/usr/share/octave/packages/quaternion-2.2.0/doc-cache is in octave-quaternion 2.2.0-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | # Created by Octave 3.8.0, Mon Feb 24 19:45:12 2014 UTC <root@batsu>
# name: cache
# type: cell
# rows: 3
# columns: 5
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
q2rot
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 868
-- Function File: [AXIS, ANGLE] = q2rot (Q)
Extract vector/angle form of a unit quaternion Q.
*Inputs*
Q
Unit quaternion describing the rotation.
*Outputs*
AXIS
Eigenaxis as a 3-d unit vector '[x, y, z]'.
ANGLE
Rotation angle in radians. The positive direction is
determined by the right-hand rule applied to AXIS. The angle
lies in the interval [0, 2*pi].
*Example*
octave:1> axis = [0, 0, 1]
axis =
0 0 1
octave:2> angle = pi/4
angle = 0.78540
octave:3> q = rot2q (axis, angle)
q = 0.9239 + 0i + 0j + 0.3827k
octave:4> [vv, th] = q2rot (q)
vv =
0 0 1
th = 0.78540
octave:5> theta = th*180/pi
theta = 45.000
octave:6>
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Extract vector/angle form of a unit quaternion Q.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
qi
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 313
-- Function File: qi
Create x-component of a quaternion's vector part.
q = w + x*qi + y*qj + z*qk
*Example*
octave:1> q1 = quaternion (1, 2, 3, 4)
q1 = 1 + 2i + 3j + 4k
octave:2> q2 = 1 + 2*qi + 3*qj + 4*qk
q2 = 1 + 2i + 3j + 4k
octave:3>
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Create x-component of a quaternion's vector part.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
qj
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 313
-- Function File: qj
Create y-component of a quaternion's vector part.
q = w + x*qi + y*qj + z*qk
*Example*
octave:1> q1 = quaternion (1, 2, 3, 4)
q1 = 1 + 2i + 3j + 4k
octave:2> q2 = 1 + 2*qi + 3*qj + 4*qk
q2 = 1 + 2i + 3j + 4k
octave:3>
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Create y-component of a quaternion's vector part.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
qk
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 313
-- Function File: qk
Create z-component of a quaternion's vector part.
q = w + x*qi + y*qj + z*qk
*Example*
octave:1> q1 = quaternion (1, 2, 3, 4)
q1 = 1 + 2i + 3j + 4k
octave:2> q2 = 1 + 2*qi + 3*qj + 4*qk
q2 = 1 + 2i + 3j + 4k
octave:3>
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Create z-component of a quaternion's vector part.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
rot2q
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1059
-- Function File: Q = rot2q (AXIS, ANGLE)
Create unit quaternion Q which describes a rotation of ANGLE
radians about the vector AXIS. This function uses the active
convention where the vector AXIS is rotated by ANGLE radians. If
the coordinate frame should be rotated by ANGLE radians, also
called the passive convention, this is equivalent to rotating the
AXIS by -ANGLE radians.
*Inputs*
AXIS
Vector '[x, y, z]' describing the axis of rotation.
ANGLE
Rotation angle in radians. The positive direction is
determined by the right-hand rule applied to AXIS.
*Outputs*
Q
Unit quaternion describing the rotation.
*Example*
octave:1> axis = [0, 0, 1];
octave:2> angle = pi/4;
octave:3> q = rot2q (axis, angle)
q = 0.9239 + 0i + 0j + 0.3827k
octave:4> v = quaternion (1, 1, 0)
v = 0 + 1i + 1j + 0k
octave:5> vr = q * v * conj (q)
vr = 0 + 0i + 1.414j + 0k
octave:6>
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Create unit quaternion Q which describes a rotation of ANGLE radians
about the v
|