This file is indexed.

/usr/share/octave/packages/signal-1.2.2/fir1.m is in octave-signal 1.2.2-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
## Copyright (C) 2000 Paul Kienzle <pkienzle@users.sf.net>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## usage: b = fir1(n, w [, type] [, window] [, noscale])
##
## Produce an order n FIR filter with the given frequency cutoff,
## returning the n+1 filter coefficients in b.  
##
## n: order of the filter (1 less than the length of the filter)
## w: band edges
##    strictly increasing vector in range [0, 1]
##    singleton for highpass or lowpass, vector pair for bandpass or
##    bandstop, or vector for alternating pass/stop filter.
## type: choose between pass and stop bands
##    'high' for highpass filter, cutoff at w
##    'stop' for bandstop filter, edges at w = [lo, hi]
##    'DC-0' for bandstop as first band of multiband filter
##    'DC-1' for bandpass as first band of multiband filter
## window: smoothing window
##    defaults to hamming(n+1) row vector
##    returned filter is the same shape as the smoothing window
## noscale: choose whether to normalize or not
##    'scale': set the magnitude of the center of the first passband to 1
##    'noscale': don't normalize
##
## To apply the filter, use the return vector b:
##       y=filter(b,1,x);
##
## Examples:
##   freqz(fir1(40,0.3));
##   freqz(fir1(15,[0.2, 0.5], 'stop'));  # note the zero-crossing at 0.1
##   freqz(fir1(15,[0.2, 0.5], 'stop', 'noscale'));

## TODO: Consider using exact expression (in terms of sinc) for the
## TODO:    impulse response rather than relying on fir2.
## TODO: Find reference to the requirement that order be even for
## TODO:    filters that end high.  Figure out what to do with the
## TODO:    window in these cases
function b = fir1(n, w, varargin)

  if nargin < 2 || nargin > 5
    print_usage;
  endif
  
  ## Assign default window, filter type and scale.
  ## If single band edge, the first band defaults to a pass band to 
  ## create a lowpass filter.  If multiple band edges, the first band 
  ## defaults to a stop band so that the two band case defaults to a 
  ## band pass filter.  Ick.
  window  = [];
  scale   = 1;
  ftype   = (length(w)==1);

  ## sort arglist, normalize any string
  for i=1:length(varargin)
    arg = varargin{i}; 
    if ischar(arg), arg=lower(arg);end
    if isempty(arg) continue; end  # octave bug---can't switch on []
    switch arg
      case {'low','stop','dc-1'},             ftype  = 1;
      case {'high','pass','bandpass','dc-0'}, ftype  = 0;
      case {'scale'},                         scale  = 1;
      case {'noscale'},                       scale  = 0;
      otherwise                               window = arg;
    end
  endfor

  ## build response function according to fir2 requirements
  bands = length(w)+1;
  f = zeros(1,2*bands);
  f(1) = 0; f(2*bands)=1;
  f(2:2:2*bands-1) = w;
  f(3:2:2*bands-1) = w;
  m = zeros(1,2*bands);
  m(1:2:2*bands) = rem([1:bands]-(1-ftype),2);
  m(2:2:2*bands) = m(1:2:2*bands);

  ## Increment the order if the final band is a pass band.  Something
  ## about having a nyquist frequency of zero causing problems.
  if rem(n,2)==1 && m(2*bands)==1, 
    warning("n must be even for highpass and bandstop filters. Incrementing.");
    n = n+1;
    if isvector(window) && isreal(window) && !ischar(window)
      ## Extend the window using interpolation
      M = length(window);
      if M == 1,
        window = [window; window];
      elseif M < 4
        window = interp1(linspace(0,1,M),window,linspace(0,1,M+1),'linear');
      else
        window = interp1(linspace(0,1,M),window,linspace(0,1,M+1),'spline');
      endif
    endif
  endif

  ## compute the filter
  b = fir2(n, f, m, 512, 2, window);

  ## normalize filter magnitude
  if scale == 1
    ## find the middle of the first band edge
    ## find the frequency of the normalizing gain
    if m(1) == 1
      ## if the first band is a passband, use DC gain
      w_o = 0;
    elseif f(4) == 1
      ## for a highpass filter,
      ## use the gain at half the sample frequency
      w_o = 1;
    else
      ## otherwise, use the gain at the center
      ## frequency of the first passband
      w_o = f(3) + (f(4)-f(3))/2;
    endif

    ## compute |h(w_o)|^-1
    renorm = 1/abs(polyval(b, exp(-1i*pi*w_o)));

    ## normalize the filter
    b = renorm*b;
  endif
endfunction

%!demo
%! freqz(fir1(40,0.3));
%!demo
%! freqz(fir1(15,[0.2, 0.5], 'stop'));  # note the zero-crossing at 0.1
%!demo
%! freqz(fir1(15,[0.2, 0.5], 'stop', 'noscale'));

%!assert(fir1(2, .5, 'low', @hanning, 'scale'), [0 1 0]);
%!assert(fir1(2, .5, 'low', "hanning", 'scale'), [0 1 0]);
%!assert(fir1(2, .5, 'low', hanning(3), 'scale'), [0 1 0]);

%!assert(fir1(10,.5,'noscale'), fir1(10,.5,'low','hamming','noscale'));
%!assert(fir1(10,.5,'high'), fir1(10,.5,'high','hamming','scale'));
%!assert(fir1(10,.5,'boxcar'), fir1(10,.5,'low','boxcar','scale'));
%!assert(fir1(10,.5,'hanning','scale'), fir1(10,.5,'scale','hanning','low'));
%!assert(fir1(10,.5,'haNNing','NOscale'), fir1(10,.5,'noscale','Hanning','LOW'));
%!assert(fir1(10,.5,'boxcar',[]), fir1(10,.5,'boxcar'));