This file is indexed.

/usr/share/octave/packages/odepkg-0.8.4/ode23s.m is in octave-odepkg 0.8.4-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
## Copyright (C) 2012 Davide Prandi <davide_prandi@hotmail.it>
## Copyright (C) 2012 Carlo de Falco 
##
## This file is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This file is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this file.  If not, see <http://www.gnu.org/licenses/>

## -*- texinfo -*-
## @deftypefn{Function File} {[@var{tout}, @var{xout}] =} ode23s (@var{FUN}, @var{tspan}, @var{x0}, @var{options})
##
## This function can be used to solve a set of stiff ordinary differential
## equations with a Rosenbrock method of order (2,3).
## 
## All the mathematical formulas are from
## "The MATLAB ode suite", L.F. Shampine, M.W. Reichelt, pp.6-7
##
## @itemize @minus
## @item @var{FUN}: String or function-handle for the problem description.
## @itemize @minus
## @item signature: @code{xprime = fun (t,x)}
## @item t:  Time (scalar).
## @item x: Solution (column-vector).
## @item xprime: Returned derivative (column-vector, @code{xprime(i) = dx(i) / dt}).
## @end itemize
## @item @var{tspan}: Initial value column vector [tstart, tfinal]
## @item @var{x0}: Initial value (column-vector).
## @item @var{options}: User-defined integration parameters, using "odeset". 
## See @code{help odeset} for more details.
## Option parameters currently accepted are: RelTol, MaxStep, InitialStep, Mass, Jacobian, JPattern.
## If "options" is not used, these parameters will be given default values.
## ode23s solves problems in the form M*y' = FUN (t, y), where M is a costant mass matrix, 
## non-singular and possibly sparse. Set the filed @var{mass} in @var{options} using @var{odeset} 
## to specify a mass matrix.
## @end itemize
##
## Example:
## @example
## f=@@(t,y) [y(2); 1000*(1-y(1)^2)*y(2)-y(1)];
## opt = odeset ('Mass', [1 0; 0 1], 'MaxStep', 1e-1);
## [vt, vy] = ode23s (f, [0 2000], [2 0], opt);
## @end example
##
## The structure of the code is based on "ode23.m", written by Marc Compere. 
## @seealso{ode23, odepkg, odeset, daspk, dassl}
## @end deftypefn

                                % Author: Davide Prandi
                                % Created: 5 September 2012

function [tout, xout] = ode23s (FUN, tspan, x0, options)

  if nargin < 4, options = odeset (); end

  %% Initialization

  d = 1 / (2 + sqrt (2));
  a = 1 / 2;
  e32 = 6 + sqrt (2);

  jacfun = false;
  jacmat = false;
  if (isfield (options, 'Jacobian') && ! isempty (options.Jacobian)) %user-defined Jacobian
    if (ischar (options.Jacobian))
      jacfun = true;
      jac = str2fun (options.Jacobian);
    elseif (is_function_handle (options.Jacobian))
      jacfun = true;
      jac = options.Jacobian;
    elseif (ismatrix (options.Jacobian))
      jacmat = true;
      jac = options.Jacobian;
    else
      error ("ode23s: the jacobian should be passed as a matrix, a string or a function handle")
    endif
  endif

  jacpat = false;
  if (isfield (options, 'JPattern') && ! isempty (options.JPattern)) %user-defined Jacobian
    jacpat = true;
    [ii, jj] = options.Jacobian;
    pattern = sparse (ii, jj, true);
  endif
  
  if (isfield (options, 'RelTol') && ! isempty (options.RelTol)) %user-defined relative tolerance
    rtol = options.RelTol;
  else
    rtol = 1.0e-3;
  endif
  
  if (isfield (options, 'AbsTol') && ! isempty (options.AbsTol)) %user-defined absolute tolerance
    atol = options.AbsTol;
  else
    atol = 1.0e-6;
  endif


  t = tspan(1);
  tfinal = tspan(2);

  if (isfield (options, 'MaxStep') && ! isempty (options.MaxStep)) %user-defined max step size
    hmax = options.MaxStep;
  else
    hmax = .1 * abs (tfinal - t);
  endif
  
  if (isfield (options, 'InitialStep') && ! isempty (options.InitialStep)) %user-defined initial step size
    h = options.InitialStep
  else
    h = (tfinal - t) * .05; % initial guess at a step size
  end 
  
  hmin = min (16 * eps (tfinal - t), h);
    
  x = x0(:);            % this always creates a column vector, x
  tout = t;             % first output time
  xout = x.';           % first output solution

  %% The main loop
  while (t < tfinal) && (h >= hmin)

    if t + h > tfinal
      h = tfinal - t; 
    endif
    
    %% Jacobian matrix, dfxpdp
    if (jacmat)
      J = jac;
    elseif (jacfun) 
      J = jac (t, x);
    elseif (! jacpat)
      J = __dfxpdp__ (x, @(a) feval (FUN, t, a), rtol);      
    elseif (jacpat)
      J = __dfxpdp__ (x, @(a) feval (FUN, t, a), rtol, pattern);
    endif

    T = (feval (FUN, t + .1 * h, x) - feval (FUN, t, x)) / (.1 * h);

    %% Wolfbrandt coefficient
    W = eye (length (x0))- h*d*J;
    
    %% compute the slopes
    F(:,1) = feval (FUN, t, x);
    k(:,1) = W \ (F(:,1) + h*d*T);
    F(:,2) = feval (FUN, t+a*h, x+a*h*k(:,1));
    k(:,2) = W \ ((F(:,2) - k(:,1))) + k(:,1);
    
    %% compute the 2nd order estimate
    x2 = x + h*k(:,2);
    
    %% 3rd order, needed in error forumula
    F(:,3) = feval (FUN, t+h, x2);
    k(:,3) = W \ (F(:,3) - e32 * (k(:,2)-F(:,2)) - 2 * (k(:,1)-F(:,1)) + h*d*T);

    %% estimate the error
    err = (h/6) * (k(:,1) - 2*k(:,2) + k(:,3));

    %% Estimate the acceptable error
    tau = max (rtol .* abs (x), atol);

    %% Update the solution only if the error is acceptable
    if all (err <= tau)

      t = t + h;
      tout = [tout; t];
      
      x = x2;  %no local extrapolation, FSAL (See documentation)
      
      if (isfield (options', "Mass") && ! (isempty (options.Mass))) %%user-defined mass matrix
        M = options.Mass;
        xout = [xout; (M \ x).'];     
      else
        xout = [xout; x.'];
      end

      %% Update the step size
      if (err == 0.0)
        err = 1e-16;
      endif

      h = min (hmax, h*1.25);    % adaptive step update
      
    else
       if (h <= hmin)
         error ("ode23s: requested step-size too small at t = %g, h = %g, err = %g \n", t, h, err)
       endif
       h = max (hmin, h*0.5);    % adaptive step update
      
    endif
    
  endwhile

  if (t < tfinal)
    error ("ode23s: requested step-size too small at t = %g, h = %g, err = %g \n", t, h, err)
  endif

endfunction


%% The following function is copied from the optim 
%% package of Octave-Forge
%% Copyright (C) 1992-1994 Richard Shrager
%% Copyright (C) 1992-1994 Arthur Jutan
%% Copyright (C) 1992-1994 Ray Muzic
%% Copyright (C) 2010, 2011 Olaf Till <olaf.till@uni-jena.de>

function prt = __dfxpdp__ (p, func, rtol, pattern)

  f = func (p)(:);
  m = numel (f);
  n = numel (p);

  diffp = rtol .* ones (n, 1);  
  sparse_jac = false;
  if (nargin > 3 && issparse (pattern))
    sparse_jac = true;
  endif
  %% initialise Jacobian to Zero

  if (sparse_jac)
    prt = pattern;
  else
    prt = zeros (m, n);   
  endif

  del = ifelse (p == 0, diffp, diffp .* p);
  absdel = abs (del);

  p2 = p1 = zeros (n, 1);
  
  %% double sided interval
  p1 = p + absdel/2;
  p2 = p - absdel/2;

  ps = p;  
  if (! sparse_jac)

    for j = 1:n
      ps(j) = p1(j);
      tp1 = func (ps);
      ps(j) = p2(j);
      tp2 = func (ps);
      prt(:, j) = (tp1(:) - tp2(:)) / absdel(j);
      ps(j) = p(j);
    endfor

  else

    for j = find (any (pattern, 1))
      ps(j) = p1(j);
      tp1 = func (ps);      
      ps(j) = p2(j);
      tp2 = func (ps);
      nnz = find (pattern(:, j));
      prt(nnz, j) = (tp1(nnz) - tp2(nnz)) / absdel(j);
      ps(j) = p(j);
    endfor

  endif

endfunction

%!test
%!  test1=@(t,y) t - y + 1;
%!  [vt, vy] = ode23s (test1, [0 10], [1]);
%!  assert ([vt(end), vy(end)], [10, exp(-10) + 10], 1e-3);

%!demo
%!  # Demo function: stiff Van Der Pol equation
%!  fun = @(t,y) [y(2); 10*(1-y(1)^2)*y(2)-y(1)];
%!  # Calling ode23s method
%!  tic ()
%!  [vt, vy] = ode23s (fun, [0 20], [2 0]);
%!  toc ()
%!  # Plotting the result
%!  plot(vt,vy(:,1),'-o');

%!demo
%!  # Demo function: stiff Van Der Pol equation
%!  fun = @(t,y) [y(2); 10*(1-y(1)^2)*y(2)-y(1)];
%!  # Calling ode23s method
%!  options = odeset ("Jacobian", @(t,y) [0 1; -20*y(1)*y(2)-1, 10*(1-y(1)^2)],
%!                    "InitialStep", 1e-3)
%!  tic ()
%!  [vt, vy] = ode23s (fun, [0 20], [2 0], options);
%!  toc ()
%!  # Plotting the result
%!  plot(vt,vy(:,1),'-o');

%!demo
%!  # Demo function: stiff Van Der Pol equation
%!  fun = @(t,y) [y(2); 100*(1-y(1)^2)*y(2)-y(1)];
%!  # Calling ode23s method
%!  %!  options = odeset ("InitialStep", 1e-4);
%!  tic ()
%!  [vt, vy] = ode23s (fun, [0 200], [2 0]);
%!  toc ()
%!  # Plotting the result
%!  plot(vt,vy(:,1),'-o');

%!demo
%!  # Demo function: stiff Van Der Pol equation
%!  fun = @(t,y) [y(2); 100*(1-y(1)^2)*y(2)-y(1)];
%!  # Calling ode23s method
%!  options = odeset ("Jacobian", @(t,y) [0 1; -200*y(1)*y(2)-1, 100*(1-y(1)^2)], 
%!                    "InitialStep", 1e-4);
%!  tic ()
%!  [vt, vy] = ode23s (fun, [0 200], [2 0], options);
%!  toc ()
%!  # Plotting the result
%!  plot(vt,vy(:,1),'-o');