This file is indexed.

/usr/share/octave/packages/optim-1.3.0/private/__siman__.m is in octave-optim 1.3.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
## Copyright (C) 2012 Olaf Till <i7tiol@t-online.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; If not, see <http://www.gnu.org/licenses/>.

## The simulated annealing code is translated and adapted from siman.c,
## written by Mark Galassi, of the GNU Scientific Library.

function [p_res, objf, cvg, outp] = __siman__ (f, pin, hook)

  ## passed constraints
  mc = hook.mc; # matrix of linear constraints
  vc = hook.vc; # vector of linear constraints
  f_cstr = hook.f_cstr; # function of all constraints
  df_cstr = hook.df_cstr; # function of derivatives of all constraints
  n_gencstr = hook.n_gencstr; # number of non-linear constraints
  eq_idx = hook.eq_idx; # logical index of equality constraints in all
                                # constraints
  lbound = hook.lbound; # bounds, subset of linear inequality
  ubound = hook.ubound; # constraints in mc and vc

  ## passed values of constraints for initial parameters
  pin_cstr = hook.pin_cstr;

  ## passed return value of f for initial parameters
  f_pin = hook.f_pin;

  ## passed function for complementary pivoting, currently sqp is used
  ## instead
  ##
  ## cpiv = hook.cpiv;

  ## passed simulated annealing parameters
  T_init = hook.siman.T_init;
  T_min = hook.siman.T_min;
  mu_T = hook.siman.mu_T;
  iters_fixed_T = hook.siman.iters_fixed_T;
  max_rand_step = hook.max_rand_step;

  ## passed options
  fixed = hook.fixed;
  verbose = strcmp (hook.Display, "iter");
  regain_constraints = hook.stoch_regain_constr;
  if ((siman_log = hook.siman_log))
    log = zeros (0, 5);
  endif
  if ((trace_steps = hook.trace_steps))
    trace = [0, 0, f_pin, pin.'];
  endif

  ## some useful variables derived from passed variables
  n = length (pin);
  sqp_hessian = 2 * eye (n);
  n_lconstr = length (vc);
  n_bounds = sum (lbound != -Inf) + sum (ubound != Inf);
  bidx = false (n_lconstr + n_gencstr, 1);
  bidx(1 : n_bounds) = true;
  ac_idx = true (n_lconstr + n_gencstr, 1);
  ineq_idx = ! eq_idx;
  leq_idx = eq_idx(1:n_lconstr);
  lineq_idx = ineq_idx(1:n_lconstr);
  lfalse_idx = false(n_lconstr, 1);

  nz = 20 * eps; # This is arbitrary. Accuracy of equality constraints.

  ## backend-specific checking of options and constraints
  ##
  ## equality constraints can not be met by chance
  if ((any (eq_idx) || any (lbound == ubound)) && ! regain_constraints)
    error ("If 'stoch_regain_constr' is not set, equality constraints or identical lower and upper bounds are not allowed by simulated annealing backend.");
  endif
  ##
  if (any (pin < lbound | pin > ubound) ||
      any (pin_cstr.inequ.lin_except_bounds < 0) ||
      any (pin_cstr.inequ.gen < 0) ||
      any (abs (pin_cstr.equ.lin)) >= nz ||
      any (abs (pin_cstr.equ.gen)) >= nz)
    error ("Initial parameters violate constraints.");
  endif
  ##
  if (all (fixed))
    error ("no free parameters");
  endif
  ##
  idx = isna (max_rand_step);
  max_rand_step(idx) = 0.005 * pin(idx);

  ## fill constant fields of hook for derivative-functions; some fields
  ## may be backend-specific
  dfdp_hook.fixed = fixed; # this may be handled by the frontend, but
                                # the backend still may add to it

  ## set up for iterations
  sizep = size (pin);
  p = best_p = pin;
  E = best_E = f_pin;
  T = T_init;
  n_evals = 1; # one has been done by frontend
  n_iter = 0;
  done = false;

  cvg = 1;

  ## simulated annealing
  while (! done)

    n_iter++;

    n_accepts = n_rejects = n_eless = 0;

    for id = 1 : iters_fixed_T

      new_p = p + max_rand_step .* (2 * rand (sizep) - 1);

      ## apply constraints
      if (regain_constraints)
        evidx = (abs ((ac = f_cstr (new_p, ac_idx))(eq_idx)) >= nz);
        ividx = (ac(ineq_idx) < 0);
        if (any (evidx) || any (ividx))
          nv = sum (evidx) + sum (ividx);
          if (sum (lbvidx = (new_p < lbound)) + ...
              sum (ubvidx = (new_p > ubound)) == ...
              nv)
            ## special case only bounds violated, set back to bound
            new_p(lbvidx) = lbound(lbvidx);
            new_p(ubvidx) = ubound(ubvidx);
          elseif (nv == 1 && ...
                  sum (t_eq = (abs (ac(leq_idx)) >= nz)) + ...
                  sum (t_inequ = (ac(lineq_idx) < 0)) == 1)
            ## special case only one linear constraint violated, set
            ## back perpendicularly to constraint
            tidx = lfalse_idx;
            tidx(leq_idx) = t_eq;
            tidx(lineq_idx) = t_inequ;
            c = mc(:, tidx);
            d = ac(tidx);
            new_p -= c * (d / (c.' * c));
          else
            ## other cases, set back keeping the distance to original
            ## 'new_p' minimal, using quadratic programming, or
            ## sequential quadratic programming for nonlinear
            ## constraints
            [new_p, discarded, sqp_info] = ...
                sqp (new_p, ...
                     {@(x)sumsq(x-new_p), ...
                      @(x)2*(x-new_p), ...
                      @(x)sqp_hessian}, ...
                     {@(x)f_cstr(x,eq_idx), ...
                      @(x)df_cstr(x,eq_idx, ...
                                  setfield(hook,"f", ...
                                           f_cstr(x,ac_idx)))}, ...
                     {@(x)f_cstr(x,ineq_idx), ...
                      @(x)df_cstr(x,ineq_idx, ...
                                  setfield(hook,"f", ...
                                           f_cstr(x,ac_idx)))});
            if (sqp_info != 101)
              cvg = 0;
              done = true;
              break;
            endif
          endif
        endif
      else
        n_retry_constr = 0;
        while (any (abs ((ac = f_cstr (new_p, ac_idx))(eq_idx)) >= nz) ...
               || any (ac(ineq_idx) < 0))
          new_p = p + max_rand_step .* (2 * rand (sizep) - 1);
          n_retry_constr++;
        endwhile
        if (verbose && n_retry_constr)
          printf ("%i additional tries of random step to meet constraints\n",
                  n_retry_constr);
        endif
      endif

      new_E = f (new_p);
      n_evals++;

      if (new_E < best_E)
        best_p = new_p;
        best_E = new_E;
      endif
      if (new_E < E)
        ## take a step
        p = new_p;
        E = new_E;
        n_eless++;
        if (trace_steps)
          trace(end + 1, :) = [n_iter, id, E, p.'];
        endif
      elseif (rand (1) < exp (- (new_E - E) / T))
        ## take a step
        p = new_p;
        E = new_E;
        n_accepts++;
        if (trace_steps)
          trace(end + 1, :) = [n_iter, id, E, p.'];
        endif
      else
        n_rejects++;
      endif

    endfor # iters_fixed_T

    if (verbose)
      printf ("temperature no. %i: %e, energy %e,\n", n_iter, T, E);
      printf ("tries with energy less / not less but accepted / rejected:\n");
      printf ("%i / %i / %i\n", n_eless, n_accepts, n_rejects);
    endif

    if (siman_log)
      log(end + 1, :) = [T, E, n_eless, n_accepts, n_rejects];
    endif

    ## cooling
    T /= mu_T;
    if (T < T_min)
      done = true;
    endif

  endwhile

  ## return result
  p_res = best_p;
  objf = best_E;
  outp.niter = n_iter;
  if (trace_steps)
    outp.trace = trace;
  endif
  if (siman_log)
    outp.log = log;
  endif

endfunction