This file is indexed.

/usr/share/octave/packages/optim-1.3.0/de_min.m is in octave-optim 1.3.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
## Copyright (C) 1996, 1997 R. Storn
## Copyright (C) 2009-2010 Christian Fischer <cfischer@itm.uni-stuttgart.de>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## de_min: global optimisation using differential evolution
##
## Usage: [x, obj_value, nfeval, convergence] = de_min(fcn, control)
##
## minimization of a user-supplied function with respect to x(1:D),
## using the differential evolution (DE) method based on an algorithm
## by  Rainer Storn (http://www.icsi.berkeley.edu/~storn/code.html)
## See: http://www.softcomputing.net/tevc2009_1.pdf
##
##
## Arguments:  
## ---------------
## fcn        string : Name of function. Must return a real value
## control    vector : (Optional) Control variables, described below
##         or struct
##
## Returned values:
## ----------------
## x          vector : parameter vector of best solution
## obj_value  scalar : objective function value of best solution
## nfeval     scalar : number of function evaluations
## convergence       : 1 = best below value to reach (VTR)
##                     0 = population has reached defined quality (tol)
##                    -1 = some values are close to constraints/boundaries
##                    -2 = max number of iterations reached (maxiter)
##                    -3 = max number of functions evaluations reached (maxnfe)
##
## Control variable:   (optional) may be named arguments (i.e. "name",value
## ----------------    pairs), a struct, or a vector, where
##                     NaN's are ignored.
##
## XVmin        : vector of lower bounds of initial population
##                *** note: by default these are no constraints ***
## XVmax        : vector of upper bounds of initial population
## constr       : 1 -> enforce the bounds not just for the initial population
## const        : data vector (remains fixed during the minimization)
## NP           : number of population members
## F            : difference factor from interval [0, 2]
## CR           : crossover probability constant from interval [0, 1]
## strategy     : 1 --> DE/best/1/exp           7 --> DE/best/1/bin
##                2 --> DE/rand/1/exp           8 --> DE/rand/1/bin
##                3 --> DE/target-to-best/1/exp 9 --> DE/target-to-best/1/bin
##                4 --> DE/best/2/exp           10--> DE/best/2/bin
##                5 --> DE/rand/2/exp           11--> DE/rand/2/bin
##                6 --> DEGL/SAW/exp            else  DEGL/SAW/bin
## refresh      : intermediate output will be produced after "refresh"
##                iterations. No intermediate output will be produced
##                if refresh is < 1
## VTR          : Stopping criterion: "Value To Reach"
##                de_min will stop when obj_value <= VTR.
##                Use this if you know which value you expect.
## tol          : Stopping criterion: "tolerance"
##                stops if (best-worst)/max(1,worst) < tol
##                This stops basically if the whole population is "good".
## maxnfe       : maximum number of function evaluations
## maxiter      : maximum number of iterations (generations)
##
##       The algorithm seems to work well only if [XVmin,XVmax] covers the 
##       region where the global minimum is expected.
##       DE is also somewhat sensitive to the choice of the
##       difference factor F. A good initial guess is to choose F from
##       interval [0.5, 1], e.g. 0.8.
##       CR, the crossover probability constant from interval [0, 1]
##       helps to maintain the diversity of the population and is
##       rather uncritical but affects strongly the convergence speed.
##       If the parameters are correlated, high values of CR work better.
##       The reverse is true for no correlation.
##       Experiments suggest that /bin likes to have a slightly
##       larger CR than /exp.
##       The number of population members NP is also not very critical. A
##       good initial guess is 10*D. Depending on the difficulty of the
##       problem NP can be lower than 10*D or must be higher than 10*D
##       to achieve convergence.
##
## Default Values:
## ---------------
## XVmin = [-2];
## XVmax = [ 2];
## constr= 0;
## const = [];
## NP    = 10 *D
## F     = 0.8;
## CR    = 0.9;
## strategy = 12;
## refresh  = 0;
## VTR   = -Inf;
## tol   = 1.e-3;
## maxnfe  = 1e6;
## maxiter = 1000;
##
##
## Example to find the minimum of the Rosenbrock saddle:
## ----------------------------------------------------
## Define f as:
##                    function result = f(x);
##                      result = 100 * (x(2) - x(1)^2)^2 + (1 - x(1))^2;
##                    end
## Then type:
##
## 	ctl.XVmin = [-2 -2];
## 	ctl.XVmax = [ 2  2];
## 	[x, obj_value, nfeval, convergence] = de_min (@f, ctl);
##
## Keywords: global-optimisation optimisation minimisation

function [bestmem, bestval, nfeval, convergence] = de_min(fcn, varargin)

## Default options
XVmin = [-2 ];
XVmax = [ 2 ];
constr= 0;
const = [];
NP    = 0;         # NP will be set later
F     = 0.8;
CR    = 0.9;
strategy = 12;
refresh  = 0;
VTR   = -Inf;
tol   = 1.e-3;
maxnfe  = 1e6;
maxiter = 1000;

## ------------ Check input variables (ctl) --------------------------------
if nargin >= 2,			# Read control arguments
  va_arg_cnt = 1;
  if nargin > 2,
    ctl = struct (varargin{:});
  else
    ctl = varargin{va_arg_cnt++};
  end
  if isnumeric (ctl)
    if length (ctl)>=1 && !isnan (ctl(1)), XVmin  = ctl(1); end
    if length (ctl)>=2 && !isnan (ctl(2)), XVmax  = ctl(2); end
    if length (ctl)>=3 && !isnan (ctl(3)), constr = ctl(3); end
    if length (ctl)>=4 && !isnan (ctl(4)), const  = ctl(4); end
    if length (ctl)>=5 && !isnan (ctl(5)), NP  = ctl(5); end
    if length (ctl)>=6 && !isnan (ctl(6)), F   = ctl(6); end
    if length (ctl)>=7 && !isnan (ctl(7)), CR  = ctl(7); end
    if length (ctl)>=8 && !isnan (ctl(8)), strategy = ctl(8); end
    if length (ctl)>=9 && !isnan (ctl(9)), refresh  = ctl(9); end
    if length (ctl)>=10&& !isnan (ctl(10)), VTR   = ctl(10); end
    if length (ctl)>=11&& !isnan (ctl(11)), tol   = ctl(11); end
    if length (ctl)>=12&& !isnan (ctl(12)), maxnfe  = ctl(12); end
    if length (ctl)>=13&& !isnan (ctl(13)), maxiter = ctl(13); end
  else
    if isfield (ctl,"XVmin") && !isnan (ctl.XVmin), XVmin=ctl.XVmin; end
    if isfield (ctl,"XVmax") && !isnan (ctl.XVmax), XVmax=ctl.XVmax; end
    if isfield (ctl,"constr")&& !isnan (ctl.constr), constr=ctl.constr; end
    if isfield (ctl,"const") && !isnan (ctl.const), const=ctl.const; end
    if isfield (ctl, "NP" ) && ! isnan (ctl.NP  ), NP  = ctl.NP  ; end
    if isfield (ctl, "F"  ) && ! isnan (ctl.F   ), F   = ctl.F   ; end
    if isfield (ctl, "CR" ) && ! isnan (ctl.CR  ), CR  = ctl.CR  ; end
    if isfield (ctl, "strategy") && ! isnan (ctl.strategy),
      strategy = ctl.strategy  ; end
    if isfield (ctl, "refresh") && ! isnan (ctl.refresh),
      refresh  = ctl.refresh   ; end
    if isfield (ctl, "VTR") && ! isnan (ctl.VTR ), VTR = ctl.VTR ; end
    if isfield (ctl, "tol") && ! isnan (ctl.tol ), tol = ctl.tol ; end
    if isfield (ctl, "maxnfe")  && ! isnan (ctl.maxnfe)
      maxnfe = ctl.maxnfe;
    end
    if isfield (ctl, "maxiter") && ! isnan (ctl.maxiter)
      maxiter = ctl.maxiter;
    end
  end
end

## set dimension D and population size NP
D  = length (XVmin);
if (NP == 0);
  NP = 10 * D;
end

## -------- do a few sanity checks --------------------------------
if (length (XVmin) != length (XVmax))
  error("Length of upper and lower bounds does not match.")
end
if (NP < 5)
  error("Population size NP must be bigger than 5.")
end
if ((F <= 0) || (F > 2))
  error("Difference Factor F out of range (0,2].")
end
if ((CR < 0) || (CR > 1))
  error("CR value out of range [0,1].")
end
if (maxiter <= 0)
  error("maxiter must be positive.")
end
if (maxnfe <= 0)
  error("maxnfe must be positive.")
end
refresh = floor(abs(refresh));

## ----- Initialize population and some arrays --------------------------

pop = zeros(NP,D);  # initialize pop

## pop is a matrix of size NPxD. It will be initialized with
## random values between the min and max values of the parameters
for i = 1:NP
   pop(i,:) = XVmin + rand (1,D) .* (XVmax - XVmin);
end

## initialise the weighting factors between 0.0 and 1.0
w  = rand (NP,1);
wi = w;

popold    = zeros (size (pop));   # toggle population
val       = zeros (1, NP);        # create and reset the "cost array"
bestmem   = zeros (1, D);         # best population member ever
bestmemit = zeros (1 ,D);         # best population member in iteration
nfeval    = 0;                    # number of function evaluations

## ------ Evaluate the best member after initialization ------------------

ibest   = 1;                      # start with first population member
val(1)  = feval (fcn, [pop(ibest,:) const]);
bestval = val(1);                 # best objective function value so far
bestw   = w(1);                   # weighting of best design so far
for i = 2:NP                      # check the remaining members
  val(i) = feval (fcn, [pop(i,:) const]);
  if (val(i) < bestval)           # if member is better
     ibest   = i;                 # save its location
     bestval = val(i);
     bestw   = w(i);
  end   
end
nfeval  = nfeval + NP;
bestmemit = pop(ibest,:);         # best member of current iteration
bestvalit = bestval;              # best value of current iteration

bestmem = bestmemit;              # best member ever

## ------ DE - Minimization ---------------------------------------
## popold is the population which has to compete. It is static
## through one iteration. pop is the newly emerging population.

bm_n= zeros (NP, D);            # initialize bestmember matrix in neighbourh.
lpm1= zeros (NP, D);            # initialize local population matrix 1
lpm1= zeros (NP, D);            # initialize local population matrix 2
rot = 0:1:NP-1;                 # rotating index array (size NP)
rotd= 0:1:D-1;                  # rotating index array (size D)

iter = 1;
while ((iter < maxiter) && (nfeval < maxnfe) &&  (bestval > VTR)  && ...
       ((abs (max (val) - bestval) / max (1, abs (max (val))) > tol)))
  popold = pop;                   # save the old population
  wold   = w;                     # save the old weighting factors

  ind = randperm (4);             # index pointer array

  a1  = randperm (NP);            # shuffle locations of vectors
  rt = rem (rot + ind(1), NP);    # rotate indices by ind(1) positions
  a2  = a1(rt+1);                 # rotate vector locations
  rt = rem (rot + ind(2), NP);
  a3  = a2(rt+1);                
  rt = rem (rot  +ind(3), NP);
  a4  = a3(rt+1);               
  rt = rem (rot + ind(4), NP);
  a5  = a4(rt+1);                

  pm1 = popold(a1,:);             # shuffled population 1
  pm2 = popold(a2,:);             # shuffled population 2
  pm3 = popold(a3,:);             # shuffled population 3
  w1  = wold(a4);                 # shuffled weightings 1
  w2  = wold(a5);                 # shuffled weightings 2

  bm = repmat (bestmemit, NP, 1); # population filled with the best member
                                  # of the last iteration
  bw = repmat (bestw, NP, 1);     # the same for the weighting of the best

  mui = rand (NP, D) < CR;        # mask for intermediate population
                                  # all random numbers < CR are 1, 0 otherwise

  if (strategy > 6)
    st = strategy - 6;		      # binomial crossover
  else
    st = strategy;		          # exponential crossover
    mui = sort (mui');	          # transpose, collect 1's in each column
    for i = 1:NP
      n = floor (rand * D);
      if (n > 0)
         rtd = rem (rotd + n, D);
         mui(:,i) = mui(rtd+1,i); #rotate column i by n
      endif
    endfor
    mui = mui';			  		  # transpose back
  endif
  mpo = mui < 0.5;                # inverse mask to mui

  if (st == 1)                      	  # DE/best/1
    ui = bm + F*(pm1 - pm2);        	  # differential variation
  elseif (st == 2)                  	  # DE/rand/1
    ui = pm3 + F*(pm1 - pm2);       	  # differential variation
  elseif (st == 3)                        # DE/target-to-best/1
    ui = popold + F*(bm-popold) + F*(pm1 - pm2);        
  elseif (st == 4)                  	  # DE/best/2
    pm4 = popold(a4,:);                 # shuffled population 4
    pm5 = popold(a5,:);                 # shuffled population 5
    ui = bm + F*(pm1 - pm2 + pm3 - pm4);  # differential variation
  elseif (st == 5)                  	  # DE/rand/2
    pm4 = popold(a4,:);                 # shuffled population 4
    pm5 = popold(a5,:);                 # shuffled population 5
    ui = pm5 + F*(pm1 - pm2 + pm3 - pm4); # differential variation
  else                                    # DEGL/SAW
    ## The DEGL/SAW method is more complicated.
	## We have to generate a neighbourhood first.
	## The neighbourhood size is 10% of NP and at least 1.
	nr = max (1, ceil ((0.1*NP -1)/2));  # neighbourhood radius
	## FIXME: I don't know how to vectorise this. - if possible
	for i = 1:NP
	  neigh_ind = i-nr:i+nr;              # index range of neighbourhood
	  neigh_ind = neigh_ind + ((neigh_ind <= 0)-(neigh_ind > NP))*NP;
                                          # do wrap around
	  [x, ix] = min (val(neigh_ind));     # find the local best and its index
	  bm_n(i,:) = popold(neigh_ind(ix),:); # copy the data from the local best
	  neigh_ind(nr+1) = [];                 # remove "i"
	  pq = neigh_ind(randperm (length (neigh_ind)));
                                        # permutation of the remaining ind.
	  lpm1(i,:) = popold(pq(1),:);        # create the local pop member matrix
	  lpm2(i,:) = popold(pq(2),:);        # for the random point p,q
	endfor
    ## calculate the new weihting factors
    wi = wold + F*(bw - wold) + F*(w1 - w2); # use DE/target-to-best/1/nocross
                                          # for optimisation of weightings
    ## fix bounds for weightings
    o = ones (NP, 1);
    wi = sort ([0.05*o, wi, 0.95*o],2)(:,2); # sort and take the second column
    ## fill weighting matrix
    wm = repmat (wi, 1, D);
    li = popold + F*(bm_n- popold) + F*(lpm1 - lpm2);
    gi = popold + F*(bm  - popold) + F*(pm1 - pm2);
    ui = wm.*gi + (1-wm).*li;             # combine global and local part
  endif
  ## crossover
  ui = popold.*mpo + ui.*mui;
  
  ## enforce initial bounds/constraints if specified
  if (constr == 1)
    for i = 1:NP
      ui(i,:) = max (ui(i,:), XVmin);
      ui(i,:) = min (ui(i,:), XVmax);
    end
  end

  ## ----- Select which vectors are allowed to enter the new population ------
  for i = 1:NP
    tempval = feval (fcn, [ui(i,:) const]);   # check cost of competitor
    if (tempval <= val(i))  # if competitor is better
       pop(i,:) = ui(i,:);  # replace old vector with new one
       val(i)   = tempval;  # save value in "cost array"
       w(i)     = wi(i);    # save the weighting factor

       ## we update bestval only in case of success to save time
       if (tempval <= bestval)     # if competitor better than the best one ever
          bestval = tempval;      # new best value
          bestmem = ui(i,:);      # new best parameter vector ever
          bestw   = wi(i);        # save best weighting
       end
    end
  endfor #---end for i = 1:NP

  nfeval  = nfeval + NP;     # increase number of function evaluations

  bestmemit = bestmem;       # freeze the best member of this iteration for the
                             # coming iteration. This is needed for some of the
                             # strategies.

  ## ---- Output section ----------------------------------------------------

  if (refresh > 0)
    if (rem (iter, refresh) == 0)
       printf ('Iteration: %d,  Best: %8.4e,  Worst: %8.4e\n', ...
                iter, bestval, max(val));
       for n = 1:D
         printf ('x(%d) = %e\n', n, bestmem(n));
       end
    end
  end

  iter = iter + 1;
endwhile #---end while ((iter < maxiter) ...

## check that all variables are well within bounds/constraints
boundsOK = 1;
for i = 1:NP
  range = XVmax - XVmin;
  if (ui(i,:) < XVmin + 0.01*range)
    boundsOK = 0;
  end
  if (ui(i,:) > XVmax - 0.01*range)
    boundsOK = 0;
  end
end

## create the convergence result
if (bestval <= VTR)
  convergence = 1;
elseif (abs (max (val) - bestval) / max (1, abs (max (val))) <= tol)
  convergence = 0;
elseif (boundsOK == 0)
  convergence = -1;
elseif (iter >= maxiter)
  convergence = -2;
elseif (nfeval >= maxnfe)
  convergence = -3;
end

endfunction

%!function result = f(x);
%!  result = 100 * (x(2) - x(1)^2)^2 + (1 - x(1))^2;
%!test
%! tol = 1.0e-4;
%! ctl.tol   = 0.0;
%! ctl.VTR   = 1.0e-6;
%! ctl.XVmin = [-2 -2];
%! ctl.XVmax = [ 2  2];
%! rand("state", 11)
%! [x, obj_value, nfeval, convergence] = de_min (@f, ctl);
%! assert (convergence == 1);
%! assert (f(x) == obj_value);
%! assert (obj_value < ctl.VTR);

%!demo
%! ## define a simple example function
%! f = @(x) peaks(x(1), x(2));
%! ## plot the function to see where the minimum might be
%! peaks()
%! ## first we set the region where we expect the minimum
%! ctl.XVmin = [-3 -3];
%! ctl.XVmax = [ 3  3];
%! ## and solve it with de_min
%! [x, obj_value, nfeval, convergence] = de_min (f, ctl)