError("Unknown sort order")

    new_ids = [ids[i] for i in indices]
    new_scores = [scores[i] for i in indices]
    ids[:] = new_ids
    scores[:] = new_scores

class FPSSearchResult(object):
    def __init__(self, ids, scores):
        self.ids = ids
        self.scores = scores
    def __len__(self):
        return len(self.ids)
    def __nonzero__(self):
        return bool(self.ids)
    def __iter__(self):
        return itertools.izip(self.ids, self.scores)
    def __getitem__(self, i):
        return (self.ids[i], self.scores[i])
    def clear(self):
        self.ids = []
        self.scores = []

    def get_ids(self):
        return self.ids
    def get_scores(self):
        return self.scores
    def get_ids_and_scores(self):
        return zip(self.ids, self.scores)
    def reorder(self, order="decreasing-score"):
        _reorder_row(self.ids, self.scores, order)

class FPSSearchResults(object):
    def __init__(self, results):
        self._results = results

    def __len__(self):
        return len(self._results)

    def __getitem__(self, i):
        return self._results[i]

    def __iter__(self):
        return iter(self._results)

    def iter_ids(self):
        for result in self._results:
            yield result.ids

    def iter_scores(self):
        for result in self._results:
            yield result.scores
            
    def iter_ids_and_scores(self):
        for result in self._results:
            yield zip(result.ids, result.scores)

    def reorder_all(self, order="decreasing-score"):
        for result in self._results:
            _reorder_row(result.ids, result.scores, order)

    def clear_all(self):
        for result in self._results:
            result.clear()