/usr/lib/python2.7/dist-packages/chaco/scatterplot.py is in python-chaco 4.1.0-1ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 | """ Defines the ScatterPlot class, and associated Traits UI view and helper
function.
"""
from __future__ import with_statement
# Major library imports
from numpy import abs, argmin, around, array, asarray, compress, invert, isnan, \
sqrt, sum, transpose, where
# Enthought library imports
from enable.api import black_color_trait, ColorTrait, AbstractMarker, \
CustomMarker, MarkerNameDict, MarkerTrait
from kiva.constants import STROKE
from traits.api import Any, Array, Bool, Float, Int, Trait, Callable
from traitsui.api import View, VGroup, Item
# Local relative imports
from base_xy_plot import BaseXYPlot
from speedups import scatterplot_gather_points
from base import reverse_map_1d
#------------------------------------------------------------------------------
# Traits UI View for customizing a scatter plot.
#------------------------------------------------------------------------------
class ScatterPlotView(View):
""" Traits UI View for customizing a scatter plot.
"""
def __init__(self):
vgroup = VGroup(
Item("marker", label="Marker type"),
Item("marker_size", label="Size"),
Item("color", label="Color", style="custom"),
)
super(ScatterPlotView, self).__init__(vgroup)
self.buttons = ["OK", "Cancel"]
#------------------------------------------------------------------------------
# Helper functions for scatterplot rendering
#------------------------------------------------------------------------------
def render_markers(gc, points, marker, marker_size,
color, line_width, outline_color,
custom_symbol=None, debug=False):
""" Helper function for a PlotComponent instance to render a
set of (x,y) points onto a graphics context. Currently, it makes some
assumptions about the attributes on the plot object; these may be factored
out eventually.
Parameters
----------
gc : GraphicsContext
The target for rendering the points
points : array of (x,y) points
The points to render
marker : string, class, or instance
The type of marker to use for the points
marker_size : number
The size of the markers
color : RGB(A) color
The color of the markers
line_width : number
The width, in pixels, of the marker outline
outline_color : RGB(A) color
The color of the marker outline
custom_symbol : CompiledPath
If the marker style is 'custom', this is the symbol
"""
if len(points) == 0:
return
# marker can be string, class, or instance
if type(marker) == str:
marker = MarkerNameDict[marker]()
elif issubclass(marker, AbstractMarker):
marker = marker()
with gc:
gc.set_line_dash(None)
if marker.draw_mode == STROKE:
# markers with the STROKE draw mode will not be visible
# if the line width is zero, so set it to 1
if line_width == 0:
line_width = 1.0
gc.set_stroke_color(color)
gc.set_line_width(line_width)
else:
gc.set_stroke_color(outline_color)
gc.set_line_width(line_width)
gc.set_fill_color(color)
gc.begin_path()
# This is the fastest method - use one of the kiva built-in markers
if (not debug) and hasattr(gc, "draw_marker_at_points") \
and (marker.__class__ != CustomMarker) \
and (gc.draw_marker_at_points(points,
marker_size,
marker.kiva_marker) != 0):
pass
# The second fastest method - draw the path into a compiled path, then
# draw the compiled path at each point
elif hasattr(gc, 'draw_path_at_points'):
#if debug:
# import pdb; pdb.set_trace()
if marker.__class__ != CustomMarker:
path = gc.get_empty_path()
marker.add_to_path(path, marker_size)
mode = marker.draw_mode
else:
path = custom_symbol
mode = STROKE
if not marker.antialias:
gc.set_antialias(False)
gc.draw_path_at_points(points, path, mode)
# Neither of the fast functions worked, so use the brute-force, manual way
else:
if not marker.antialias:
gc.set_antialias(False)
if marker.__class__ != CustomMarker:
with gc:
for sx,sy in points:
gc.translate_ctm(sx, sy)
gc.begin_path()
# Kiva GCs have a path-drawing interface
marker.add_to_path(gc, marker_size)
gc.draw_path(marker.draw_mode)
gc.translate_ctm(-sx, -sy)
else:
path = custom_symbol
with gc:
for sx,sy in points:
gc.translate_ctm(sx, sy)
gc.begin_path()
gc.add_path(path)
gc.draw_path(STROKE)
gc.translate_ctm(-sx, -sy)
return
#------------------------------------------------------------------------------
# The scatter plot
#------------------------------------------------------------------------------
class ScatterPlot(BaseXYPlot):
"""
Renders a scatter plot, given an index and value arrays.
"""
# The CompiledPath to use if **marker** is set to "custom". This attribute
# must be a compiled path for the Kiva context onto which this plot will
# be rendered. Usually, importing kiva.GraphicsContext will do
# the right thing.
custom_symbol = Any
#------------------------------------------------------------------------
# Styles on a ScatterPlot
#------------------------------------------------------------------------
# The type of marker to use. This is a mapped trait using strings as the
# keys.
marker = MarkerTrait
# The pixel size of the marker, not including the thickness of the outline.
marker_size = Float(4.0)
# The function which actually renders the markers
render_markers_func = Callable(render_markers)
# The thickness, in pixels, of the outline to draw around the marker. If
# this is 0, no outline is drawn.
line_width = Float(1.0)
# The fill color of the marker.
color = black_color_trait
# The color of the outline to draw around the marker.
outline_color = black_color_trait
# Traits UI View for customizing the plot.
traits_view = ScatterPlotView()
#------------------------------------------------------------------------
# Selection and selection rendering
# A selection on the lot is indicated by setting the index or value
# datasource's 'selections' metadata item to a list of indices, or the
# 'selection_mask' metadata to a boolean array of the same length as the
# datasource.
#------------------------------------------------------------------------
show_selection = Bool(True)
selection_marker = MarkerTrait
selection_marker_size = Float(4.0)
selection_line_width = Float(1.0)
selection_color = ColorTrait("yellow")
selection_outline_color = black_color_trait
#------------------------------------------------------------------------
# Private traits
#------------------------------------------------------------------------
_cached_selected_pts = Trait(None, None, Array)
_cached_selected_screen_pts = Array
_cached_point_mask = Array
_cached_selection_point_mask = Array
_selection_cache_valid = Bool(False)
#------------------------------------------------------------------------
# Overridden PlotRenderer methods
#------------------------------------------------------------------------
def map_screen(self, data_array):
""" Maps an array of data points into screen space and returns it as
an array.
Implements the AbstractPlotRenderer interface.
"""
# data_array is Nx2 array
if len(data_array) == 0:
return []
# XXX: For some reason, doing the tuple unpacking doesn't work:
# x_ary, y_ary = transpose(data_array)
# There is a mysterious error "object of too small depth for
# desired array". However, if you catch this exception and
# try to execute the very same line of code again, it works
# without any complaints.
#
# For now, we just use slicing to assign the X and Y arrays.
data_array = asarray(data_array)
if len(data_array.shape) == 1:
x_ary = data_array[0]
y_ary = data_array[1]
else:
x_ary = data_array[:, 0]
y_ary = data_array[:, 1]
sx = self.index_mapper.map_screen(x_ary)
sy = self.value_mapper.map_screen(y_ary)
if self.orientation == "h":
return transpose(array((sx,sy)))
else:
return transpose(array((sy,sx)))
def map_data(self, screen_pt, all_values=True):
""" Maps a screen space point into the "index" space of the plot.
Overrides the BaseXYPlot implementation, and always returns an
array of (index, value) tuples.
"""
x, y = screen_pt
if self.orientation == 'v':
x, y = y, x
return array((self.index_mapper.map_data(x),
self.value_mapper.map_data(y)))
def map_index(self, screen_pt, threshold=0.0, outside_returns_none=True, \
index_only = False):
""" Maps a screen space point to an index into the plot's index array(s).
Overrides the BaseXYPlot implementation..
"""
if index_only and self.index.sort_order != "none":
data_pt = self.map_data(screen_pt)[0]
# The rest of this was copied out of BaseXYPlot.
# We can't just used BaseXYPlot.map_index because
# it expect map_data to return a value, not a pair.
if ((data_pt < self.index_mapper.range.low) or \
(data_pt > self.index_mapper.range.high)) and outside_returns_none:
return None
index_data = self.index.get_data()
value_data = self.value.get_data()
if len(value_data) == 0 or len(index_data) == 0:
return None
try:
ndx = reverse_map_1d(index_data, data_pt, self.index.sort_order)
except IndexError, e:
# if reverse_map raises this exception, it means that data_pt is
# outside the range of values in index_data.
if outside_returns_none:
return None
else:
if data_pt < index_data[0]:
return 0
else:
return len(index_data) - 1
if threshold == 0.0:
# Don't do any threshold testing
return ndx
x = index_data[ndx]
y = value_data[ndx]
if isnan(x) or isnan(y):
return None
sx, sy = self.map_screen([x,y])
if ((threshold == 0.0) or (screen_pt[0]-sx) < threshold):
return ndx
else:
return None
else:
# Brute force implementation
all_data = transpose(array([self.index.get_data(), self.value.get_data()]))
screen_points = around(self.map_screen(all_data))
if len(screen_points) == 0:
return None
if index_only:
distances = abs(screen_points[:,0] - screen_pt[0])
else:
delta = screen_points - array([screen_pt])
distances = sqrt(sum(delta*delta, axis=1))
closest_ndx = argmin(distances)
if distances[closest_ndx] <= threshold:
return closest_ndx
else:
return None
#------------------------------------------------------------------------
# Private methods; implements the BaseXYPlot stub methods
#------------------------------------------------------------------------
def _gather_points_old(self):
"""
Collects the data points that are within the bounds of the plot and
caches them
"""
if self._cache_valid and self._selection_cache_valid:
return
if not self.index or not self.value:
return
index, index_mask = self.index.get_data_mask()
value, value_mask = self.value.get_data_mask()
if len(index) == 0 or len(value) == 0 or len(index) != len(value):
self._cached_data_pts = []
self._cached_point_mask = []
self._cache_valid = True
return
index_range_mask = self.index_mapper.range.mask_data(index)
value_range_mask = self.value_mapper.range.mask_data(value)
nan_mask = invert(isnan(index)) & index_mask & \
invert(isnan(value)) & value_mask
point_mask = nan_mask & index_range_mask & value_range_mask
if not self._cache_valid:
points = transpose(array((index,value)))
self._cached_data_pts = compress(point_mask, points, axis=0)
self._cached_point_mask = point_mask[:]
self._cache_valid = True
if not self._selection_cache_valid:
indices = None
# Check both datasources for metadata
# XXX: Only one is used, and if both are defined, then self.index
# happens to take precendence. Perhaps this should be more
# structured? Hopefully, when we create the Selection objects,
# we'll have to define a small algebra about how they are combined,
# and this will fall out...
for ds in (self.index, self.value):
if ds.metadata.get('selection_masks', None) is not None:
try:
for mask in ds.metadata['selection_masks']:
point_mask &= mask
indices = where(point_mask == True)
points = transpose(array((index[indices], value[indices])))
except:
continue
elif ds.metadata.get('selections', None) is not None:
try:
indices = ds.metadata['selections']
point_mask = point_mask[indices]
points = transpose(array((index[indices], value[indices])))
except:
continue
else:
continue
self._cached_selection_point_mask = point_mask
self._cached_selected_pts = points
self._selection_cache_valid = True
break
else:
self._cached_selected_pts = None
self._selection_cache_valid = True
return
def _gather_points_fast(self):
if self._cache_valid and self._selection_cache_valid:
return
if not self.index or not self.value:
return
index, index_mask = self.index.get_data_mask()
value, value_mask = self.value.get_data_mask()
index_range = self.index_mapper.range
value_range = self.value_mapper.range
kw = {}
for axis in ("index", "value"):
ds = getattr(self, axis)
if ds.metadata.get('selections', None) is not None:
kw[axis + "_sel"] = ds.metadata['selections']
if ds.metadata.get('selection_mask', None) is not None:
kw[axis + "_sel_mask"] = ds.metadata['selection_mask']
points, selections = scatterplot_gather_points(index, index_range.low, index_range.high,
value, value_range.low, value_range.high,
index_mask = index_mask,
value_mask = value_mask,
**kw)
if not self._cache_valid:
self._cached_data_pts = points
self._cache_valid = True
if not self._selection_cache_valid:
if selections is not None and len(selections) > 0:
self._cached_selected_pts = points[selections]
self._selection_cache_valid = True
else:
self._cached_selected_pts = None
self._selection_cache_valid = True
def _gather_points(self):
#self._gather_points_fast()
self._gather_points_old()
def _render(self, gc, points, icon_mode=False):
"""
This same method is used both to render the scatterplot and to
draw just the iconified version of this plot, with the latter
simply requiring that a few steps be skipped.
"""
if not icon_mode:
gc.save_state()
gc.clip_to_rect(self.x, self.y, self.width, self.height)
self.render_markers_func(gc, points, self.marker, self.marker_size,
self.color_, self.line_width, self.outline_color_,
self.custom_symbol)
if self.show_selection and self._cached_selected_pts is not None and len(self._cached_selected_pts) > 0:
sel_pts = self.map_screen(self._cached_selected_pts)
self.render_markers_func(gc, sel_pts, self.selection_marker,
self.selection_marker_size, self.selection_color_,
self.selection_line_width, self.selection_outline_color_,
self.custom_symbol)
if not icon_mode:
# Draw the default axes, if necessary
self._draw_default_axes(gc)
gc.restore_state()
def _render_icon(self, gc, x, y, width, height):
point = array([x+width/2, y+height/2])
self._render(gc, [point], icon_mode=True)
return
#------------------------------------------------------------------------
# Event handlers
#------------------------------------------------------------------------
def _alpha_changed(self):
self.color_ = self.color_[0:3] + (self.alpha,)
self.outline_color_ = self.outline_color_[0:3] + (self.alpha,)
self.invalidate_draw()
self.request_redraw()
def _marker_changed(self):
self.invalidate_draw()
self.request_redraw()
def _marker_size_changed(self):
self.invalidate_draw()
self.request_redraw()
def _line_width_changed(self):
self.invalidate_draw()
self.request_redraw()
def _color_changed(self):
self.invalidate_draw()
self.request_redraw()
def _outline_color_changed(self):
self.invalidate_draw()
self.request_redraw()
def _either_metadata_changed(self):
self._selection_cache_valid = False
self.invalidate_draw()
self.request_redraw()
# EOF
|