This file is indexed.

/usr/share/octave/packages/quaternion-2.2.0/q2rot.m is in octave-quaternion 2.2.0-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
## Copyright (C) 1998, 1999, 2000, 2002, 2005, 2006, 2007 Auburn University
## Copyright (C) 2010-2014   Lukas F. Reichlin
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program.  If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {[@var{axis}, @var{angle}] =} q2rot (@var{q})
## Extract vector/angle form of a unit quaternion @var{q}.
##
## @strong{Inputs}
## @table @var
## @item q
## Unit quaternion describing the rotation.
## @end table
##
## @strong{Outputs}
## @table @var
## @item axis
## Eigenaxis as a 3-d unit vector @code{[x, y, z]}.
## @item angle
## Rotation angle in radians.  The positive direction is
## determined by the right-hand rule applied to @var{axis}.
## The angle lies in the interval [0, 2*pi].
## @end table
##
## @strong{Example}
## @example
## @group
## octave:1> axis = [0, 0, 1]
## axis =
##    0   0   1
## octave:2> angle = pi/4
## angle =  0.78540
## octave:3> q = rot2q (axis, angle)
## q = 0.9239 + 0i + 0j + 0.3827k
## octave:4> [vv, th] = q2rot (q)
## vv =
##    0   0   1
## th =  0.78540
## octave:5> theta = th*180/pi
## theta =  45.000
## octave:6>
## @end group
## @end example
##
## @end deftypefn

## Adapted from: quaternion by A. S. Hodel <a.s.hodel@eng.auburn.edu>
## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: May 2010
## Version: 0.2

function [vv, theta] = q2rot (q)

  if (nargin != 1 || nargout != 2)
    print_usage ();
  endif

  if (! isa (q, "quaternion") || ! isscalar (q.w))
    error ("q2rot: require scalar quaternion as input");
  endif

  if (abs (norm (q) - 1) > 1e-12)
    warning ("q2rot: ||q||=%e, setting=1 for vv, theta", norm (q));
    q = unit (q);   # do we still need this with the atan2 formula?
  endif

  s = q.s;
  vv = [q.x, q.y, q.z];
  norm_vv = norm (vv);

  ## According to Wikipedia,
  ## http://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation#Unit_Quaternions
  ## the formula using atan2 should be numerically more stable than
  ## theta = acos (s) * 2;
  ## Possibly it helps if the quaternion has not exactly unit length.
  theta = 2 * atan2 (norm_vv, s);

  ## if (abs (theta) > pi)
  ##   theta = theta - sign (theta) * 2 * pi;
  ## endif

  ## NOTE: sin (theta/2) = norm (vv)
  if (norm_vv != 0)
    vv ./= norm_vv;
  endif

endfunction