This file is indexed.

/usr/share/octave/packages/odepkg-0.8.4/bvp4c.m is in octave-odepkg 0.8.4-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
## Copyright (C) 2008-2012 Carlo de Falco
## 
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
## 
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
## 
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{A}} = bvp4c (@var{odefun}, @var{bcfun}, @var{solinit})
##
## Solves the first order system of non-linear differential equations defined by
## @var{odefun} with the boundary conditions defined in @var{bcfun}.
##
## The structure @var{solinit} defines the grid on which to compute the
## solution (@var{solinit.x}), and an initial guess for the solution (@var{solinit.y}).
## The output @var{sol} is also a structure with the following fields:
## @itemize
## @item  @var{sol.x} list of points where the solution is evaluated
## @item  @var{sol.y} solution evaluated at the points @var{sol.x}
## @item  @var{sol.yp} derivative of the solution evaluated at the
## points @var{sol.x}
## @item  @var{sol.solver} = "bvp4c" for compatibility 
## @end itemize
## @seealso{odpkg}
## @end deftypefn

## Author: Carlo de Falco <carlo@guglielmo.local>
## Created: 2008-09-05


function sol = bvp4c(odefun,bcfun,solinit,options)

  if (isfield(solinit,"x"))
    t = solinit.x;
  else
    error("bvp4c: missing initial mesh solinit.x");
  end

  if (isfield(solinit,"y"))
    u_0 = solinit.y;
  else
    error("bvp4c: missing initial guess");
  end

  if (isfield(solinit,"parameters"))
    error("bvp4c: solving for unknown parameters is not yet supported");
  end

  RelTol = 1e-3;
  AbsTol = 1e-6;
  if ( nargin > 3 )
    if (isfield(options,"RelTol"))
      RelTol = options.RelTol;
    endif
    if (isfield(options,"RelTol"))
      AbsTol = options.AbsTol;
    endif
  endif
  
  Nvar = rows(u_0);
  Nint = length(t)-1;
  s    = 3;
  h    = diff(t);

  AbsErr  = inf;
  RelErr  = inf;
  MaxIt   = 10;

  for iter = 1:MaxIt

    x       = [ u_0(:); zeros(Nvar*Nint*s,1) ];
    x       = __bvp4c_solve__ (t, x, h, odefun, bcfun, Nvar, Nint, s);
    u       = reshape(x(1:Nvar*(Nint+1)),Nvar,Nint+1);

    for kk=1:Nint+1
      du(:,kk) = odefun(t(kk), u(:,kk));
    end

    tm = (t(1:end-1)+t(2:end))/2;
    um = [];
    for nn=1:Nvar
      um(nn,:) = interp1(t,u(nn,:),tm);
    endfor

    f_est = [];
    for kk=1:Nint
      f_est(:,kk) = odefun(tm(kk), um(:,kk));
    end

    du_est = [];
    for nn=1:Nvar
      du_est(nn,:) = diff(u(nn,:))./h;
    end

    err    = max(abs(f_est-du_est)); semilogy(tm,err), pause(.1)
    AbsErr = max(err)
    RelErr = AbsErr/norm(du,inf)

    if    ( (AbsErr >= AbsTol) && (RelErr >= RelTol) )
      ref_int = find( (err >= AbsTol) & (err./max(max(abs(du))) >= RelTol) );
      
      t_add = tm(ref_int);
      t_old = t;
      
      t     = sort([t, t_add]);
      h     = diff(t);
      
      u_0 = [];
      for nn=1:Nvar
	u_0(nn,:) = interp1(t_old, u(nn,:), t);
      end
      Nvar = rows(u_0);
      Nint = length(t)-1
    else
      break
    end

  endfor
  
  ## K    = reshape(x([1:Nvar*Nint*s]+Nvar*(Nint+1)),Nvar,Nint,s);
  ## K1 = reshape(K(:,:,1), Nvar, Nint);
  ## K2 = reshape(K(:,:,2), Nvar, Nint);
  ## K3 = reshape(K(:,:,3), Nvar, Nint);

 

  sol.x = t;
  sol.y = u;
  sol.yp= du;
  sol.parameters = [];
  sol.solver = 'bvp4c';
  
endfunction

function diff_K = __bvp4c_fun_K__ (t, u, Kin, f, h, s, Nint, Nvar)

  %% coefficients
  persistent C = [0      1/2    1 ];
  
  persistent A = [0      0      0;
                  5/24   1/3   -1/24;
                  1/6    2/3    1/6];	

  for jj = 1:s
    for kk = 1:Nint
      Y = repmat(u(:,kk),1,s) + ...
	  (reshape(Kin(:,kk,:),Nvar,s) * A.') * h(kk);
      diff_K(:,kk,jj) = Kin(:,kk,jj) - f (t(kk)+C(jj)*h(kk), Y);
    endfor
  endfor

endfunction

 
function diff_u = __bvp4c_fun_u__ (t, u, K, h, s, Nint, Nvar)
  
  %% coefficients
  persistent B= [1/6 2/3 1/6 ];

  Y = zeros(Nvar, Nint);
  for jj = 1:s
    Y +=  B(jj) * K(:,:,jj);
  endfor
  diff_u = u(:,2:end) - u(:,1:end-1) - repmat(h,Nvar,1) .* Y;

endfunction

function x = __bvp4c_solve__ (t, x, h, odefun, bcfun, Nvar, Nint, s)
  fun = @( x ) ( [__bvp4c_fun_u__(t, 
				  reshape(x(1:Nvar*(Nint+1)),Nvar,(Nint+1)), 
				  reshape(x([1:Nvar*Nint*s]+Nvar*(Nint+1)),Nvar,Nint,s),
				  h,
				  s,
				  Nint,
				  Nvar)(:) ;
		  __bvp4c_fun_K__(t, 
				  reshape(x(1:Nvar*(Nint+1)),Nvar,(Nint+1)), 
				  reshape(x([1:Nvar*Nint*s]+Nvar*(Nint+1)),Nvar,Nint,s),
				  odefun,
				  h,
				  s,
				  Nint,
				  Nvar)(:);
		  bcfun(reshape(x(1:Nvar*(Nint+1)),Nvar,Nint+1)(:,1),
			reshape(x(1:Nvar*(Nint+1)),Nvar,Nint+1)(:,end));
		  ] );
  
  x    = fsolve ( fun, x );
endfunction



%!demo
%! a            = 0; 
%! b            = 4;
%! Nint         = 3;
%! Nvar         = 2;
%! s            = 3;
%! t            = linspace(a,b,Nint+1);
%! h            = diff(t);
%! u_1          = ones(1, Nint+1); 
%! u_2          = 0*u_1;
%! u_0          = [u_1 ; u_2];
%! f            = @(t,u) [ u(2); -abs(u(1)) ];
%! g            = @(ya,yb) [ya(1); yb(1)+2];
%! solinit.x = t; solinit.y=u_0;
%! sol = bvp4c(f,g,solinit);
%! plot (sol.x,sol.y,'x-')

%!demo
%! a            = 0; 
%! b            = 4;
%! Nint         = 2;
%! Nvar         = 2;
%! s            = 3;
%! t            = linspace(a,b,Nint+1);
%! h            = diff(t);
%! u_1          = -ones(1, Nint+1); 
%! u_2          = 0*u_1;
%! u_0          = [u_1 ; u_2];
%! f            = @(t,u) [ u(2); -abs(u(1)) ];
%! g            = @(ya,yb) [ya(1); yb(1)+2];
%! solinit.x = t; solinit.y=u_0;
%! sol = bvp4c(f,g,solinit);
%! plot (sol.x,sol.y,'x-')