This file is indexed.

/usr/share/octave/site/m/vlfeat/toolbox/xtest/vl_test_svmtrain.m is in octave-vlfeat 0.9.17+dfsg0-6build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
function results = vl_test_svmtrain(varargin)
% VL_TEST_SVMTRAIN
  vl_test_init ;
end

function s = setup()
  randn('state',0) ;
  Np = 10 ;
  Nn = 10 ;
  xp = diag([1 3])*randn(2, Np) ;
  xn = diag([1 3])*randn(2, Nn) ;
  xp(1,:) = xp(1,:) + 2 + 1 ;
  xn(1,:) = xn(1,:) - 2 + 1 ;

  s.x = [xp xn] ;
  s.y = [ones(1,Np) -ones(1,Nn)] ;
  s.lambda = 0.01 ;
  s.biasMultiplier = 10 ;

  if 0
    figure(1) ; clf;
    vl_plotframe(xp, 'g') ; hold on ;
    vl_plotframe(xn, 'r') ;
    axis equal ; grid on ;
  end

  % Run LibSVM as an accuate solver to compare results with.  Note that
  % LibSVM optimizes a slightly different cost function due to the way
  % the bias is handled.
  % [s.w, s.b] = accurate_solver(s.x, s.y, s.lambda, s.biasMultiplier) ;
  s.w = [1.180762951236242; 0.098366470721632] ;
  s.b = -1.540018443946204 ;
  s.obj = obj(s, s.w, s.b) ;
end

function test_sgd_basic(s)
  for conv = {@single, @double}
    conv = conv{1} ;
    vl_twister('state',0) ;
    [w b info] = vl_svmtrain(s.x, s.y, s.lambda, ...
                             'Solver', 'sgd', ...
                             'BiasMultiplier', s.biasMultiplier, ...
                             'BiasLearningRate', 1/s.biasMultiplier, ...
                             'MaxNumIterations', 1e5, ...
                             'Epsilon', 1e-3) ;
    % there are no absolute guarantees on the objective gap, but
    % the heuristic SGD uses as stopping criterion seems reasonable
    % within a factor 10 at least.
    o = obj(s, w, b) ;
    gap = o - s.obj ;
    vl_assert_almost_equal(conv([w; b]), conv([s.w; s.b]), 0.1) ;
    assert(gap <= 1e-2) ;
  end
end

function test_sdca_basic(s)
  for conv = {@single, @double}
    conv = conv{1} ;
    vl_twister('state',0) ;
    [w b info] = vl_svmtrain(s.x, s.y, s.lambda, ...
                             'Solver', 'sdca', ...
                             'BiasMultiplier', s.biasMultiplier, ...
                             'MaxNumIterations', 1e5, ...
                             'Epsilon', 1e-3) ;

    % the gap with the accurate solver cannot be
    % greater than the duality gap.
    o = obj(s, w, b) ;
    gap = o - s.obj ;
    vl_assert_almost_equal(conv([w; b]), conv([s.w; s.b]), 0.1) ;
    assert(gap <= 1e-3) ;
  end
end

function test_weights(s)
  for algo = {'sgd', 'sdca'}
    for conv = {@single, @double}
      conv = conv{1} ;
      vl_twister('state',0) ;
      numRepeats = 10 ;
      pos = find(s.y > 0) ;
      neg = find(s.y < 0) ;
      weights = ones(1, numel(s.y)) ;
      weights(pos) = numRepeats ;

      % simulate weighting by repeating positives
      [w b info] = vl_svmtrain(...
        s.x(:, [repmat(pos,1,numRepeats) neg]), ...
        s.y(:, [repmat(pos,1,numRepeats) neg]), ...
        s.lambda / (numel(pos) *numRepeats + numel(neg)) / (numel(pos) + numel(neg)), ...
        'Solver', 'sdca', ...
        'BiasMultiplier', s.biasMultiplier, ...
        'MaxNumIterations', 1e6, ...
        'Epsilon', 1e-4) ;

      % apply weigthing
      [w_ b_ info_] = vl_svmtrain(...
        s.x, ...
        s.y, ...
        s.lambda, ...
        'Solver', char(algo), ...
        'BiasMultiplier', s.biasMultiplier, ...
        'MaxNumIterations', 1e6, ...
        'Epsilon', 1e-4, ...
        'Weights', weights) ;
      vl_assert_almost_equal(conv([w; b]), conv([w_; b_]), 0.05) ;
    end
  end
end

function test_homkermap(s)
  for solver = {'sgd', 'sdca'}
    for conv = {@single,@double}
      conv = conv{1} ;
      dataset = vl_svmdataset(conv(s.x), 'homkermap', struct('order',1)) ;
      vl_twister('state',0) ;
      [w_ b_] = vl_svmtrain(dataset, s.y, s.lambda) ;

      x_hom = vl_homkermap(conv(s.x), 1) ;
      vl_twister('state',0) ;
      [w b] = vl_svmtrain(x_hom, s.y, s.lambda) ;
      vl_assert_almost_equal([w; b],[w_; b_], 1e-7) ;
    end
  end
end

function [w,b] = accurate_solver(X, y, lambda, biasMultiplier)
  addpath opt/libsvm/matlab/
  N = size(X,2) ;
  model = svmtrain(y', [(1:N)' X'*X], sprintf(' -c %f -t 4 -e 0.00001 ', 1/(lambda*N))) ;
  w = X(:,model.SVs) * model.sv_coef ;
  b = - model.rho ;
  format long ;
  disp('model w:')
  disp(w)
  disp('bias b:')
  disp(b)
end

function o = obj(s, w, b)
  o = (sum(w.*w) + b*b) * s.lambda / 2 +  mean(max(0, 1 - s.y .* (w'*s.x + b))) ;
end