/usr/share/octave/packages/nan-2.5.9/doc-cache is in octave-nan 2.5.9-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 | # Created by Octave 3.8.0, Mon Feb 24 19:39:30 2014 UTC <root@komainu>
# name: cache
# type: cell
# rows: 3
# columns: 81
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
bland_altman
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 865
BLAND_ALTMANN shows the Bland-Altman plot of two columns of measurements
and computes several summary results.
bland_altman(m1, m2 [,group])
bland_altman(data [, group])
R = bland_altman(...)
m1,m2 are two colums with the same number of elements
containing the measurements. m1,m2 can be also combined
in a single two column data matrix.
group [optional] indicates which measurements belong to the same group
This is useful to account for repeated measurements.
References:
[1] JM Bland and DG Altman, Measuring agreement in method comparison studies.
Statistical Methods in Medical Research, 1999; 8; 135.
doi:10.1177/09622802990080204
[2] P.S. Myles, Using the Bland– Altman method to measure agreement with repeated measures
British Journal of Anaesthesia 99(3):309–11 (2007)
doi:10.1093/bja/aem214
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
BLAND_ALTMANN shows the Bland-Altman plot of two columns of measurements
and
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
cat2bin
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 755
CAT2BIN converts categorial into binary data
each category of each column in D is converted into a logical column
B = cat2bin(C);
[B,BinLabel] = cat2bin(C,Label);
[B,BinLabel] = cat2bin(C,Label,MODE)
C categorial data
B binary data
Label description of each column in C
BinLabel description of each column in B
MODE default [], ignores NaN
'notIgnoreNAN' includes binary column for NaN
'IgnoreZeros' zeros do not get a separate category
'IgnoreZeros+NaN' zeros and NaN are ignored
example:
cat2bin([1;2;5;1;5]) results in
1 0 0
0 1 0
0 0 1
1 0 0
0 0 1
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
CAT2BIN converts categorial into binary data
each category of each column i
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
cdfplot
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 565
CDFPLOT plots empirical commulative distribution function
cdfplot(X)
cdfplot(X, FMT)
cdfplot(X, PROPERTY, VALUE,...)
h = cdfplot(...)
[h,stats] = cdfplot(X)
X contains the data vector
(matrix data is currently changed to a vector, this might change in future)
FMT,PROPERTY,VALUE
are used for formating; see HELP PLOT for more details
h graphics handle to the cdf curve
stats
a struct containing various summary statistics including
mean, std, median, min, max.
see also: ecdf, median, statistics, hist2res, plot
References:
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
CDFPLOT plots empirical commulative distribution function
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
center
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 505
CENTER removes the mean
[z,mu] = center(x,DIM,W)
removes mean x along dimension DIM
x input data
DIM dimension
1: column
2: row
default or []: first DIMENSION, with more than 1 element
W weights to computed weighted mean (default: [], all weights = 1)
numel(W) must be equal to size(x,DIM)
features:
- can deal with NaN's (missing values)
- weighting of data
- dimension argument
- compatible to Matlab and Octave
see also: SUMSKIPNAN, MEAN, STD, DETREND, ZSCORE
REFERENCE(S):
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
CENTER removes the mean
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
classify
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 792
CLASSIFY classifies sample data into categories
defined by the training data and its group information
CLASS = classify(sample, training, group)
CLASS = classify(sample, training, group, TYPE)
[CLASS,ERR,POSTERIOR,LOGP,COEF] = CLASSIFY(...)
CLASS contains the assigned group.
ERR is the classification error on the training set weighted by the
prior propability of each group.
The same classifier as in TRAIN_SC are supported.
ATTENTION: no cross-validation is applied, therefore the
classification error is too optimistic (overfitting).
Use XVAL instead to obtain cross-validated performance.
see also: TRAIN_SC, TEST_SC, XVAL
References:
[1] R. Duda, P. Hart, and D. Stork, Pattern Classification, second ed.
John Wiley & Sons, 2001.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
CLASSIFY classifies sample data into categories
defined by the training data
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
coefficient_of_variation
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 221
COEFFICIENT_OF_VARIATION returns STD(X)/MEAN(X)
cv=coefficient_of_variation(x [,DIM])
cv=std(x)/mean(x)
see also: SUMSKIPNAN, MEAN, STD
REFERENCE(S):
http://mathworld.wolfram.com/VariationCoefficient.html
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
COEFFICIENT_OF_VARIATION returns STD(X)/MEAN(X)
cv=coefficient_of_variation(
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
cor
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 576
COR calculates the correlation matrix
X and Y can contain missing values encoded with NaN.
NaN's are skipped, NaN do not result in a NaN output.
(Its assumed that the occurence of NaN's is uncorrelated)
The output gives NaN only if there are insufficient input data
COR(X);
calculates the (auto-)correlation matrix of X
COR(X,Y);
calculates the crosscorrelation between X and Y
c = COR(...);
c is the correlation matrix
W weights to compute weighted mean (default: [])
if W=[], all weights are 1.
number of elements in W must match size(x,DIM)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
COR calculates the correlation matrix
X and Y can contain missing values encod
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
corrcoef
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4692
CORRCOEF calculates the correlation matrix from pairwise correlations.
The input data can contain missing values encoded with NaN.
Missing data (NaN's) are handled by pairwise deletion [15].
In order to avoid possible pitfalls, use case-wise deletion or
or check the correlation of NaN's with your data (see below).
A significance test for testing the Hypothesis
'correlation coefficient R is significantly different to zero'
is included.
[...] = CORRCOEF(X);
calculates the (auto-)correlation matrix of X
[...] = CORRCOEF(X,Y);
calculates the crosscorrelation between X and Y
[...] = CORRCOEF(..., Mode);
Mode='Pearson' or 'parametric' [default]
gives the correlation coefficient
also known as the 'product-moment coefficient of correlation'
or 'Pearson''s correlation' [1]
Mode='Spearman' gives 'Spearman''s Rank Correlation Coefficient'
This replaces SPEARMAN.M
Mode='Rank' gives a nonparametric Rank Correlation Coefficient
This is the "Spearman rank correlation with proper handling of ties"
This replaces RANKCORR.M
[...] = CORRCOEF(..., param1, value1, param2, value2, ... );
param value
'Mode' type of correlation
'Pearson','parametric'
'Spearman'
'rank'
'rows' how do deal with missing values encoded as NaN's.
'complete': remove all rows with at least one NaN
'pairwise': [default]
'alpha' 0.01 : significance level to compute confidence interval
[R,p,ci1,ci2,nansig] = CORRCOEF(...);
R is the correlation matrix
R(i,j) is the correlation coefficient r between X(:,i) and Y(:,j)
p gives the significance of R
It tests the null hypothesis that the product moment correlation coefficient is zero
using Student's t-test on the statistic t = r*sqrt(N-2)/sqrt(1-r^2)
where N is the number of samples (Statistics, M. Spiegel, Schaum series).
p > alpha: do not reject the Null hypothesis: 'R is zero'.
p < alpha: The alternative hypothesis 'R is larger than zero' is true with probability (1-alpha).
ci1 lower (1-alpha) confidence interval
ci2 upper (1-alpha) confidence interval
If no alpha is provided, the default alpha is 0.01. This can be changed with function flag_implicit_significance.
nan_sig p-value whether H0: 'NaN''s are not correlated' could be correct
if nan_sig < alpha, H1 ('NaNs are correlated') is very likely.
The result is only valid if the occurence of NaN's is uncorrelated. In
order to avoid this pitfall, the correlation of NaN's should be checked
or case-wise deletion should be applied.
Case-Wise deletion can be implemented
ix = ~any(isnan([X,Y]),2);
[...] = CORRCOEF(X(ix,:),Y(ix,:),...);
Correlation (non-random distribution) of NaN's can be checked with
[nan_R,nan_sig]=corrcoef(X,isnan(X))
or [nan_R,nan_sig]=corrcoef([X,Y],isnan([X,Y]))
or [R,p,ci1,ci2] = CORRCOEF(...);
Further recommandation related to the correlation coefficient:
+ LOOK AT THE SCATTERPLOTS to make sure that the relationship is linear
+ Correlation is not causation because
it is not clear which parameter is 'cause' and which is 'effect' and
the observed correlation between two variables might be due to the action of other, unobserved variables.
see also: SUMSKIPNAN, COVM, COV, COR, SPEARMAN, RANKCORR, RANKS,
PARTCORRCOEF, flag_implicit_significance
REFERENCES:
on the correlation coefficient
[ 1] http://mathworld.wolfram.com/CorrelationCoefficient.html
[ 2] http://www.geography.btinternet.co.uk/spearman.htm
[ 3] Hogg, R. V. and Craig, A. T. Introduction to Mathematical Statistics, 5th ed. New York: Macmillan, pp. 338 and 400, 1995.
[ 4] Lehmann, E. L. and D'Abrera, H. J. M. Nonparametrics: Statistical Methods Based on Ranks, rev. ed. Englewood Cliffs, NJ: Prentice-Hall, pp. 292, 300, and 323, 1998.
[ 5] Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 634-637, 1992
[ 6] http://mathworld.wolfram.com/SpearmanRankCorrelationCoefficient.html
on the significance test of the correlation coefficient
[11] http://www.met.rdg.ac.uk/cag/STATS/corr.html
[12] http://www.janda.org/c10/Lectures/topic06/L24-significanceR.htm
[13] http://faculty.vassar.edu/lowry/ch4apx.html
[14] http://davidmlane.com/hyperstat/B134689.html
[15] http://www.statsoft.com/textbook/stbasic.html%Correlations
others
[20] http://www.tufts.edu/~gdallal/corr.htm
[21] Fisher transformation http://en.wikipedia.org/wiki/Fisher_transformation
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
CORRCOEF calculates the correlation matrix from pairwise correlations.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
cov
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1606
COV covariance matrix
X and Y can contain missing values encoded with NaN.
NaN's are skipped, NaN do not result in a NaN output.
The output gives NaN only if there are insufficient input data
The mean is removed from the data.
Remark: for data contains missing values, the resulting
matrix might not be positiv definite, and its elements have magnitudes
larger than one. This ill-behavior is more likely for small sample
sizes, but there is no garantee that the result "behaves well" for larger
sample sizes. If you want the a "well behaved" result (i.e. positive
definiteness and magnitude of elements not larger than 1), use CORRCOEF.
However, COV is faster than CORRCOEF and might be good enough in some cases.
C = COV(X [,Mode]);
calculates the (auto-)correlation matrix of X
C = COV(X,Y [,Mode]);
calculates the crosscorrelation between X and Y.
C(i,j) is the correlation between the i-th and jth
column of X and Y, respectively.
NOTE: Octave and Matlab have (in some special cases) incompatible implemenations.
This implementation follows Octave. If the result could be ambigous or
incompatible, a warning will be presented in Matlab. To avoid this warning use:
a) use COV([X(:),Y(:)]) if you want the traditional Matlab result.
b) use C = COV([X,Y]), C = C(1:size(X,2),size(X,2)+1:size(C,2)); if you want to be compatible with this software.
Mode = 0 [default] scales C by (N-1)
Mode = 1 scales C by N.
see also: COVM, COR, CORRCOEF, SUMSKIPNAN
REFERENCES:
http://mathworld.wolfram.com/Covariance.html
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
COV covariance matrix
X and Y can contain missing values encoded with NaN.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
covm
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1182
COVM generates covariance matrix
X and Y can contain missing values encoded with NaN.
NaN's are skipped, NaN do not result in a NaN output.
The output gives NaN only if there are insufficient input data
COVM(X,Mode);
calculates the (auto-)correlation matrix of X
COVM(X,Y,Mode);
calculates the crosscorrelation between X and Y
COVM(...,W);
weighted crosscorrelation
Mode = 'M' minimum or standard mode [default]
C = X'*X; or X'*Y correlation matrix
Mode = 'E' extended mode
C = [1 X]'*[1 X]; % l is a matching column of 1's
C is additive, i.e. it can be applied to subsequent blocks and summed up afterwards
the mean (or sum) is stored on the 1st row and column of C
Mode = 'D' or 'D0' detrended mode
the mean of X (and Y) is removed. If combined with extended mode (Mode='DE'),
the mean (or sum) is stored in the 1st row and column of C.
The default scaling is factor (N-1).
Mode = 'D1' is the same as 'D' but uses N for scaling.
C = covm(...);
C is the scaled by N in Mode M and by (N-1) in mode D.
[C,N] = covm(...);
C is not scaled, provides the scaling factor N
C./N gives the scaled version.
see also: DECOVM, XCOVF
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
COVM generates covariance matrix
X and Y can contain missing values encoded wi
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
cumsumskipnan
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 249
CUMSUMSKIPNAN Cumulative sum while skiping NaN's.
If DIM is omitted, it defaults to the first non-singleton dimension.
Y = cumsumskipnan(x [,DIM])
x input data
DIM dimension (default: [])
y resulting sum
see also: CUMSUM, SUMSKIPNAN
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
CUMSUMSKIPNAN Cumulative sum while skiping NaN's.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
decovm
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 384
decompose extended covariance matrix into mean (mu),
standard deviation, the (pure) Covariance (COV),
correlation (xc) matrix and the correlation coefficients R2.
NaN's are condsidered as missing values.
[mu,sd,COV,xc,N,R2]=decovm(ECM[,NN])
ECM is the extended covariance matrix
NN is the number of elements, each estimate (in ECM) is based on
see also: MDBC, COVM, R2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
decompose extended covariance matrix into mean (mu),
standard deviation, the
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
detrend
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 837
DETREND removes the trend from data, NaN's are considered as missing values
DETREND is fully compatible to previous Matlab and Octave DETREND with the following features added:
- handles NaN's by assuming that these are missing values
- handles unequally spaced data
- second output parameter gives the trend of the data
- compatible to Matlab and Octave
[...]=detrend([t,] X [,p])
removes trend for unequally spaced data
t represents the time points
X(i) is the value at time t(i)
p must be a scalar
[...]=detrend(X,0)
[...]=detrend(X,'constant')
removes the mean
[...]=detrend(X,p)
removes polynomial of order p (default p=1)
[...]=detrend(X,1) - default
[...]=detrend(X,'linear')
removes linear trend
[X,T]=detrend(...)
X is the detrended data
T is the removed trend
see also: SUMSKIPNAN, ZSCORE
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
DETREND removes the trend from data, NaN's are considered as missing values
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
ecdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 443
ECDF empirical cumulative function
NaN's are considered Missing values and are ignored.
[F,X] = ecdf(Y)
calculates empirical cumulative distribution functions (i.e Kaplan-Meier estimate)
ecdf(Y)
ecdf(gca,Y)
without output arguments plots the empirical cdf, in axis gca.
Y input data
must be a vector or matrix, in case Y is a matrix, the ecdf for every column is computed.
see also: HISTO2, HISTO3, PERCENTILE, QUANTILE
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
ECDF empirical cumulative function
NaN's are considered Missing values and
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
flag_accuracy_level
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1059
FLAG_ACCURACY_LEVEL sets and gets accuracy level
used in SUMSKIPNAN_MEX and COVM_MEX
The error margin of the naive summation is N*eps (N is the number of samples),
the error margin is only 2*eps if Kahan's summation is used [1].
0: maximum speed [default]
accuracy of double (64bit) with naive summation (error = N*2^-52)
1: accuracy of extended (80bit) with naive summation (error = N*2^-64)
2: accuracy of double (64bit) with Kahan summation (error = 2^-52)
3: accuracy of extended (80bit) with Kahan summation (error = 2^-64)
Please note, level 3 might be equally accurate but slower than 1 or 2 on
some platforms. In order to determine what is good for you, you might want
to run ACCTEST.
FLAG = flag_accuracy_level()
gets current level
flag_accuracy_level(FLAG)
sets accuracy level
see also: ACCTEST
Reference:
[1] David Goldberg,
What Every Computer Scientist Should Know About Floating-Point Arithmetic
ACM Computing Surveys, Vol 23, No 1, March 1991.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
FLAG_ACCURACY_LEVEL sets and gets accuracy level
used in SUMSKIPNAN_MEX an
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
flag_implicit_significance
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 928
The use of FLAG_IMPLICIT_SIGNIFICANCE is in experimental state.
flag_implicit_significance might even become obsolete.
FLAG_IMPLICIT_SIGNIFICANCE sets and gets default alpha (level) of any significance test
The default alpha-level is stored in the global variable FLAG_implicit_significance
The idea is that the significance must not be assigned explicitely.
This might yield more readable code.
Choose alpha low enough, because in alpha*100% of the cases, you will
reject the Null hypothesis just by change. For this reason, the default
alpha is 0.01.
flag_implicit_significance(0.01)
sets the alpha-level for the significance test
alpha = flag_implicit_significance()
gets default alpha
flag_implicit_significance(alpha)
sets default alpha-level
alpha = flag_implicit_significance(alpha)
gets and sets alpha
features:
- compatible to Matlab and Octave
see also: CORRCOEF, PARTCORRCOEF
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
The use of FLAG_IMPLICIT_SIGNIFICANCE is in experimental state.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
flag_implicit_skip_nan
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 943
FLAG_IMPLICIT_SKIP_NAN sets and gets default mode for handling NaNs
1 skips NaN's (the default mode if no mode is set)
0 NaNs are propagated; input NaN's give NaN's at the output
FLAG = flag_implicit_skip_nan()
gets current mode
flag_implicit_skip_nan(FLAG)
% sets mode
prevFLAG = flag_implicit_skip_nan(nextFLAG)
gets previous set FLAG and sets FLAG for the future
flag_implicit_skip_nan(prevFLAG)
resets FLAG to previous mode
It is used in:
SUMSKIPNAN, MEDIAN, QUANTILES, TRIMEAN
and affects many other functions like:
CENTER, KURTOSIS, MAD, MEAN, MOMENT, RMS, SEM, SKEWNESS,
STATISTIC, STD, VAR, ZSCORE etc.
The mode is stored in the global variable FLAG_implicit_skip_nan
It is recommended to use flag_implicit_skip_nan(1) as default and
flag_implicit_skip_nan(0) should be used for exceptional cases only.
This feature might disappear without further notice, so you should really not
rely on it.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
FLAG_IMPLICIT_SKIP_NAN sets and gets default mode for handling NaNs
1 skips Na
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
flag_nans_occured
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 430
FLAG_NANS_OCCURED checks whether the last call(s) to sumskipnan or covm
contained any not-a-numbers in the input argument. Because many other
functions like mean, std, etc. are also using sumskipnan,
also these functions can be checked for NaN's in the input data.
A call to FLAG_NANS_OCCURED() resets also the flag whether NaN's occured.
Only sumskipnan or covm can set the flag again.
see also: SUMSKIPNAN, COVM
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
FLAG_NANS_OCCURED checks whether the last call(s) to sumskipnan or covm
conta
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
fss
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1739
FSS - feature subset selection and feature ranking
the method is motivated by the max-relevance-min-redundancy (mRMR)
approach [1]. However, the default method uses partial correlation,
which has been developed from scratch. PCCM [3] describes
a similar idea, but is more complicated.
An alternative method based on FSDD is implemented, too.
[idx,score] = fss(D,cl)
[idx,score] = fss(D,cl,MODE)
[idx,score] = fss(D,cl,MODE)
D data - each column represents a feature
cl classlabel
Mode 'Pearson' [default] correlation
'rank' correlation
'FSDD' feature selection algorithm based on a distance discriminant [2]
%%% 'MRMR','MID','MIQ' max-relevance, min redundancy [1] - not supported yet.
score score of the feature
idx ranking of the feature
[tmp,idx]=sort(-score)
see also: TRAIN_SC, XVAL, ROW_COL_DELETION
REFERENCES:
[1] Peng, H.C., Long, F., and Ding, C.,
Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy,
IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 27, No. 8, pp.1226-1238, 2005.
[2] Jianning Liang, Su Yang, Adam Winstanley,
Invariant optimal feature selection: A distance discriminant and feature ranking based solution,
Pattern Recognition, Volume 41, Issue 5, May 2008, Pages 1429-1439.
ISSN 0031-3203, DOI: 10.1016/j.patcog.2007.10.018.
[3] K. Raghuraj Rao and S. Lakshminarayanan
Partial correlation based variable selection approach for multivariate data classification methods
Chemometrics and Intelligent Laboratory Systems
Volume 86, Issue 1, 15 March 2007, Pages 68-81
http://dx.doi.org/10.1016/j.chemolab.2006.08.007
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
FSS - feature subset selection and feature ranking
the method is motivated
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
geomean
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1207
GEOMEAN calculates the geomentric mean of data elements.
y = geomean(x [,DIM [,W]]) is the same as
y = mean(x,'G' [,DIM])
DIM dimension
1 STD of columns
2 STD of rows
default or []: first DIMENSION, with more than 1 element
W weights to compute weighted mean (default: [])
if W=[], all weights are 1.
number of elements in W must match size(x,DIM)
features:
- can deal with NaN's (missing values)
- weighting of data
- dimension argument also in Octave
- compatible to Matlab and Octave
see also: SUMSKIPNAN, MEAN, HARMMEAN
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; If not, see <http://www.gnu.org/licenses/>.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
GEOMEAN calculates the geomentric mean of data elements.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
gscatter
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 471
GSCATTER scatter plot of groups
gscatter(x,y,group)
gscatter(x,y,group,clr,sym,siz)
gscatter(x,y,group,clr,sym,siz,doleg)
gscatter(x,y,group,clr,sym,siz,doleg,xname,yname)
h = gscatter(...)
x,y, group: vectors with equal length
clf: color vector, default 'bgrcmyk'
sym: symbol, default '.'
siz: size of Marker
doleg: 'on' (default) shows legend, 'off' turns of legend
xname, yname: name of axis
see also: ecdf, cdfplot
References:
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
GSCATTER scatter plot of groups
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
harmmean
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 629
HARMMEAN calculates the harmonic mean of data elements.
The harmonic mean is the inverse of the mean of the inverse elements.
y = harmmean(x [,DIM [,W]]) is the same as
y = mean(x,'H' [,DIM [,W]])
DIM dimension
1 STD of columns
2 STD of rows
default or []: first DIMENSION, with more than 1 element
W weights to compute weighted mean (default: [])
if W=[], all weights are 1.
number of elements in W must match size(x,DIM)
features:
- can deal with NaN's (missing values)
- weighting of data
- dimension argument also in Octave
- compatible to Matlab and Octave
see also: SUMSKIPNAN, MEAN, GEOMEAN
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
HARMMEAN calculates the harmonic mean of data elements.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
hist2res
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 700
Evaluates Histogram data
[R]=hist2res(H)
[y]=hist2res(H,fun)
estimates fun-statistic
fun 'mean' mean
'std' standard deviation
'var' variance
'sem' standard error of the mean
'rms' root mean square
'meansq' mean of squares
'sum' sum
'sumsq' sum of squares
'CM#' central moment of order #
'skewness' skewness
'kurtosis' excess coefficient (Fisher kurtosis)
see also: NaN/statistic
REFERENCES:
[1] C.L. Nikias and A.P. Petropulu "Higher-Order Spectra Analysis" Prentice Hall, 1993.
[2] C.E. Shannon and W. Weaver "The mathematical theory of communication" University of Illinois Press, Urbana 1949 (reprint 1963).
[3] http://www.itl.nist.gov/
[4] http://mathworld.wolfram.com/
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Evaluates Histogram data
[R]=hist2res(H)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
iqr
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 372
IQR calculates the interquartile range
Missing values (encoded as NaN) are ignored.
Q = iqr(Y)
Q = iqr(Y,DIM)
returns the IQR along dimension DIM of sample array Y.
Q = iqr(HIS)
returns the IQR from the histogram HIS.
HIS must be a HISTOGRAM struct as defined in HISTO2 or HISTO3.
see also: MAD, RANGE, HISTO2, HISTO3, PERCENTILE, QUANTILE
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
IQR calculates the interquartile range
Missing values (encoded as NaN) are
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
kappa
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1760
KAPPA estimates Cohen's kappa coefficient
and related statistics
[...] = kappa(d1,d2);
NaN's are handled as missing values and are ignored
[...] = kappa(d1,d2,'notIgnoreNAN');
NaN's are handled as just another Label.
[kap,sd,H,z,ACC,sACC,MI] = kappa(...);
X = kappa(...);
d1 data of scorer 1
d2 data of scorer 2
kap Cohen's kappa coefficient point
se standard error of the kappa estimate
H Concordance matrix, i.e. confusion matrix
z z-score
ACC overall agreement (accuracy)
sACC specific accuracy
MI Mutual information or transfer information (in [bits])
X is a struct containing all the fields above
For two classes, a number of additional summary statistics including
TPR, FPR, FDR, PPV, NPF, F1, dprime, Matthews Correlation coefficient (MCC) or
Phi coefficient (PHI=MCC), Specificity and Sensitivity
are provided. Note, the positive category must the larger label (in d and c), otherwise
the confusion matrix becomes transposed and the summary statistics are messed up.
Reference(s):
[1] Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37-46.
[2] J Bortz, GA Lienert (1998) Kurzgefasste Statistik f|r die klassische Forschung, Springer Berlin - Heidelberg.
Kapitel 6: Uebereinstimmungsmasze fuer subjektive Merkmalsurteile. p. 265-270.
[3] http://www.cmis.csiro.au/Fiona.Evans/personal/msc/html/chapter3.html
[4] Kraemer, H. C. (1982). Kappa coefficient. In S. Kotz and N. L. Johnson (Eds.),
Encyclopedia of Statistical Sciences. New York: John Wiley & Sons.
[5] http://ourworld.compuserve.com/homepages/jsuebersax/kappa.htm
[6] http://en.wikipedia.org/wiki/Receiver_operating_characteristic
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
KAPPA estimates Cohen's kappa coefficient
and related statistics
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
kurtosis
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 461
KURTOSIS estimates the kurtosis
y = kurtosis(x,DIM)
calculates kurtosis of x in dimension DIM
DIM dimension
1: STATS of columns
2: STATS of rows
default or []: first DIMENSION, with more than 1 element
features:
- can deal with NaN's (missing values)
- dimension argument
- compatible to Matlab and Octave
see also: SUMSKIPNAN, VAR, STD, VAR, SKEWNESS, MOMENT, STATISTIC,
IMPLICIT_SKIP_NAN
REFERENCE(S):
http://mathworld.wolfram.com/
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
KURTOSIS estimates the kurtosis
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
load_fisheriris
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 446
LOAD_FISHERIRIS
loads famous iris data set from Fisher, 1936 [1].
References:
[1] Fisher,R.A. "The use of multiple measurements in taxonomic problems"
Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to Mathematical Statistics" (John Wiley, NY, 1950).
[2] Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
(Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
LOAD_FISHERIRIS
loads famous iris data set from Fisher, 1936 [1].
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
mad
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 855
MAD estimates the Mean Absolute deviation
(note that according to [1,2] this is the mean deviation;
not the mean absolute deviation)
y = mad(x,DIM)
calculates the mean deviation of x in dimension DIM
DIM dimension
1: STATS of columns
2: STATS of rows
default or []: first DIMENSION, with more than 1 element
features:
- can deal with NaN's (missing values)
- dimension argument
- compatible to Matlab and Octave
see also: SUMSKIPNAN, VAR, STD,
REFERENCE(S):
[1] http://mathworld.wolfram.com/MeanDeviation.html
[2] L. Sachs, "Applied Statistics: A Handbook of Techniques", Springer-Verlag, 1984, page 253.
[3] http://mathworld.wolfram.com/MeanAbsoluteDeviation.html
[4] Kenney, J. F. and Keeping, E. S. "Mean Absolute Deviation." �6.4 in Mathematics of Statistics, Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, pp. 76-77 1962.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
MAD estimates the Mean Absolute deviation
(note that according to [1,2] this i
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
mahal
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 395
MAHAL return the Mahalanobis' D-square distance between the
multivariate samples x and y, which must have the same number
of components (columns), but may have a different number of observations (rows).
d = mahal(X,Y)
d(k) = (X(k,:)-MU)*inv(SIGMA)*(X(k,:)-MU)'
where MU and SIGMA are the mean and the covariance matrix of Y
see also: TRAIN_SC, TEST_SC, COVM
References:
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
MAHAL return the Mahalanobis' D-square distance between the
multivariate samp
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
make
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
This make.m is used for Matlab under Windows
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
This make.m is used for Matlab under Windows
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
mean
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 735
MEAN calculates the mean of data elements.
y = mean(x [,DIM] [,opt] [, W])
DIM dimension
1 MEAN of columns
2 MEAN of rows
N MEAN of N-th dimension
default or []: first DIMENSION, with more than 1 element
opt options
'A' arithmetic mean
'G' geometric mean
'H' harmonic mean
W weights to compute weighted mean (default: [])
if W=[], all weights are 1.
number of elements in W must match size(x,DIM)
usage:
mean(x)
mean(x,DIM)
mean(x,opt)
mean(x,opt,DIM)
mean(x,DIM,opt)
mean(x,DIM,W)
mean(x,DIM,opt,W); '
features:
- can deal with NaN's (missing values)
- weighting of data
- dimension argument also in Octave
- compatible to Matlab and Octave
see also: SUMSKIPNAN, MEAN, GEOMEAN, HARMMEAN
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
MEAN calculates the mean of data elements.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
meandev
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 856
MEANDEV estimates the Mean deviation
(note that according to [1,2] this is the mean deviation;
not the mean absolute deviation)
y = meandev(x,DIM)
calculates the mean deviation of x in dimension DIM
DIM dimension
1: STATS of columns
2: STATS of rows
default or []: first DIMENSION, with more than 1 element
features:
- can deal with NaN's (missing values)
- dimension argument
- compatible to Matlab and Octave
see also: SUMSKIPNAN, VAR, STD, MAD
REFERENCE(S):
[1] http://mathworld.wolfram.com/MeanDeviation.html
[2] L. Sachs, "Applied Statistics: A Handbook of Techniques", Springer-Verlag, 1984, page 253.
[3] http://mathworld.wolfram.com/MeanAbsoluteDeviation.html
[4] Kenney, J. F. and Keeping, E. S. "Mean Absolute Deviation." �6.4 in Mathematics of Statistics, Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, pp. 76-77 1962.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
MEANDEV estimates the Mean deviation
(note that according to [1,2] this is the
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
meansq
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 527
MEANSQ calculates the mean of the squares
y = meansq(x,DIM,W)
DIM dimension
1 STD of columns
2 STD of rows
N STD of N-th dimension
default or []: first DIMENSION, with more than 1 element
W weights to compute weighted mean (default: [])
if W=[], all weights are 1.
number of elements in W must match size(x,DIM)
features:
- can deal with NaN's (missing values)
- weighting of data
- dimension argument also in Octave
- compatible to Matlab and Octave
see also: SUMSQ, SUMSKIPNAN, MEAN, VAR, STD, RMS
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
MEANSQ calculates the mean of the squares
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
medAbsDev
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 373
medAbsDev calculates the median absolute deviation
Usage: D = medAbsDev(X, DIM)
or: [D, M] = medAbsDev(X, DIM)
Input: X : data
DIM: dimension along which mad should be calculated (1=columns, 2=rows)
(optional, default=first dimension with more than 1 element
Output: D : median absolute deviations
M : medians (optional)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
medAbsDev calculates the median absolute deviation
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
median
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 366
MEDIAN data elements,
[y]=median(x [,DIM])
DIM dimension
1: median of columns
2: median of rows
N: median of N-th dimension
default or []: first DIMENSION, with more than 1 element
features:
- can deal with NaN's (missing values)
- accepts dimension argument like in Matlab in Octave, too.
- compatible to Matlab and Octave
see also: SUMSKIPNAN
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
MEDIAN data elements,
[y]=median(x [,DIM])
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
moment
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 627
MOMENT estimates the p-th moment
M = moment(x, p [,opt] [,DIM])
M = moment(H, p [,opt])
calculates p-th central moment from data x in dimension DIM
of from Histogram H
p moment of order p
opt 'ac': absolute 'a' and/or central ('c') moment
DEFAULT: '' raw moments are estimated
DIM dimension
1: STATS of columns
2: STATS of rows
default or []: first DIMENSION, with more than 1 element
features:
- can deal with NaN's (missing values)
- dimension argument
- compatible to Matlab and Octave
see also: STD, VAR, SKEWNESS, KURTOSIS, STATISTIC,
REFERENCE(S):
http://mathworld.wolfram.com/Moment.html
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
MOMENT estimates the p-th moment
M = moment(x, p [,opt] [,DIM])
M = moment
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nanconv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 616
NANCONV computes the convolution for data with missing values.
X and Y can contain missing values encoded with NaN.
NaN's are skipped, NaN do not result in a NaN output.
The output gives NaN only if there are insufficient input data
[...] = NANCONV(X,Y);
calculates 2-dim convolution between X and Y
[C] = NANCONV(X,Y);
WARNING: missing values can introduce aliasing - causing unintended results.
Moreover, the behavior of bandpass and highpass filters in case of missing values
is not fully understood, and might contain some pitfalls.
see also: CONV, NANCONV2, NANFFT, NANFILTER
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
NANCONV computes the convolution for data with missing values.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
nanfft
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 618
NANFFT calculates the Fourier-Transform of X for data with missing values.
NANFFT is the same as FFT but X can contain missing values encoded with NaN.
NaN's are skipped, NaN do not result in a NaN output.
Y = NANFFT(X)
Y = NANFFT(X,N)
Y = NANFFT(X,[],DIM)
[Y,N] = NANFFT(...)
returns the number of valid samples N
WARNING: missing values can introduce aliasing - causing unintended results.
Moreover, the behavior of bandpass and highpass filters in case of missing values
is not fully understood, and might contain some pitfalls.
see also: FFT, XCORR, NANCONV, NANFILTER
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
NANFFT calculates the Fourier-Transform of X for data with missing values.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
nanfilter
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 519
NANFILTER is able to filter data with missing values encoded as NaN.
[Y,Z] = nanfilter(B,A,X [, Z]);
If X contains no missing data, NANFILTER should behave like FILTER.
NaN-values are handled gracefully.
WARNING: missing values can introduce aliasing - causing unintended results.
Moreover, the behavior of bandpass and highpass filters in case of missing values
is not fully understood, and might contain some pitfalls.
see also: FILTER, SUMSKIPNAN, NANFFT, NANCONV, NANFILTER1UC
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
NANFILTER is able to filter data with missing values encoded as NaN.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
nanfilter1uc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 257
NANFILTER1UC is an adaptive filter for data with missing values encoded as NaN.
[Y,Z] = nanfilter1uc(uc,X [, Z]);
if X contains no missing data, NANFILTER behaves like FILTER(uc,[1,uc-1],X[,Z]).
see also: FILTER, NANFILTER, SUMSKIPNAN
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
NANFILTER1UC is an adaptive filter for data with missing values encoded as NaN.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
naninsttest
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 112
NANINSTTEST checks whether the functions from NaN-toolbox have been
correctly installed.
see also: NANTEST
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
NANINSTTEST checks whether the functions from NaN-toolbox have been
correctly
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nanmean
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 333
NANMEAN same as SUM but ignores NaN's.
NANMEAN is OBSOLETE; use MEAN instead. NANMEAN is included
to provide backward compatibility
Y = nanmean(x [,DIM])
DIM dimension
1 sum of columns
2 sum of rows
default or []: first DIMENSION with more than 1 element
Y resulting mean
see also: MEAN, SUMSKIPNAN, NANSUM
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
NANMEAN same as SUM but ignores NaN's.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
nanstd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 518
NANSTD same as STD but ignores NaN's.
NANSTD is OBSOLETE; use NaN/STD instead. NANSTD is included
to fix a bug in alternative implementations and to
provide some compatibility.
Y = nanstd(x, FLAG, [,DIM])
x data
FLAG 0: [default] normalizes with (N-1), N = sample size
FLAG 1: normalizes with N, N = sample size
DIM dimension
1 sum of columns
2 sum of rows
default or []: first DIMENSION with more than 1 element
Y resulting standard deviation
see also: SUM, SUMSKIPNAN, NANSUM, STD
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
NANSTD same as STD but ignores NaN's.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
nansum
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 333
NANSUM same as SUM but ignores NaN's.
NANSUM is OBSOLETE; use SUMSKIPNAN instead. NANSUM is included
to fix a bug in some other versions.
Y = nansum(x [,DIM])
DIM dimension
1 sum of columns
2 sum of rows
default or []: first DIMENSION with more than 1 element
Y resulting sum
see also: SUM, SUMSKIPNAN, NANSUM
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
NANSUM same as SUM but ignores NaN's.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nantest
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 366
NANTEST checks several mathematical operations and a few
statistical functions for their correctness related to NaN's.
e.g. it checks norminv, normcdf, normpdf, sort, matrix division and multiplication.
see also: NANINSTTEST
REFERENCE(S):
[1] W. Kahan (1996) Lecture notes on the Status of "IEEE Standard 754 for
Binary Floating-point Arithmetic.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
NANTEST checks several mathematical operations and a few
statistical function
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
normcdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 290
NORMCDF returns normal cumulative distribtion function
cdf = normcdf(x,m,s);
Computes the CDF of a the normal distribution
with mean m and standard deviation s
default: m=0; s=1;
x,m,s must be matrices of same size, or any one can be a scalar.
see also: NORMPDF, NORMINV
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
NORMCDF returns normal cumulative distribtion function
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
norminv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 341
NORMINV returns inverse cumulative function of the normal distribution
x = norminv(p,m,s);
Computes the quantile (inverse of the CDF) of a the normal
cumulative distribution with mean m and standard deviation s
default: m=0; s=1;
p,m,s must be matrices of same size, or any one can be a scalar.
see also: NORMPDF, NORMCDF
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
NORMINV returns inverse cumulative function of the normal distribution
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
normpdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 279
NORMPDF returns normal probability density
pdf = normpdf(x,m,s);
Computes the PDF of a the normal distribution
with mean m and standard deviation s
default: m=0; s=1;
x,m,s must be matrices of same size, or any one can be a scalar.
see also: NORMCDF, NORMINV
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
NORMPDF returns normal probability density
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
partcorrcoef
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2015
PARTCORRCOEF calculates the partial correlation between X and Y
after removing the influence of Z.
X, Y and Z can contain missing values encoded with NaN.
NaN's are skipped, NaN do not result in a NaN output.
(Its assumed that the occurence of NaN's is uncorrelated)
The output gives NaN, only if there are insufficient input data.
The partial correlation is defined as
pcc(xy|z)=(cc(x,y)-cc(x,z)*cc(y,z))/sqrt((1-cc(x,y)�)*((1-cc(x,z)�)))
PARTCORRCOEF(X [,Mode]);
calculates the (auto-)correlation matrix of X
PARTCORRCOEF(X,Y,Z);
PARTCORRCOEF(X,Y,Z,[]);
PARTCORRCOEF(X,Y,Z,'Pearson');
PARTCORRCOEF(X,Y,Z,'Rank');
PARTCORRCOEF(X,Y,Z,'Spearman');
Mode=[] [default]
removes from X and Y the part that can be explained by Z
and computes the correlation of the remaining part.
Ideally, this is equivalent to Mode='Pearson', however, in practice
this is more accurate.
Mode='Pearson' or 'parametric'
Mode='Spearman'
Mode='Rank'
computes the partial correlation based on cc(x,y),cc(x,z) and cc(y,z)
with the respective mode.
[R,p,ci1,ci2] = PARTCORRCOEF(...);
r is the partialcorrelation matrix
r(i,j) is the partial correlation coefficient r between X(:,i) and Y(:,j)
when influence of Z is removed.
p gives the significance of PCC
It tests the null hypothesis that the product moment correlation coefficient is zero
using Student's t-test on the statistic t = r sqrt(N-Nz-2)/sqrt(1-r^2)
where N is the number of samples (Statistics, M. Spiegel, Schaum series).
p > alpha: do not reject the Null hypothesis: "R is zero".
p < alpha: The alternative hypothesis "R2 is larger than zero" is true with probability (1-alpha).
ci1 lower 0.95 confidence interval
ci2 upper 0.95 confidence interval
see also: SUMSKIPNAN, COVM, COV, COR, SPEARMAN, RANKCORR, RANKS, CORRCOEF
REFERENCES:
on the partial correlation coefficient
[1] http://www.tufts.edu/~gdallal/partial.htm
[2] http://www.nag.co.uk/numeric/fl/manual/pdf/G02/g02byf.pdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
PARTCORRCOEF calculates the partial correlation between X and Y
after removing
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
percentile
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 554
PERCENTILE calculates the percentiles of histograms and sample arrays.
Q = percentile(Y,q)
Q = percentile(Y,q,DIM)
returns the q-th percentile along dimension DIM of sample array Y.
size(Q) is equal size(Y) except for dimension DIM which is size(Q,DIM)=length(Q)
Q = percentile(HIS,q)
returns the q-th percentile from the histogram HIS.
HIS must be a HISTOGRAM struct as defined in HISTO2 or HISTO3.
If q is a vector, the each row of Q returns the q(i)-th percentile
see also: HISTO2, HISTO3, QUANTILE
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
PERCENTILE calculates the percentiles of histograms and sample arrays.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
prctile
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 576
PRCTILE calculates the percentiles of histograms and sample arrays.
(its the same than PERCENTILE.M)
Q = prctile(Y,q)
Q = prctile(Y,q,DIM)
returns the q-th percentile along dimension DIM of sample array Y.
size(Q) is equal size(Y) except for dimension DIM which is size(Q,DIM)=length(Q)
Q = prctile(HIS,q)
returns the q-th percentile from the histogram HIS.
HIS must be a HISTOGRAM struct as defined in HISTO2 or HISTO3.
If q is a vector, the each row of Q returns the q(i)-th percentile
see also: HISTO2, HISTO3, QUANTILE
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
PRCTILE calculates the percentiles of histograms and sample arrays.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
quantile
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 528
QUANTILE calculates the quantiles of histograms and sample arrays.
Q = quantile(Y,q)
Q = quantile(Y,q,DIM)
returns the q-th quantile along dimension DIM of sample array Y.
size(Q) is equal size(Y) except for dimension DIM which is size(Q,DIM)=length(Q)
Q = quantile(HIS,q)
returns the q-th quantile from the histogram HIS.
HIS must be a HISTOGRAM struct as defined in HISTO2 or HISTO3.
If q is a vector, the each row of Q returns the q(i)-th quantile
see also: HISTO2, HISTO3, PERCENTILE
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
QUANTILE calculates the quantiles of histograms and sample arrays.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
range
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 371
RANGE calculates the range of Y
Missing values (encoded as NaN) are ignored.
Q = range(Y)
Q = range(Y,DIM)
returns the range along dimension DIM of sample array Y.
Q = range(HIS)
returns the RANGE from the histogram HIS.
HIS must be a HISTOGRAM struct as defined in HISTO2 or HISTO3.
see also: IQR, MAD, HISTO2, HISTO3, PERCENTILE, QUANTILE
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
RANGE calculates the range of Y
Missing values (encoded as NaN) are ignored.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
rankcorr
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 668
RANKCORR calculated the rank correlation coefficient.
This function is replaced by CORRCOEF.
Significance test and confidence intervals can be obtained from CORRCOEF, too.
R = CORRCOEF(X, [Y, ] 'Rank');
The rank correlation r = corrcoef(ranks(x)).
is often confused with Spearman's rank correlation.
Spearman's correlation is defined as
r(x,y) = 1-6*sum((ranks(x)-ranks(y)).^2)/(N*(N*N-1))
The results are different. Here, the former version is implemented.
see also: CORRCOEF, SPEARMAN, RANKS
REFERENCES:
[1] http://mathworld.wolfram.com/SpearmanRankCorrelationCoefficient.html
[2] http://mathworld.wolfram.com/CorrelationCoefficient.html
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
RANKCORR calculated the rank correlation coefficient.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ranks
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1062
RANKS gives the rank of each element in a vector.
This program uses an advanced algorithm with averge effort O(m.n.log(n))
NaN in the input yields NaN in the output.
r = ranks(X[,DIM])
if X is a vector, return the vector of ranks of X adjusted for ties.
if X is matrix, the rank is calculated along dimension DIM.
if DIM is zero or empty, the lowest dimension with more then 1 element is used.
r = ranks(X,DIM,'traditional')
implements the traditional algorithm with O(n^2) computational
and O(n^2) memory effort
r = ranks(X,DIM,'mtraditional')
implements the traditional algorithm with O(n^2) computational
and O(n) memory effort
r = ranks(X,DIM,'advanced ')
implements an advanced algorithm with O(n*log(n)) computational
and O(n.log(n)) memory effort
r = ranks(X,DIM,'advanced-ties')
implements an advanced algorithm with O(n*log(n)) computational
and O(n.log(n)) memory effort
but without correction for ties
This is the fastest algorithm
see also: CORRCOEF, SPEARMAN, RANKCORR
REFERENCES:
--
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
RANKS gives the rank of each element in a vector.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
rms
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 560
RMS calculates the root mean square
can deal with complex data.
y = rms(x,DIM,W)
DIM dimension
1 STD of columns
2 STD of rows
N STD of N-th dimension
default or []: first DIMENSION, with more than 1 element
W weights to compute weighted s.d. (default: [])
if W=[], all weights are 1.
number of elements in W must match size(x,DIM)
y estimated standard deviation
features:
- can deal with NaN's (missing values)
- weighting of data
- dimension argument also in Octave
- compatible to Matlab and Octave
see also: SUMSKIPNAN, MEAN
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
RMS calculates the root mean square
can deal with complex data.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
row_col_deletion
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 739
ROW_COL_DELETION selects the rows and columns for removing any missing values.
A heuristic based on maximizing the number of remaining sample values
is used. In other words, if there are more rows than columns, it is
more likely that a row-wise deletion will be applied and vice versa.
[rix,cix] = row_col_deletion(d)
[rix,cix] = row_col_deletion(d,c,w)
Input:
d data (each row is a sample, each column a feature)
c classlabels (not really used) [OPTIONAL]
w weight for each sample vector [OPTIONAL]
Output:
rix selected samples
cix selected columns
d(rix,cix) does not contain any NaN's i.e. missing values
see also: TRAIN_SC, TEST_SC
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
ROW_COL_DELETION selects the rows and columns for removing any missing values.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
sem
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 695
SEM calculates the standard error of the mean
[SE,M] = SEM(x [, DIM [,W]])
calculates the standard error (SE) in dimension DIM
the default DIM is the first non-single dimension
M returns the mean.
Can deal with complex data, too.
DIM dimension
1: SEM of columns
2: SEM of rows
N: SEM of N-th dimension
default or []: first DIMENSION, with more than 1 element
W weights to compute weighted mean and s.d. (default: [])
if W=[], all weights are 1.
number of elements in W must match size(x,DIM)
features:
- can deal with NaN's (missing values)
- weighting of data
- dimension argument
- compatible to Matlab and Octave
see also: SUMSKIPNAN, MEAN, VAR, STD
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
SEM calculates the standard error of the mean
[SE,M] = SEM(x [, DIM [,W]])
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
skewness
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 405
SKEWNESS estimates the skewness
y = skewness(x,DIM)
calculates skewness of x in dimension DIM
DIM dimension
1: STATS of columns
2: STATS of rows
default or []: first DIMENSION, with more than 1 element
features:
- can deal with NaN's (missing values)
- dimension argument
- compatible to Matlab and Octave
see also: SUMSKIPNAN, STATISTIC
REFERENCE(S):
http://mathworld.wolfram.com/
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
SKEWNESS estimates the skewness
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
spearman
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 683
SPEARMAN Spearman's rank correlation coefficient.
This function is replaced by CORRCOEF.
Significance test and confidence intervals can be obtained from CORRCOEF.
[R,p,ci1,ci2] = CORRCOEF(x, [y, ] 'Rank');
For some (unknown) reason, in previous versions Spearman's rank correlation
r = corrcoef(ranks(x)).
But according to [1], Spearman's correlation is defined as
r = 1-6*sum((ranks(x)-ranks(y)).^2)/(N*(N*N-1))
The results are different. Here, the later version is implemented.
see also: CORRCOEF, RANKCORR
REFERENCES:
[1] http://mathworld.wolfram.com/SpearmanRankCorrelationCoefficient.html
[2] http://mathworld.wolfram.com/CorrelationCoefficient.html
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
SPEARMAN Spearman's rank correlation coefficient.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
statistic
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 938
STATISTIC estimates various statistics at once.
R = STATISTIC(x,DIM)
calculates all statistic (see list of fun) in dimension DIM
R is a struct with all statistics
y = STATISTIC(x,fun)
estimate of fun on dimension DIM
y gives the statistic of fun
DIM dimension
1: STATS of columns
2: STATS of rows
N: STATS of N-th dimension
default or []: first DIMENSION, with more than 1 element
fun 'mean' mean
'std' standard deviation
'var' variance
'sem' standard error of the mean
'rms' root mean square
'meansq' mean of squares
'sum' sum
'sumsq' sum of squares
'CM#' central moment of order #
'skewness' skewness
'kurtosis' excess coefficient (Fisher kurtosis)
'mad' mean absolute deviation
features:
- can deal with NaN's (missing values)
- dimension argument
- compatible to Matlab and Octave
see also: SUMSKIPNAN
REFERENCE(S):
[1] http://www.itl.nist.gov/
[2] http://mathworld.wolfram.com/
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
STATISTIC estimates various statistics at once.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
std
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 983
STD calculates the standard deviation.
[y,v] = std(x [, opt[, DIM [, W]]])
opt option
0: normalizes with N-1 [default]
provides the square root of best unbiased estimator of the variance
1: normalizes with N,
this provides the square root of the second moment around the mean
otherwise:
best unbiased estimator of the standard deviation (see [1])
DIM dimension
N STD of N-th dimension
default or []: first DIMENSION, with more than 1 element
W weights to compute weighted s.d. (default: [])
if W=[], all weights are 1.
number of elements in W must match size(x,DIM)
y estimated standard deviation
features:
- provides an unbiased estimation of the S.D.
- can deal with NaN's (missing values)
- weighting of data
- dimension argument also in Octave
- compatible to Matlab and Octave
see also: RMS, SUMSKIPNAN, MEAN, VAR, MEANSQ,
References(s):
[1] http://mathworld.wolfram.com/StandardDeviationDistribution.html
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
STD calculates the standard deviation.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
sumskipnan
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1234
SUMSKIPNAN adds all non-NaN values.
All NaN's are skipped; NaN's are considered as missing values.
SUMSKIPNAN of NaN's only gives O; and the number of valid elements is return.
SUMSKIPNAN is also the elementary function for calculating
various statistics (e.g. MEAN, STD, VAR, RMS, MEANSQ, SKEWNESS,
KURTOSIS, MOMENT, STATISTIC etc.) from data with missing values.
SUMSKIPNAN implements the DIMENSION-argument for data with missing values.
Also the second output argument return the number of valid elements (not NaNs)
Y = sumskipnan(x [,DIM])
[Y,N,SSQ] = sumskipnan(x [,DIM])
[...] = sumskipnan(x, DIM, W)
x input data
DIM dimension (default: [])
empty DIM sets DIM to first non singleton dimension
W weight vector for weighted sum, numel(W) must fit size(x,DIM)
Y resulting sum
N number of valid (not missing) elements
SSQ sum of squares
the function FLAG_NANS_OCCURED() returns whether any value in x
is a not-a-number (NaN)
features:
- can deal with NaN's (missing values)
- implements dimension argument.
- computes weighted sum
- compatible with Matlab and Octave
see also: FLAG_NANS_OCCURED, SUM, NANSUM, MEAN, STD, VAR, RMS, MEANSQ,
SSQ, MOMENT, SKEWNESS, KURTOSIS, SEM
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
SUMSKIPNAN adds all non-NaN values.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
sumsq
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 391
SUMSQ calculates the sum of squares.
[y] = sumsq(x [, DIM])
DIM dimension
N STD of N-th dimension
default or []: first DIMENSION, with more than 1 element
y estimated standard deviation
features:
- can deal with NaN's (missing values)
- dimension argument also in Octave
- compatible to Matlab and Octave
see also: RMS, SUMSKIPNAN, MEAN, VAR, MEANSQ,
References(s):
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
SUMSQ calculates the sum of squares.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
tcdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 254
TCDF returns student cumulative distribtion function
cdf = tcdf(x,DF);
Computes the CDF of the students distribution
with DF degrees of freedom
x,DF must be matrices of same size, or any one can be a scalar.
see also: NORMCDF, TPDF, TINV
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
TCDF returns student cumulative distribtion function
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
test_sc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1441
TEST_SC: apply statistical and SVM classifier to test data
R = test_sc(CC,D,TYPE [,target_Classlabel])
R.output output: "signed" distance for each class.
This represents the distances between sample D and the separating hyperplane
The "signed distance" is possitive if it matches the target class, and
and negative if it lays on the opposite side of the separating hyperplane.
R.classlabel class for output data
The target class is optional. If it is provided, the following values are returned.
R.kappa Cohen's kappa coefficient
R.ACC Classification accuracy
R.H Confusion matrix
The classifier CC is typically obtained by TRAIN_SC. If a statistical
classifier is used, TYPE can be used to modify the classifier.
TYPE = 'MDA' mahalanobis distance based classifier
TYPE = 'MD2' mahalanobis distance based classifier
TYPE = 'MD3' mahalanobis distance based classifier
TYPE = 'GRB' Gaussian radial basis function
TYPE = 'QDA' quadratic discriminant analysis
TYPE = 'LD2' linear discriminant analysis
TYPE = 'LD3', 'LDA', 'FDA, 'FLDA' (Fisher's) linear discriminant analysis
TYPE = 'LD4' linear discriminant analysis
TYPE = 'GDBC' general distance based classifier
see also: TRAIN_SC
References:
[1] R. Duda, P. Hart, and D. Stork, Pattern Classification, second ed.
John Wiley & Sons, 2001.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
TEST_SC: apply statistical and SVM classifier to test data
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
tiedrank
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 272
TIEDRANK compute rank of samples, the mean value is used in case of ties
this function is just a wrapper for RANKS, and provided for compatibility
with the statistics toolbox of matlab(tm)
R = tiedrank(X)
computes the rank R of vector X
see also: RANKS
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
TIEDRANK compute rank of samples, the mean value is used in case of ties
this
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
tinv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 330
TINV returns inverse cumulative function of the student distribution
x = tinv(p,v);
Computes the quantile (inverse of the CDF) of a the student
cumulative distribution with mean m and standard deviation s
p,v must be matrices of same size, or any one can be a scalar.
see also: TPDF, TCDF, NORMPDF, NORMCDF, NORMINV
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
TINV returns inverse cumulative function of the student distribution
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
tpdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 261
TPDF returns student probability density
pdf = tpdf(x,DF);
Computes the PDF of a the student distribution
with DF degreas of freedom
x,DF must be matrices of same size, or any one can be a scalar.
see also: TINV, TCDF, NORMPDF, NORMCDF, NORMINV
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
TPDF returns student probability density
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
train_lda_sparse
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1689
Linear Discriminant Analysis for the Small Sample Size Problem as described in
Algorithm 1 of J. Duintjer Tebbens, P. Schlesinger: 'Improving
Implementation of Linear Discriminant Analysis for the High Dimension/Small Sample Size
Problem', Computational Statistics and Data Analysis, vol. 52, no. 1, pp. 423-437, 2007.
Input:
X ...... (sparse) training data matrix
G ...... group coding matrix of the training data
test ...... (sparse) test data matrix
Gtest ...... group coding matrix of the test data
par ...... if par = 0 then classification exploits sparsity too
tol ...... tolerance to distinguish zero eigenvalues
Output:
err ...... Wrong classification rate (in %)
trafo ...... LDA transformation vectors
Reference(s):
J. Duintjer Tebbens, P. Schlesinger: 'Improving
Implementation of Linear Discriminant Analysis for the High Dimension/Small Sample Size
Problem', Computational Statistics and Data Analysis, vol. 52, no. 1,
pp. 423-437, 2007.
Copyright (C) by J. Duintjer Tebbens, Institute of Computer Science of the Academy of Sciences of the Czech Republic,
Pod Vodarenskou vezi 2, 182 07 Praha 8 Liben, 18.July.2006.
This work was supported by the Program Information Society under project
1ET400300415.
Modified for the use with Matlab6.5 by A. Schloegl, 22.Aug.2006
$Id$
This function is part of the NaN-toolbox
http://pub.ist.ac.at/~schloegl/matlab/NaN/
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Linear Discriminant Analysis for the Small Sample Size Problem as described in
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
train_sc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7655
Train a (statistical) classifier
CC = train_sc(D,classlabel)
CC = train_sc(D,classlabel,MODE)
CC = train_sc(D,classlabel,MODE, W)
weighting D(k,:) with weight W(k) (not all classifiers supported weighting)
CC contains the model parameters of a classifier which can be applied
to test data using test_sc.
R = test_sc(CC,D,...)
D training samples (each row is a sample, each column is a feature)
classlabel labels of each sample, must have the same number of rows as D.
Two different encodings are supported:
{-1,1}-encoding (multiple classes with separate columns for each class) or
1..M encoding.
So [1;2;3;1;4] is equivalent to
[+1,-1,-1,-1;
[-1,+1,-1,-1;
[-1,-1,+1,-1;
[+1,-1,-1,-1]
[-1,-1,-1,+1]
Note, samples with classlabel=0 are ignored.
The following classifier types are supported MODE.TYPE
'MDA' mahalanobis distance based classifier [1]
'MD2' mahalanobis distance based classifier [1]
'MD3' mahalanobis distance based classifier [1]
'GRB' Gaussian radial basis function [1]
'QDA' quadratic discriminant analysis [1]
'LD2' linear discriminant analysis (see LDBC2) [1]
MODE.hyperparameter.gamma: regularization parameter [default 0]
'LD3', 'FDA', 'LDA', 'FLDA'
linear discriminant analysis (see LDBC3) [1]
MODE.hyperparameter.gamma: regularization parameter [default 0]
'LD4' linear discriminant analysis (see LDBC4) [1]
MODE.hyperparameter.gamma: regularization parameter [default 0]
'LD5' another LDA (motivated by CSP)
MODE.hyperparameter.gamma: regularization parameter [default 0]
'RDA' regularized discriminant analysis [7]
MODE.hyperparameter.gamma: regularization parameter
MODE.hyperparameter.lambda =
gamma = 0, lambda = 0 : MDA
gamma = 0, lambda = 1 : LDA [default]
Hint: hyperparameter are used only in test_sc.m, testing different
the hyperparameters do not need repetitive calls to train_sc,
it is sufficient to modify CC.hyperparameter before calling test_sc.
'GDBC' general distance based classifier [1]
'' statistical classifier, requires Mode argument in TEST_SC
'###/DELETION' if the data contains missing values (encoded as NaNs),
a row-wise or column-wise deletion (depending on which method
removes less data values) is applied;
'###/GSVD' GSVD and statistical classifier [2,3],
'###/sparse' sparse [5]
'###' must be 'LDA' or any other classifier
'PLS' (linear) partial least squares regression
'REG' regression analysis;
'WienerHopf' Wiener-Hopf equation
'NBC' Naive Bayesian Classifier [6]
'aNBC' Augmented Naive Bayesian Classifier [6]
'NBPW' Naive Bayesian Parzen Window [9]
'PLA' Perceptron Learning Algorithm [11]
MODE.hyperparameter.alpha = alpha [default: 1]
w = w + alpha * e'*x
'LMS', 'AdaLine' Least mean squares, adaptive line element, Widrow-Hoff, delta rule
MODE.hyperparameter.alpha = alpha [default: 1]
'Winnow2' Winnow2 algorithm [12]
'PSVM' Proximal SVM [8]
MODE.hyperparameter.nu (default: 1.0)
'LPM' Linear Programming Machine
uses and requires train_LPM of the iLog CPLEX optimizer
MODE.hyperparameter.c_value =
'CSP' CommonSpatialPattern is very experimental and just a hack
uses a smoothing window of 50 samples.
'SVM','SVM1r' support vector machines, one-vs-rest
MODE.hyperparameter.c_value =
'SVM11' support vector machines, one-vs-one + voting
MODE.hyperparameter.c_value =
'RBF' Support Vector Machines with RBF Kernel
MODE.hyperparameter.c_value =
MODE.hyperparameter.gamma =
'SVM:LIB' libSVM [default SVM algorithm)
'SVM:bioinfo' uses and requires svmtrain from the bioinfo toolbox
'SVM:OSU' uses and requires mexSVMTrain from the OSU-SVM toolbox
'SVM:LOO' uses and requires svcm_train from the LOO-SVM toolbox
'SVM:Gunn' uses and requires svc-functios from the Gunn-SVM toolbox
'SVM:KM' uses and requires svmclass-function from the KM-SVM toolbox
'SVM:LINz' LibLinear [10] (requires train.mex from LibLinear somewhere in the path)
z=0 (default) LibLinear with -- L2-regularized logistic regression
z=1 LibLinear with -- L2-loss support vector machines (dual)
z=2 LibLinear with -- L2-loss support vector machines (primal)
z=3 LibLinear with -- L1-loss support vector machines (dual)
'SVM:LIN4' LibLinear with -- multi-class support vector machines by Crammer and Singer
'DT' decision tree - not implemented yet.
{'REG','MDA','MD2','QDA','QDA2','LD2','LD3','LD4','LD5','LD6','NBC','aNBC','WienerHopf','LDA/GSVD','MDA/GSVD', 'LDA/sparse','MDA/sparse', 'PLA', 'LMS','LDA/DELETION','MDA/DELETION','NBC/DELETION','RDA/DELETION','REG/DELETION','RDA','GDBC','SVM','RBF','PSVM','SVM11','SVM:LIN4','SVM:LIN0','SVM:LIN1','SVM:LIN2','SVM:LIN3','WINNOW', 'DT'};
CC contains the model parameters of a classifier. Some time ago,
CC was a statistical classifier containing the mean
and the covariance of the data of each class (encoded in the
so-called "extended covariance matrices". Nowadays, also other
classifiers are supported.
see also: TEST_SC, COVM, ROW_COL_DELETION
References:
[1] R. Duda, P. Hart, and D. Stork, Pattern Classification, second ed.
John Wiley & Sons, 2001.
[2] Peg Howland and Haesun Park,
Generalizing Discriminant Analysis Using the Generalized Singular Value Decomposition
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(8), 2004.
dx.doi.org/10.1109/TPAMI.2004.46
[3] http://www-static.cc.gatech.edu/~kihwan23/face_recog_gsvd.htm
[4] Jieping Ye, Ravi Janardan, Cheong Hee Park, Haesun Park
A new optimization criterion for generalized discriminant analysis on undersampled problems.
The Third IEEE International Conference on Data Mining, Melbourne, Florida, USA
November 19 - 22, 2003
[5] J.D. Tebbens and P. Schlesinger (2006),
Improving Implementation of Linear Discriminant Analysis for the Small Sample Size Problem
Computational Statistics & Data Analysis, vol 52(1): 423-437, 2007
http://www.cs.cas.cz/mweb/download/publi/JdtSchl2006.pdf
[6] H. Zhang, The optimality of Naive Bayes,
http://www.cs.unb.ca/profs/hzhang/publications/FLAIRS04ZhangH.pdf
[7] J.H. Friedman. Regularized discriminant analysis.
Journal of the American Statistical Association, 84:165–175, 1989.
[8] G. Fung and O.L. Mangasarian, Proximal Support Vector Machine Classifiers, KDD 2001.
Eds. F. Provost and R. Srikant, Proc. KDD-2001: Knowledge Discovery and Data Mining, August 26-29, 2001, San Francisco, CA.
p. 77-86.
[9] Kai Keng Ang, Zhang Yang Chin, Haihong Zhang, Cuntai Guan.
Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface.
IEEE International Joint Conference on Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence).
1-8 June 2008 Page(s):2390 - 2397
[10] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin.
LIBLINEAR: A Library for Large Linear Classification, Journal of Machine Learning Research 9(2008), 1871-1874.
Software available at http://www.csie.ntu.edu.tw/~cjlin/liblinear
[11] http://en.wikipedia.org/wiki/Perceptron#Learning_algorithm
[12] Littlestone, N. (1988)
"Learning Quickly When Irrelevant Attributes Abound: A New Linear-threshold Algorithm"
Machine Learning 285-318(2)
http://en.wikipedia.org/wiki/Winnow_(algorithm)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Train a (statistical) classifier
CC = train_sc(D,classlabel)
CC = train_s
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
trimean
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 276
TRIMEAN yields the weighted mean of the median and the quartiles
m = TRIMEAN(y).
The trimean is m = (Q1+2*MED+Q3)/4
with quartile Q1 and Q3 and median MED
N-dimensional data is supported
REFERENCES:
[1] http://mathworld.wolfram.com/Trimean.html
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
TRIMEAN yields the weighted mean of the median and the quartiles
m = TRIME
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
trimmean
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 664
TRIMMEAN calculates the trimmed mean by removing the fraction of p/2 upper and
p/2 lower samples. Missing values (encoded as NaN) are ignored and not taken into account.
The same number from the upper and lower values are removed, and is compatible to various
spreadsheet programs including GNumeric [1], LibreOffice, OpenOffice and MS Excel.
Q = trimmean(Y,p)
Q = trimmean(Y,p,DIM)
returns the TRIMMEAN along dimension DIM of sample array Y.
If p is a vector, the TRIMMEAN for each p is computed.
see also: MAD, RANGE, HISTO2, HISTO3, PERCENTILE, QUANTILE
References:
[1] http://www.fifi.org/doc/gnumeric-doc/html/C/gnumeric-trimmean.html
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
TRIMMEAN calculates the trimmed mean by removing the fraction of p/2 upper and
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ttest
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1474
TTEST (paired) t-test
For a sample X from a normal distribution with unknown mean and
variance, perform a t-test of the null hypothesis `mean (X) == M'.
Under the null, the test statistic T follows a Student
distribution with `DF = length (X) - 1' degrees of freedom.
TTEST treads NaNs as "Missing values" and ignores these.
H = ttest(x,m)
tests Null-hypothesis that mean of x is m.
H = ttest(x,y)
size of x and size of y must match, it is tested whether the
difference x-y is significantly different to m=0;
H = ttest(x,y,alpha)
H = ttest(x,y,alpha,tail)
H = ttest(x,y,alpha,tail,DIM)
[H,PVAL] = ttest(...)
H=1 indicates a rejection of the Null-hypothesis at a significance
level of alpha (default alpha = 0.05).
With the optional argument string TAIL, the alternative of interest
can be selected. If TAIL is '!=' or '<>' or 'both', the null is tested
against the two-sided Alternative `mean (X) ~= mean (Y)'. If TAIL
is '>' or 'right', the one-sided Alternative `mean (X) > mean (Y)' is used.
Similarly for '<' or 'left', the one-sided Alternative `mean (X) < mean
(Y)' is used. The default is the two-sided case.
H returns whether the Null-Hypotheses must be rejected.
The p-value of the test is returned in PVAL.
TTEST works on the first non-singleton dimension or on DIM.
If no output argument is given, the p-value of the test is
displayed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
TTEST (paired) t-test
For a sample X from a normal distribution with unkno
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ttest2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1491
TTEST2 (unpaired) t-test
For two samples x and y from normal distributions with unknown
means and unknown equal variances, perform a two-sample t-test of
the null hypothesis of equal means. Under the null, the test
statistic T follows a Student distribution with DF degrees of
freedom.
TTEST2 treads NaNs as "Missing values" and ignores these.
H = ttest2(x,y)
H = ttest2(x,y,alpha)
H = ttest2(x,y,alpha,tail)
H = ttest2(x,y,alpha,tail,vartype)
H = ttest2(x,y,alpha,tail,vartype,DIM)
[H,PVAL] = ttest2(...)
[h,p,ci,stats] = ttest2(...)
H=1 indicates a rejection of the Null-hypothesis at a significance
level of alpha (default alpha = 0.05).
With the optional argument string TAIL, the Alternative of interest
can be selected. If TAIL is '!=' or '<>' or 'both', the null is tested
against the two-sided Alternative `mean (X) ~= mean (Y)'. If TAIL
is '>' or 'right', the one-sided Alternative `mean (X) > mean (Y)' is used.
Similarly for '<' or 'left', the one-sided Alternative `mean (X) < mean
(Y)' is used. The default is the two-sided case.
vartype support only 'equal' (default value); the value 'unequal' is not supported.
H returns whether the Null-Hypotheses must be rejected.
The p-value of the test is returned in PVAL.
TTEST2 works on the first non-singleton dimension or on DIM.
If no output argument is given, the p-value of the test is
displayed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
TTEST2 (unpaired) t-test
For two samples x and y from normal distributions
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
var
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 772
VAR calculates the variance.
y = var(x [, opt[, DIM]])
calculates the variance in dimension DIM
the default DIM is the first non-single dimension
opt 0: normalizes with N-1 [default]
1: normalizes with N
DIM dimension
1: VAR of columns
2: VAR of rows
N: VAR of N-th dimension
default or []: first DIMENSION, with more than 1 element
W weights to compute weighted variance (default: [])
if W=[], all weights are 1.
number of elements in W must match size(x,DIM)
usage:
var(x)
var(x, opt, DIM)
var(x, [], DIM)
var(x, W, DIM)
var(x, opt, DIM, W)
features:
- can deal with NaN's (missing values)
- weighting of data
- dimension argument
- compatible to Matlab and Octave
see also: MEANSQ, SUMSQ, SUMSKIPNAN, MEAN, RMS, STD,
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
VAR calculates the variance.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
xcovf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1059
XCOVF generates cross-covariance function.
XCOVF is the same as XCORR except
X and Y can contain missing values encoded with NaN.
NaN's are skipped, NaN do not result in a NaN output.
The output gives NaN only if there are insufficient input data
[C,N,LAGS] = xcovf(X,MAXLAG,SCALEOPT);
calculates the (auto-)correlation function of X
[C,N,LAGS] = xcovf(X,Y,MAXLAG,SCALEOPT);
calculates the crosscorrelation function between X and Y
SCALEOPT [character string] specifies the type of scaling applied
to the correlation vector (or matrix). is one of:
'none' return the unscaled correlation, R,
'biased' return the biased average, R/N,
'unbiased' return the unbiassed average, R(k)/(N-|k|),
'coeff' return the correlation coefficient, R/(rms(x).rms(y)),
where "k" is the lag, and "N" is the length of X.
If omitted, the default value is "none".
If Y is supplied but does not have the ame length as X,
scale must be "none".
see also: COVM, XCORR
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
XCOVF generates cross-covariance function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
xptopen
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1138
XPTOPEN read of several file formats and writing of the SAS Transport Format (*.xpt)
Supported are ARFF, SAS-XPT and STATA files.
XPTOPEN is a mex-file and must be compiled before use.
More detailed help can be obtained by the command
xptopen
without an additional argument
X = xptopen(filename)
X = xptopen(filename,'r')
read file with filename and return variables in struct X
X = xptopen(filename,'w',X)
save fields of struct X in filename.
The fields of X must be column vectors of equal length.
Each vector is either a numeric vector or a cell array of strings.
The SAS-XPT format stores Date/Time as numeric value counting the number of days since 1960-01-01.
References:
[1] TS-140 THE RECORD LAYOUT OF A DATA SET IN SAS TRANSPORT (XPORT) FORMAT
http://support.sas.com/techsup/technote/ts140.html
[2] IBM floating point format
http://en.wikipedia.org/wiki/IBM_Floating_Point_Architecture
[3] see http://old.nabble.com/Re%3A-IBM-integer-and-double-formats-p20428979.html
[4] STATA File Format
http://www.stata.com/help.cgi?dta
http://www.stata.com/help.cgi?dta_113
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
XPTOPEN read of several file formats and writing of the SAS Transport Format (*
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
xval
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2980
XVAL is used for crossvalidation
[R,CC] = xval(D,classlabel)
.. = xval(D,classlabel,CLASSIFIER)
.. = xval(D,classlabel,CLASSIFIER,type)
.. = xval(D,{classlabel,W},CLASSIFIER)
.. = xval(D,{classlabel,W,NG},CLASSIFIER)
example:
load_fisheriris; %builtin iris dataset
C = species;
K = 5; NG = [1:length(C)]'*K/length(C);
[R,CC] = xval(meas,{C,[],NG},'NBC');
Input:
D: data features (one feature per column, one sample per row)
classlabel labels of each sample, must have the same number of rows as D.
Two different encodings are supported:
{-1,1}-encoding (multiple classes with separate columns for each class) or
1..M encoding.
So [1;2;3;1;4] is equivalent to
[+1,-1,-1,-1;
[-1,+1,-1,-1;
[-1,-1,+1,-1;
[+1,-1,-1,-1]
[-1,-1,-1,+1]
Note, samples with classlabel=0 are ignored.
CLASSIFIER can be any classifier supported by train_sc (default='LDA')
{'REG','MDA','MD2','QDA','QDA2','LD2','LD3','LD4','LD5','LD6','NBC','aNBC','WienerHopf', 'RDA','GDBC',
'SVM','RBF','PSVM','SVM11','SVM:LIN4','SVM:LIN0','SVM:LIN1','SVM:LIN2','SVM:LIN3','WINNOW'}
these can be modified by ###/GSVD, ###/sparse and ###/DELETION.
/DELETION removes in case of NaN's either the rows or the columns (which removes less data values) with any NaN
/sparse and /GSVD preprocess the data an reduce it to some lower-dimensional space.
Hyperparameters (like alpha for PLA, gamma/lambda for RDA, c_value for SVM, etc) can be defined as
CLASSIFIER.hyperparameter.alpha, etc. and
CLASSIFIER.TYPE = 'PLA' (as listed above).
See train_sc for details.
W: weights for each sample (row) in D.
default: [] (i.e. all weights are 1)
number of elements in W must match the number of rows of D
NG: used to define the type of cross-valdiation
Leave-One-Out-Method (LOOM): NG = [1:length(classlabel)]' (default)
Leave-K-Out-Method: NG = ceil([1:length(classlabel)]'/K)
K-fold XV: NG = ceil([1:length(classlabel)]'*K/length(classlabel))
group-wise XV (if samples are not indepentent) can be also defined here
samples from the same group (dependent samples) get the same identifier
samples from different groups get different classifiers
TYPE: defines the type of cross-validation procedure if NG is not specified
'LOOM' leave-one-out-method
k k-fold crossvalidation
OUTPUT:
R contains the resulting performance metric
CC contains the classifier
plota(R) shows the confusion matrix of the results
see also: TRAIN_SC, TEST_SC, CLASSIFY, PLOTA
References:
[1] R. Duda, P. Hart, and D. Stork, Pattern Classification, second ed.
John Wiley & Sons, 2001.
[2] A. Schl�gl, J. Kronegg, J.E. Huggins, S. G. Mason;
Evaluation criteria in BCI research.
(Eds.) G. Dornhege, J.R. Millan, T. Hinterberger, D.J. McFarland, K.-R.Müller;
Towards Brain-Computer Interfacing, MIT Press, 2007, p.327-342
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
XVAL is used for crossvalidation
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
zScoreMedian
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 326
zScoreMedian removes the median and standardizes by the 1.483*median absolute deviation
Usage: Z = zScoreMedian(X, DIM)
Input: X : data
DIM: dimension along which z-score should be calculated (1=columns, 2=rows)
(optional, default=first dimension with more than 1 element
Output: Z : z-scores
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
zScoreMedian removes the median and standardizes by the 1.483*median absolute d
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
zscore
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 614
ZSCORE removes the mean and normalizes data
to a variance of 1. Can be used for pre-whitening of data, too.
[z,r,m] = zscore(x,DIM)
z z-score of x along dimension DIM
r is the inverse of the standard deviation
m is the mean of x
The data x can be reconstucted with
x = z*diag(1./r) + repmat(m,size(z)./size(m))
z = x*diag(r) - repmat(m.*v,size(z)./size(m))
DIM dimension
1: STATS of columns
2: STATS of rows
default or []: first DIMENSION, with more than 1 element
see also: SUMSKIPNAN, MEAN, STD, DETREND
REFERENCE(S):
[1] http://mathworld.wolfram.com/z-Score.html
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
ZSCORE removes the mean and normalizes data
to a variance of 1.
|