This file is indexed.

/usr/share/octave/packages/nan-2.5.9/doc-cache is in octave-nan 2.5.9-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
# Created by Octave 3.8.0, Mon Feb 24 19:39:30 2014 UTC <root@komainu>
# name: cache
# type: cell
# rows: 3
# columns: 81
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
bland_altman


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 865
 BLAND_ALTMANN shows the Bland-Altman plot of two columns of measurements
   and computes several summary results. 

   bland_altman(m1, m2 [,group])
   bland_altman(data [, group])
   R = bland_altman(...)
 
   m1,m2 are two colums with the same number of elements
	containing the measurements. m1,m2 can be also combined 
       in a single two column data matrix. 
   group [optional] indicates which measurements belong to the same group
	This is useful to account for repeated measurements.  


 References:
 [1] JM Bland and DG Altman, Measuring agreement in method comparison studies. 
       Statistical Methods in Medical Research, 1999; 8; 135. 
       doi:10.1177/09622802990080204
 [2] P.S. Myles, Using the Bland– Altman method to measure agreement with repeated measures
	British Journal of Anaesthesia 99(3):309–11 (2007)
	doi:10.1093/bja/aem214



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 BLAND_ALTMANN shows the Bland-Altman plot of two columns of measurements
   and



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
cat2bin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 755
 CAT2BIN converts categorial into binary data 
   each category of each column in D is converted into a logical column
 
   B = cat2bin(C); 
   [B,BinLabel] = cat2bin(C,Label); 
   [B,BinLabel] = cat2bin(C,Label,MODE)

  C        categorial data 
  B        binary data 
  Label    description of each column in C
  BinLabel description of each column in B
  MODE     default [], ignores NaN
           'notIgnoreNAN' includes binary column for NaN 
           'IgnoreZeros'  zeros do not get a separate category 
           'IgnoreZeros+NaN' zeros and NaN are ignored

  example: 
     cat2bin([1;2;5;1;5]) results in 
             1     0     0
             0     1     0
             0     0     1
             1     0     0
             0     0     1



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 CAT2BIN converts categorial into binary data 
   each category of each column i



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
cdfplot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 565
 CDFPLOT plots empirical commulative distribution function

   cdfplot(X)
   cdfplot(X, FMT)
   cdfplot(X, PROPERTY, VALUE,...)
   h = cdfplot(...)
   [h,stats] = cdfplot(X)

  X contains the data vector
 	(matrix data is currently changed to a vector, this might change in future) 
  FMT,PROPERTY,VALUE 
	are used for formating; see HELP PLOT for more details 
  h 	graphics handle to the cdf curve
  stats 
	a struct containing various summary statistics including
	mean, std, median, min, max.

 see also: ecdf, median, statistics, hist2res, plot

 References: 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
 CDFPLOT plots empirical commulative distribution function



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
center


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 505
 CENTER removes the mean 

 [z,mu] = center(x,DIM,W)
   removes mean x along dimension DIM

 x	input data 
 DIM	dimension
	1: column
	2: row
	default or []: first DIMENSION, with more than 1 element
 W	weights to computed weighted mean (default: [], all weights = 1)
	numel(W) must be equal to size(x,DIM)

 features:
 - can deal with NaN's (missing values)
 - weighting of data 
 - dimension argument 
 - compatible to Matlab and Octave

 see also: SUMSKIPNAN, MEAN, STD, DETREND, ZSCORE

 REFERENCE(S):



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
 CENTER removes the mean 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
classify


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 792
 CLASSIFY classifies sample data into categories 
 defined by the training data and its group information 

  CLASS = classify(sample, training, group) 
  CLASS = classify(sample, training, group, TYPE) 
  [CLASS,ERR,POSTERIOR,LOGP,COEF] = CLASSIFY(...) 

  CLASS contains the assigned group. 
  ERR is the classification error on the training set weighted by the 
	prior propability of each group. 

  The same classifier as in TRAIN_SC are supported. 

 ATTENTION: no cross-validation is applied, therefore the 
    classification error is too optimistic (overfitting). 
    Use XVAL instead to obtain cross-validated performance. 
 
 see also: TRAIN_SC, TEST_SC, XVAL

 References: 
 [1] R. Duda, P. Hart, and D. Stork, Pattern Classification, second ed. 
       John Wiley & Sons, 2001. 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 CLASSIFY classifies sample data into categories 
 defined by the training data 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
coefficient_of_variation


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 221
 COEFFICIENT_OF_VARIATION returns STD(X)/MEAN(X)
 
 cv=coefficient_of_variation(x [,DIM])
  cv=std(x)/mean(x) 

 see also: SUMSKIPNAN, MEAN, STD

   REFERENCE(S):
   http://mathworld.wolfram.com/VariationCoefficient.html



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 COEFFICIENT_OF_VARIATION returns STD(X)/MEAN(X)
 
 cv=coefficient_of_variation(



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
cor


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 576
 COR calculates the correlation matrix
 X and Y can contain missing values encoded with NaN.
 NaN's are skipped, NaN do not result in a NaN output. 
 (Its assumed that the occurence of NaN's is uncorrelated) 
 The output gives NaN only if there are insufficient input data

 COR(X);
      calculates the (auto-)correlation matrix of X
 COR(X,Y);
      calculates the crosscorrelation between X and Y

 c = COR(...);
 	c is the correlation matrix

 W	weights to compute weighted mean (default: [])
	if W=[], all weights are 1. 
	number of elements in W must match size(x,DIM) 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 COR calculates the correlation matrix
 X and Y can contain missing values encod



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
corrcoef


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4692
 CORRCOEF calculates the correlation matrix from pairwise correlations.
   The input data can contain missing values encoded with NaN.
   Missing data (NaN's) are handled by pairwise deletion [15]. 
   In order to avoid possible pitfalls, use case-wise deletion or 
   or check the correlation of NaN's with your data (see below). 
   A significance test for testing the Hypothesis  
   'correlation coefficient R is significantly different to zero' 
   is included. 

 [...] = CORRCOEF(X);
      calculates the (auto-)correlation matrix of X
 [...] = CORRCOEF(X,Y);
      calculates the crosscorrelation between X and Y

 [...] = CORRCOEF(..., Mode);
       Mode='Pearson' or 'parametric' [default]
               gives the correlation coefficient  
               also known as the 'product-moment coefficient of correlation' 
               or 'Pearson''s correlation' [1]
       Mode='Spearman' 	gives 'Spearman''s Rank Correlation Coefficient'
               This replaces SPEARMAN.M
       Mode='Rank' 		gives a nonparametric Rank Correlation Coefficient
               This is the "Spearman rank correlation with proper handling of ties"
               This replaces RANKCORR.M

 [...] = CORRCOEF(..., param1, value1, param2, value2, ... );
	param 		value
	'Mode'		type of correlation 
		'Pearson','parametric'
		'Spearman'
		'rank'
	'rows'		how do deal with missing values encoded as NaN's. 	
		'complete': remove all rows with at least one NaN
		'pairwise': [default]
	'alpha'		0.01	: significance level to compute confidence interval

 [R,p,ci1,ci2,nansig] = CORRCOEF(...);
 	R is the correlation matrix
	R(i,j) is the correlation coefficient r between X(:,i) and Y(:,j)
  p    gives the significance of R
	It tests the null hypothesis that the product moment correlation coefficient is zero 
       using Student's t-test on the statistic t = r*sqrt(N-2)/sqrt(1-r^2) 
       where N is the number of samples (Statistics, M. Spiegel, Schaum series).
  p > alpha: do not reject the Null hypothesis: 'R is zero'.
  p < alpha: The alternative hypothesis 'R is larger than zero' is true with probability (1-alpha).
  ci1	lower (1-alpha) confidence interval 
  ci2	upper (1-alpha) confidence interval
	If no alpha is provided, the default alpha is 0.01. This can be changed with function flag_implicit_significance. 
  nan_sig 	p-value whether H0: 'NaN''s are not correlated' could be correct
       if nan_sig < alpha, H1 ('NaNs are correlated') is very likely. 
 
 The result is only valid if the occurence of NaN's is uncorrelated. In
 order to avoid this pitfall, the correlation of NaN's should be checked 
 or case-wise deletion should be applied. 
   Case-Wise deletion can be implemented 
    ix = ~any(isnan([X,Y]),2);
    [...] = CORRCOEF(X(ix,:),Y(ix,:),...); 

  Correlation (non-random distribution) of NaN's can be checked with 
       [nan_R,nan_sig]=corrcoef(X,isnan(X))
   or  [nan_R,nan_sig]=corrcoef([X,Y],isnan([X,Y]))
   or  [R,p,ci1,ci2] = CORRCOEF(...);

 Further recommandation related to the correlation coefficient: 
 + LOOK AT THE SCATTERPLOTS to make sure that the relationship is linear
 + Correlation is not causation because 
	it is not clear which parameter is 'cause' and which is 'effect' and
       the observed correlation between two variables might be due to the action of other, unobserved variables.

 see also: SUMSKIPNAN, COVM, COV, COR, SPEARMAN, RANKCORR, RANKS,
       PARTCORRCOEF, flag_implicit_significance

 REFERENCES:
 on the correlation coefficient 
 [ 1] http://mathworld.wolfram.com/CorrelationCoefficient.html
 [ 2] http://www.geography.btinternet.co.uk/spearman.htm
 [ 3] Hogg, R. V. and Craig, A. T. Introduction to Mathematical Statistics, 5th ed.  New York: Macmillan, pp. 338 and 400, 1995.
 [ 4] Lehmann, E. L. and D'Abrera, H. J. M. Nonparametrics: Statistical Methods Based on Ranks, rev. ed. Englewood Cliffs, NJ: Prentice-Hall, pp. 292, 300, and 323, 1998.
 [ 5] Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 634-637, 1992
 [ 6] http://mathworld.wolfram.com/SpearmanRankCorrelationCoefficient.html
 on the significance test of the correlation coefficient
 [11] http://www.met.rdg.ac.uk/cag/STATS/corr.html
 [12] http://www.janda.org/c10/Lectures/topic06/L24-significanceR.htm
 [13] http://faculty.vassar.edu/lowry/ch4apx.html
 [14] http://davidmlane.com/hyperstat/B134689.html
 [15] http://www.statsoft.com/textbook/stbasic.html%Correlations
 others
 [20] http://www.tufts.edu/~gdallal/corr.htm
 [21] Fisher transformation http://en.wikipedia.org/wiki/Fisher_transformation



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
 CORRCOEF calculates the correlation matrix from pairwise correlations.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
cov


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1606
 COV covariance matrix
 X and Y can contain missing values encoded with NaN.
 NaN's are skipped, NaN do not result in a NaN output. 
 The output gives NaN only if there are insufficient input data
 The mean is removed from the data. 
 
 Remark: for data contains missing values, the resulting 
 matrix might not be positiv definite, and its elements have magnitudes
 larger than one. This ill-behavior is more likely for small sample 
 sizes, but there is no garantee that the result "behaves well" for larger
 sample sizes. If you want the a "well behaved" result (i.e. positive 
 definiteness and magnitude of elements not larger than 1), use CORRCOEF. 
 However, COV is faster than CORRCOEF and might be good enough in some cases.

 C = COV(X [,Mode]);
      calculates the (auto-)correlation matrix of X
 C = COV(X,Y [,Mode]);
      calculates the crosscorrelation between X and Y. 
      C(i,j) is the correlation between the i-th and jth 
      column of X and Y, respectively. 
   NOTE: Octave and Matlab have (in some special cases) incompatible implemenations. 
       This implementation follows Octave. If the result could be ambigous or  
       incompatible, a warning will be presented in Matlab. To avoid this warning use: 
       a) use COV([X(:),Y(:)]) if you want the traditional Matlab result. 
       b) use C = COV([X,Y]), C = C(1:size(X,2),size(X,2)+1:size(C,2)); if you want to be compatible with this software.  

 Mode = 0 [default] scales C by (N-1)
 Mode = 1 scales C by N. 

 see also: COVM, COR, CORRCOEF, SUMSKIPNAN

 REFERENCES:
 http://mathworld.wolfram.com/Covariance.html



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
 COV covariance matrix
 X and Y can contain missing values encoded with NaN.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
covm


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1182
 COVM generates covariance matrix
 X and Y can contain missing values encoded with NaN.
 NaN's are skipped, NaN do not result in a NaN output. 
 The output gives NaN only if there are insufficient input data

 COVM(X,Mode);
      calculates the (auto-)correlation matrix of X
 COVM(X,Y,Mode);
      calculates the crosscorrelation between X and Y
 COVM(...,W);
	weighted crosscorrelation 

 Mode = 'M' minimum or standard mode [default]
 	C = X'*X; or X'*Y correlation matrix

 Mode = 'E' extended mode
 	C = [1 X]'*[1 X]; % l is a matching column of 1's
 	C is additive, i.e. it can be applied to subsequent blocks and summed up afterwards
 	the mean (or sum) is stored on the 1st row and column of C

 Mode = 'D' or 'D0' detrended mode
	the mean of X (and Y) is removed. If combined with extended mode (Mode='DE'), 
 	the mean (or sum) is stored in the 1st row and column of C. 
 	The default scaling is factor (N-1). 
 Mode = 'D1' is the same as 'D' but uses N for scaling. 

 C = covm(...); 
 	C is the scaled by N in Mode M and by (N-1) in mode D.
 [C,N] = covm(...);
	C is not scaled, provides the scaling factor N  
	C./N gives the scaled version. 

 see also: DECOVM, XCOVF



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 COVM generates covariance matrix
 X and Y can contain missing values encoded wi



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
cumsumskipnan


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 249
 CUMSUMSKIPNAN  Cumulative sum while skiping NaN's. 
 If DIM is omitted, it defaults to the first non-singleton dimension.
 
 Y = cumsumskipnan(x [,DIM])
 
 x	input data 	
 DIM	dimension (default: [])
 y	resulting sum

 see also: CUMSUM, SUMSKIPNAN



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
 CUMSUMSKIPNAN  Cumulative sum while skiping NaN's.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
decovm


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 384
 decompose extended covariance matrix into mean (mu), 
 standard deviation, the (pure) Covariance (COV), 
 correlation (xc) matrix and the correlation coefficients R2.
 NaN's are condsidered as missing values. 
 [mu,sd,COV,xc,N,R2]=decovm(ECM[,NN])

 ECM 	is the extended covariance matrix
 NN	is the number of elements, each estimate (in ECM) is based on 

 see also: MDBC, COVM, R2



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 decompose extended covariance matrix into mean (mu), 
 standard deviation, the 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
detrend


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 837
 DETREND removes the trend from data, NaN's are considered as missing values
 
 DETREND is fully compatible to previous Matlab and Octave DETREND with the following features added:
 - handles NaN's by assuming that these are missing values
 - handles unequally spaced data
 - second output parameter gives the trend of the data
 - compatible to Matlab and Octave 

 [...]=detrend([t,] X [,p])
	removes trend for unequally spaced data
	t represents the time points
	X(i) is the value at time t(i)
	p must be a scalar

 [...]=detrend(X,0)
 [...]=detrend(X,'constant')
	removes the mean

 [...]=detrend(X,p)
	removes polynomial of order p (default p=1)

 [...]=detrend(X,1) - default
 [...]=detrend(X,'linear')
	removes linear trend 

 [X,T]=detrend(...) 

 X is the detrended data
 T is the removed trend
 
 see also: SUMSKIPNAN, ZSCORE		



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 DETREND removes the trend from data, NaN's are considered as missing values
 
 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
ecdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 443
 ECDF empirical cumulative function  
  NaN's are considered Missing values and are ignored. 

  [F,X] = ecdf(Y)
	calculates empirical cumulative distribution functions (i.e Kaplan-Meier estimate)
  ecdf(Y)
  ecdf(gca,Y)
	without output arguments plots the empirical cdf, in axis gca. 

 Y 	input data
	must be a vector or matrix, in case Y is a matrix, the ecdf for every column is computed. 

 see also: HISTO2, HISTO3, PERCENTILE, QUANTILE



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 ECDF empirical cumulative function  
  NaN's are considered Missing values and 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
flag_accuracy_level


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1059
 FLAG_ACCURACY_LEVEL sets and gets accuracy level 
   used in SUMSKIPNAN_MEX and COVM_MEX
   The error margin of the naive summation is N*eps (N is the number of samples),
   the error margin is only 2*eps if Kahan's summation is used [1].    

	0: maximum speed [default]
	   accuracy of double (64bit) with naive summation (error = N*2^-52) 
	1: accuracy of extended (80bit) with naive summation (error = N*2^-64) 
	2: accuracy of double (64bit) with Kahan summation (error = 2^-52) 
	3: accuracy of extended (80bit) with Kahan summation  (error = 2^-64)  

   Please note, level 3 might be equally accurate but slower than 1 or 2 on
   some platforms. In order to determine what is good for you, you might want
   to run ACCTEST. 

 FLAG = flag_accuracy_level()
 	gets current level
 flag_accuracy_level(FLAG) 
 	sets accuracy level  
 
 see also: ACCTEST
 
 Reference:
 [1] David Goldberg, 
       What Every Computer Scientist Should Know About Floating-Point Arithmetic
       ACM Computing Surveys, Vol 23, No 1, March 1991. 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 FLAG_ACCURACY_LEVEL sets and gets accuracy level 
   used in SUMSKIPNAN_MEX an



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
flag_implicit_significance


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 928
 The use of FLAG_IMPLICIT_SIGNIFICANCE is in experimental state. 
 flag_implicit_significance might even become obsolete.

 FLAG_IMPLICIT_SIGNIFICANCE sets and gets default alpha (level) of any significance test
 The default alpha-level is stored in the global variable FLAG_implicit_significance
 The idea is that the significance must not be assigned explicitely. 
 This might yield more readable code. 

 Choose alpha low enough, because in alpha*100% of the cases, you will 
 reject the Null hypothesis just by change. For this reason, the default
 alpha is 0.01. 
 
   flag_implicit_significance(0.01) 
	sets the alpha-level for the significance test
 
 alpha = flag_implicit_significance()
 	gets default alpha

 flag_implicit_significance(alpha)
 	sets default alpha-level

 alpha = flag_implicit_significance(alpha)
	gets and sets alpha 

 features:
 - compatible to Matlab and Octave

 see also: CORRCOEF, PARTCORRCOEF



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
 The use of FLAG_IMPLICIT_SIGNIFICANCE is in experimental state.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
flag_implicit_skip_nan


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 943
 FLAG_IMPLICIT_SKIP_NAN sets and gets default mode for handling NaNs
	1 skips NaN's (the default mode if no mode is set)
 	0 NaNs are propagated; input NaN's give NaN's at the output
 
 FLAG = flag_implicit_skip_nan()
 	gets current mode

 flag_implicit_skip_nan(FLAG)
    % sets mode 

 prevFLAG = flag_implicit_skip_nan(nextFLAG)
	gets previous set FLAG and sets FLAG for the future
 flag_implicit_skip_nan(prevFLAG)
	resets FLAG to previous mode

 It is used in: 
	SUMSKIPNAN, MEDIAN, QUANTILES, TRIMEAN
 and affects many other functions like: 
	CENTER, KURTOSIS, MAD, MEAN, MOMENT, RMS, SEM, SKEWNESS, 
	STATISTIC, STD, VAR, ZSCORE etc. 

 The mode is stored in the global variable FLAG_implicit_skip_nan
 It is recommended to use flag_implicit_skip_nan(1) as default and
 flag_implicit_skip_nan(0) should be used for exceptional cases only.
 This feature might disappear without further notice, so you should really not
 rely on it. 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 FLAG_IMPLICIT_SKIP_NAN sets and gets default mode for handling NaNs
	1 skips Na



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
flag_nans_occured


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 430
 FLAG_NANS_OCCURED checks whether the last call(s) to sumskipnan or covm 
 contained any not-a-numbers in the input argument. Because many other 
 functions like mean, std, etc. are also using sumskipnan, 
 also these functions can be checked for NaN's in the input data. 
 
 A call to FLAG_NANS_OCCURED() resets also the flag whether NaN's occured. 
 Only sumskipnan or covm can set the flag again. 

 see also: SUMSKIPNAN, COVM



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 FLAG_NANS_OCCURED checks whether the last call(s) to sumskipnan or covm 
 conta



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
fss


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1739
 FSS - feature subset selection and feature ranking 
   the method is motivated by the max-relevance-min-redundancy (mRMR) 
   approach [1]. However, the default method uses partial correlation,
   which has been developed from scratch. PCCM [3] describes
   a similar idea, but is more complicated. 
   An alternative method based on FSDD is implemented, too. 
    
  [idx,score] = fss(D,cl) 
  [idx,score] = fss(D,cl,MODE) 
  [idx,score] = fss(D,cl,MODE) 
    
 D 	data - each column represents a feature 
 cl	classlabel   
 Mode 	'Pearson' [default] correlation
	'rank' correlation 
       'FSDD' feature selection algorithm based on a distance discriminant [2]
       %%% 'MRMR','MID','MIQ' max-relevance, min redundancy [1] - not supported yet. 

 score score of the feature
 idx	ranking of the feature    
       [tmp,idx]=sort(-score)

 see also: TRAIN_SC, XVAL, ROW_COL_DELETION

 REFERENCES:
 [1] Peng, H.C., Long, F., and Ding, C., 
   Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy, 
   IEEE Transactions on Pattern Analysis and Machine Intelligence, 
   Vol. 27, No. 8, pp.1226-1238, 2005.
 [2] Jianning Liang, Su Yang, Adam Winstanley, 
   Invariant optimal feature selection: A distance discriminant and feature ranking based solution, 
   Pattern Recognition, Volume 41, Issue 5, May 2008, Pages 1429-1439.
   ISSN 0031-3203, DOI: 10.1016/j.patcog.2007.10.018.
 [3] K. Raghuraj Rao and S. Lakshminarayanan
   Partial correlation based variable selection approach for multivariate data classification methods
   Chemometrics and Intelligent Laboratory Systems
   Volume 86, Issue 1, 15 March 2007, Pages 68-81 
   http://dx.doi.org/10.1016/j.chemolab.2006.08.007



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 FSS - feature subset selection and feature ranking 
   the method is motivated 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
geomean


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1207
 GEOMEAN calculates the geomentric mean of data elements. 
 
 	y = geomean(x [,DIM [,W]])   is the same as 
 	y = mean(x,'G' [,DIM]) 

 DIM	dimension
	1 STD of columns
	2 STD of rows
	default or []: first DIMENSION, with more than 1 element
 W	weights to compute weighted mean (default: [])
	if W=[], all weights are 1. 
	number of elements in W must match size(x,DIM) 

 features:
 - can deal with NaN's (missing values)
 - weighting of data 
 - dimension argument also in Octave
 - compatible to Matlab and Octave

 see also: SUMSKIPNAN, MEAN, HARMMEAN

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; If not, see <http://www.gnu.org/licenses/>.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
 GEOMEAN calculates the geomentric mean of data elements.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
gscatter


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 471
 GSCATTER scatter plot of groups 

  gscatter(x,y,group)
  gscatter(x,y,group,clr,sym,siz)
  gscatter(x,y,group,clr,sym,siz,doleg)
  gscatter(x,y,group,clr,sym,siz,doleg,xname,yname)
  h = gscatter(...) 

  x,y, group: 	vectors with equal length 
  clf: 	color vector, default 'bgrcmyk'
  sym:		symbol, default '.'
  siz: 	size of Marker
  doleg:  'on' (default) shows legend, 'off' turns of legend 
  xname, yname: name of axis


 see also: ecdf, cdfplot

 References: 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
 GSCATTER scatter plot of groups 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
harmmean


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 629
 HARMMEAN calculates the harmonic mean of data elements. 
 The harmonic mean is the inverse of the mean of the inverse elements.
 
 	y = harmmean(x [,DIM [,W]]) is the same as 
 	y = mean(x,'H' [,DIM [,W]]) 

 DIM	dimension
	1 STD of columns
	2 STD of rows
	default or []: first DIMENSION, with more than 1 element
 W	weights to compute weighted mean (default: [])
	if W=[], all weights are 1. 
	number of elements in W must match size(x,DIM) 

 features:
 - can deal with NaN's (missing values)
 - weighting of data 
 - dimension argument also in Octave
 - compatible to Matlab and Octave

 see also: SUMSKIPNAN, MEAN, GEOMEAN




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
 HARMMEAN calculates the harmonic mean of data elements.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
hist2res


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 700
 Evaluates Histogram data
 [R]=hist2res(H)

 [y]=hist2res(H,fun)
	estimates fun-statistic

 fun	'mean'	mean
	'std'	standard deviation
	'var'	variance
	'sem'	standard error of the mean
	'rms'	root mean square
	'meansq' mean of squares
	'sum'	sum
	'sumsq'	sum of squares
	'CM#'	central moment of order #
	'skewness' skewness 
	'kurtosis' excess coefficient (Fisher kurtosis)

 see also: NaN/statistic

 REFERENCES:
 [1] C.L. Nikias and A.P. Petropulu "Higher-Order Spectra Analysis" Prentice Hall, 1993.
 [2] C.E. Shannon and W. Weaver "The mathematical theory of communication" University of Illinois Press, Urbana 1949 (reprint 1963).
 [3] http://www.itl.nist.gov/
 [4] http://mathworld.wolfram.com/



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
 Evaluates Histogram data
 [R]=hist2res(H)



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
iqr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 372
 IQR calculates the interquartile range  
  Missing values (encoded as NaN) are ignored. 

  Q = iqr(Y)
  Q = iqr(Y,DIM)
     returns the IQR along dimension DIM of sample array Y.

  Q = iqr(HIS)
     returns the IQR from the histogram HIS. 
     HIS must be a HISTOGRAM struct as defined in HISTO2 or HISTO3.

 see also: MAD, RANGE, HISTO2, HISTO3, PERCENTILE, QUANTILE



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 IQR calculates the interquartile range  
  Missing values (encoded as NaN) are 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
kappa


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1760
 KAPPA estimates Cohen's kappa coefficient
   and related statistics 

 [...] = kappa(d1,d2);
	NaN's are handled as missing values and are ignored
 [...] = kappa(d1,d2,'notIgnoreNAN');
	NaN's are handled as just another Label.
 [kap,sd,H,z,ACC,sACC,MI] = kappa(...);
 X = kappa(...);

 d1    data of scorer 1 
 d2    data of scorer 2 

 kap	Cohen's kappa coefficient point
 se	standard error of the kappa estimate
 H	Concordance matrix, i.e. confusion matrix
 z	z-score
 ACC	overall agreement (accuracy) 
 sACC	specific accuracy 
 MI 	Mutual information or transfer information (in [bits])
 X 	is a struct containing all the fields above
       For two classes, a number of additional summary statistics including 
         TPR, FPR, FDR, PPV, NPF, F1, dprime, Matthews Correlation coefficient (MCC) or 
	Phi coefficient (PHI=MCC), Specificity and Sensitivity 
       are provided. Note, the positive category must the larger label (in d and c), otherwise 
       the confusion matrix becomes transposed and the summary statistics are messed up. 


 Reference(s):
 [1] Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37-46.
 [2] J Bortz, GA Lienert (1998) Kurzgefasste Statistik f|r die klassische Forschung, Springer Berlin - Heidelberg. 
        Kapitel 6: Uebereinstimmungsmasze fuer subjektive Merkmalsurteile. p. 265-270.
 [3] http://www.cmis.csiro.au/Fiona.Evans/personal/msc/html/chapter3.html
 [4] Kraemer, H. C. (1982). Kappa coefficient. In S. Kotz and N. L. Johnson (Eds.), 
        Encyclopedia of Statistical Sciences. New York: John Wiley & Sons.
 [5] http://ourworld.compuserve.com/homepages/jsuebersax/kappa.htm
 [6] http://en.wikipedia.org/wiki/Receiver_operating_characteristic



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
 KAPPA estimates Cohen's kappa coefficient
   and related statistics 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
kurtosis


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 461
 KURTOSIS estimates the kurtosis

 y = kurtosis(x,DIM)
   calculates kurtosis of x in dimension DIM

 DIM	dimension
	1: STATS of columns
	2: STATS of rows
	default or []: first DIMENSION, with more than 1 element

 features:
 - can deal with NaN's (missing values)
 - dimension argument 
 - compatible to Matlab and Octave

 see also: SUMSKIPNAN, VAR, STD, VAR, SKEWNESS, MOMENT, STATISTIC, 
    IMPLICIT_SKIP_NAN

 REFERENCE(S):
 http://mathworld.wolfram.com/



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
 KURTOSIS estimates the kurtosis



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
load_fisheriris


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 446
 LOAD_FISHERIRIS 
        loads famous iris data set from Fisher, 1936 [1]. 

 References: 
 [1] Fisher,R.A. "The use of multiple measurements in taxonomic problems" 
        Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to Mathematical Statistics" (John Wiley, NY, 1950).
 [2] Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis. 
        (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
 LOAD_FISHERIRIS 
        loads famous iris data set from Fisher, 1936 [1].



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
mad


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 855
 MAD estimates the Mean Absolute deviation
 (note that according to [1,2] this is the mean deviation; 
 not the mean absolute deviation)

 y = mad(x,DIM)
   calculates the mean deviation of x in dimension DIM

 DIM	dimension
	1: STATS of columns
	2: STATS of rows
	default or []: first DIMENSION, with more than 1 element

 features:
 - can deal with NaN's (missing values)
 - dimension argument 
 - compatible to Matlab and Octave

 see also: SUMSKIPNAN, VAR, STD, 

 REFERENCE(S):
 [1] http://mathworld.wolfram.com/MeanDeviation.html
 [2] L. Sachs, "Applied Statistics: A Handbook of Techniques", Springer-Verlag, 1984, page 253.

 [3] http://mathworld.wolfram.com/MeanAbsoluteDeviation.html
 [4] Kenney, J. F. and Keeping, E. S. "Mean Absolute Deviation." �6.4 in Mathematics of Statistics, Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, pp. 76-77 1962. 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 MAD estimates the Mean Absolute deviation
 (note that according to [1,2] this i



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
mahal


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 395
 MAHAL return the Mahalanobis' D-square distance between the 
 multivariate samples x and y, which must have the same number 
 of components (columns), but may have a different number of observations (rows). 
 
  d = mahal(X,Y)

   d(k) = (X(k,:)-MU)*inv(SIGMA)*(X(k,:)-MU)'

   where MU and SIGMA are the mean and the covariance matrix of Y 


 see also: TRAIN_SC, TEST_SC, COVM

 References: 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 MAHAL return the Mahalanobis' D-square distance between the 
 multivariate samp



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
make


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
 This make.m is used for Matlab under Windows



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
 This make.m is used for Matlab under Windows




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
mean


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 735
 MEAN calculates the mean of data elements. 
 
  y = mean(x [,DIM] [,opt] [, W])

 DIM	dimension
	1 MEAN of columns
	2 MEAN of rows
 	N MEAN of  N-th dimension 
	default or []: first DIMENSION, with more than 1 element

 opt	options 
	'A' arithmetic mean
	'G' geometric mean
	'H' harmonic mean

 W	weights to compute weighted mean (default: [])
	if W=[], all weights are 1. 
	number of elements in W must match size(x,DIM) 

 usage: 
	mean(x)
	mean(x,DIM)
	mean(x,opt)
	mean(x,opt,DIM)
	mean(x,DIM,opt)
	mean(x,DIM,W)
	mean(x,DIM,opt,W); '

 features:
 - can deal with NaN's (missing values)
 - weighting of data 
 - dimension argument also in Octave
 - compatible to Matlab and Octave

 see also: SUMSKIPNAN, MEAN, GEOMEAN, HARMMEAN




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
 MEAN calculates the mean of data elements.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
meandev


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 856
 MEANDEV estimates the Mean deviation
 (note that according to [1,2] this is the mean deviation; 
 not the mean absolute deviation)

 y = meandev(x,DIM)
   calculates the mean deviation of x in dimension DIM

 DIM	dimension
	1: STATS of columns
	2: STATS of rows
	default or []: first DIMENSION, with more than 1 element

 features:
 - can deal with NaN's (missing values)
 - dimension argument 
 - compatible to Matlab and Octave

 see also: SUMSKIPNAN, VAR, STD, MAD

 REFERENCE(S):
 [1] http://mathworld.wolfram.com/MeanDeviation.html
 [2] L. Sachs, "Applied Statistics: A Handbook of Techniques", Springer-Verlag, 1984, page 253.
 [3] http://mathworld.wolfram.com/MeanAbsoluteDeviation.html
 [4] Kenney, J. F. and Keeping, E. S. "Mean Absolute Deviation." �6.4 in Mathematics of Statistics, Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, pp. 76-77 1962. 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 MEANDEV estimates the Mean deviation
 (note that according to [1,2] this is the



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
meansq


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 527
 MEANSQ calculates the mean of the squares

 y = meansq(x,DIM,W)

 DIM	dimension
	1 STD of columns
	2 STD of rows
 	N STD of  N-th dimension 
	default or []: first DIMENSION, with more than 1 element
 W	weights to compute weighted mean (default: [])
	if W=[], all weights are 1. 
	number of elements in W must match size(x,DIM) 

 features:
 - can deal with NaN's (missing values)
 - weighting of data  
 - dimension argument also in Octave
 - compatible to Matlab and Octave

 see also: SUMSQ, SUMSKIPNAN, MEAN, VAR, STD, RMS



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
 MEANSQ calculates the mean of the squares



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
medAbsDev


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 373
 medAbsDev calculates the median absolute deviation 

 Usage:  D = medAbsDev(X, DIM)  
    or:  [D, M] = medAbsDev(X, DIM)
 Input:  X  : data
         DIM: dimension along which mad should be calculated (1=columns, 2=rows) 
               (optional, default=first dimension with more than 1 element
 Output: D  : median absolute deviations
         M  : medians (optional)



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
 medAbsDev calculates the median absolute deviation 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
median


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 366
 MEDIAN data elements, 
 [y]=median(x [,DIM])

 DIM	dimension
	1: median of columns
	2: median of rows
 	N: median of  N-th dimension 
	default or []: first DIMENSION, with more than 1 element

 features:
 - can deal with NaN's (missing values)
 - accepts dimension argument like in Matlab in Octave, too. 
 - compatible to Matlab and Octave 

 see also: SUMSKIPNAN



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
 MEDIAN data elements, 
 [y]=median(x [,DIM])



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
moment


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 627
 MOMENT estimates the p-th moment 
 
 M = moment(x, p [,opt] [,DIM])
 M = moment(H, p [,opt])
   calculates p-th central moment from data x in dimension DIM
	of from Histogram H

 p	moment of order p
 opt   'ac': absolute 'a' and/or central ('c') moment
	DEFAULT: '' raw moments are estimated
 DIM	dimension
	1: STATS of columns
	2: STATS of rows
	default or []: first DIMENSION, with more than 1 element

 features:
 - can deal with NaN's (missing values)
 - dimension argument 
 - compatible to Matlab and Octave

 see also: STD, VAR, SKEWNESS, KURTOSIS, STATISTIC, 

 REFERENCE(S):
 http://mathworld.wolfram.com/Moment.html



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 MOMENT estimates the p-th moment 
 
 M = moment(x, p [,opt] [,DIM])
 M = moment



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nanconv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 616
 NANCONV computes the convolution for data with missing values. 
  X and Y can contain missing values encoded with NaN.
  NaN's are skipped, NaN do not result in a NaN output. 
  The output gives NaN only if there are insufficient input data

 [...] = NANCONV(X,Y);
      calculates 2-dim convolution between X and Y
 [C]   = NANCONV(X,Y);

 WARNING: missing values can introduce aliasing - causing unintended results.
    Moreover, the behavior of bandpass and highpass filters in case of missing values 
    is not fully understood, and might contain some pitfalls.  

 see also: CONV, NANCONV2, NANFFT, NANFILTER



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
 NANCONV computes the convolution for data with missing values.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
nanfft


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 618
 NANFFT calculates the Fourier-Transform of X for data with missing values. 
  NANFFT is the same as FFT but X can contain missing values encoded with NaN.
  NaN's are skipped, NaN do not result in a NaN output. 

   Y = NANFFT(X)
   Y = NANFFT(X,N)
   Y = NANFFT(X,[],DIM)
 
   [Y,N] = NANFFT(...)
       returns the number of valid samples N


 WARNING: missing values can introduce aliasing - causing unintended results.
    Moreover, the behavior of bandpass and highpass filters in case of missing values 
    is not fully understood, and might contain some pitfalls.  

 see also: FFT, XCORR, NANCONV, NANFILTER



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
 NANFFT calculates the Fourier-Transform of X for data with missing values.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
nanfilter


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 519
 NANFILTER is able to filter data with missing values encoded as NaN. 
       
      [Y,Z] = nanfilter(B,A,X [, Z]);  

 If X contains no missing data, NANFILTER should behave like FILTER. 
 NaN-values are handled gracefully. 

 WARNING: missing values can introduce aliasing - causing unintended results.
    Moreover, the behavior of bandpass and highpass filters in case of missing values 
    is not fully understood, and might contain some pitfalls.  

 see also: FILTER, SUMSKIPNAN, NANFFT, NANCONV, NANFILTER1UC



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
 NANFILTER is able to filter data with missing values encoded as NaN.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
nanfilter1uc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 257
 NANFILTER1UC is an adaptive filter for data with missing values encoded as NaN. 
       
      [Y,Z] = nanfilter1uc(uc,X [, Z]);  

 if X contains no missing data, NANFILTER behaves like FILTER(uc,[1,uc-1],X[,Z]).

 see also: FILTER, NANFILTER, SUMSKIPNAN



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 NANFILTER1UC is an adaptive filter for data with missing values encoded as NaN.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
naninsttest


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 112
 NANINSTTEST checks whether the functions from NaN-toolbox have been
 correctly installed. 

 see also: NANTEST



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 NANINSTTEST checks whether the functions from NaN-toolbox have been
 correctly 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nanmean


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 333
 NANMEAN same as SUM but ignores NaN's. 
 NANMEAN is OBSOLETE; use MEAN instead. NANMEAN is included 
    to provide backward compatibility 

 Y = nanmean(x [,DIM])
 
 DIM	dimension
	1 sum of columns
	2 sum of rows
	default or []: first DIMENSION with more than 1 element
 Y	resulting mean

 
 see also: MEAN, SUMSKIPNAN, NANSUM 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
 NANMEAN same as SUM but ignores NaN's.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
nanstd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 518
 NANSTD same as STD but ignores NaN's. 
 NANSTD is OBSOLETE; use NaN/STD instead. NANSTD is included 
    to fix a bug in alternative implementations and to 
    provide some compatibility. 

 Y = nanstd(x, FLAG, [,DIM])
 
 x     data
 FLAG  0: [default] normalizes with (N-1), N = sample size
 FLAG  1: normalizes with N, N = sample size
 DIM	dimension
	1 sum of columns
	2 sum of rows
	default or []: first DIMENSION with more than 1 element
 Y	resulting standard deviation
 
 see also: SUM, SUMSKIPNAN, NANSUM, STD



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
 NANSTD same as STD but ignores NaN's.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
nansum


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 333
 NANSUM same as SUM but ignores NaN's. 
 NANSUM is OBSOLETE; use SUMSKIPNAN instead. NANSUM is included 
    to fix a bug in some other versions. 

 Y = nansum(x [,DIM])
 
 DIM	dimension
	1 sum of columns
	2 sum of rows
	default or []: first DIMENSION with more than 1 element
 Y	resulting sum

 
 see also: SUM, SUMSKIPNAN, NANSUM 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
 NANSUM same as SUM but ignores NaN's.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nantest


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 366
 NANTEST checks several mathematical operations and a few 
 statistical functions for their correctness related to NaN's.
 e.g. it checks norminv, normcdf, normpdf, sort, matrix division and multiplication.


 see also: NANINSTTEST

 REFERENCE(S): 
 [1] W. Kahan (1996) Lecture notes on the Status of "IEEE Standard 754 for 
     Binary Floating-point Arithmetic. 




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 NANTEST checks several mathematical operations and a few 
 statistical function



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
normcdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 290
 NORMCDF returns normal cumulative distribtion function

 cdf = normcdf(x,m,s);

 Computes the CDF of a the normal distribution 
    with mean m and standard deviation s
    default: m=0; s=1;
 x,m,s must be matrices of same size, or any one can be a scalar. 

 see also: NORMPDF, NORMINV 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
 NORMCDF returns normal cumulative distribtion function



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
norminv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 341
 NORMINV returns inverse cumulative function of the normal distribution

 x = norminv(p,m,s);

 Computes the quantile (inverse of the CDF) of a the normal 
    cumulative distribution with mean m and standard deviation s
    default: m=0; s=1;
 p,m,s must be matrices of same size, or any one can be a scalar. 

 see also: NORMPDF, NORMCDF 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
 NORMINV returns inverse cumulative function of the normal distribution



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
normpdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 279
 NORMPDF returns normal probability density 

 pdf = normpdf(x,m,s);

 Computes the PDF of a the normal distribution 
    with mean m and standard deviation s
    default: m=0; s=1;
 x,m,s must be matrices of same size, or any one can be a scalar. 

 see also: NORMCDF, NORMINV 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
 NORMPDF returns normal probability density 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
partcorrcoef


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2015
 PARTCORRCOEF calculates the partial correlation between X and Y
 after removing the influence of Z.
 X, Y and Z can contain missing values encoded with NaN.
 NaN's are skipped, NaN do not result in a NaN output. 
 (Its assumed that the occurence of NaN's is uncorrelated) 
 The output gives NaN, only if there are insufficient input data.

  The partial correlation  is defined as 
  pcc(xy|z)=(cc(x,y)-cc(x,z)*cc(y,z))/sqrt((1-cc(x,y)�)*((1-cc(x,z)�)))


 PARTCORRCOEF(X [,Mode]);
      calculates the (auto-)correlation matrix of X
 PARTCORRCOEF(X,Y,Z);
 PARTCORRCOEF(X,Y,Z,[]);
 PARTCORRCOEF(X,Y,Z,'Pearson');
 PARTCORRCOEF(X,Y,Z,'Rank');
 PARTCORRCOEF(X,Y,Z,'Spearman');

 Mode=[] [default]
	removes from X and Y the part that can be explained by Z
	and computes the correlation of the remaining part. 
 	Ideally, this is equivalent to Mode='Pearson', however, in practice
	this is more accurate.
 Mode='Pearson' or 'parametric'
 Mode='Spearman'
 Mode='Rank'
	computes the partial correlation based on cc(x,y),cc(x,z) and cc(y,z) 
	with the respective mode. 

 [R,p,ci1,ci2] = PARTCORRCOEF(...);
  r is the partialcorrelation matrix
	r(i,j) is the partial correlation coefficient r between X(:,i) and Y(:,j) 
	when influence of Z is removed. 
  p    gives the significance of PCC
	It tests the null hypothesis that the product moment correlation coefficient is zero 
       using Student's t-test on the statistic t = r sqrt(N-Nz-2)/sqrt(1-r^2) 
       where N is the number of samples (Statistics, M. Spiegel, Schaum series).
  p > alpha: do not reject the Null hypothesis: "R is zero".
  p < alpha: The alternative hypothesis "R2 is larger than zero" is true with probability (1-alpha).
  ci1	lower 0.95 confidence interval 
  ci2	upper 0.95 confidence interval 

 see also: SUMSKIPNAN, COVM, COV, COR, SPEARMAN, RANKCORR, RANKS, CORRCOEF

 REFERENCES:
 on the partial correlation coefficient 
 [1] http://www.tufts.edu/~gdallal/partial.htm
 [2] http://www.nag.co.uk/numeric/fl/manual/pdf/G02/g02byf.pdf



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 PARTCORRCOEF calculates the partial correlation between X and Y
 after removing



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
percentile


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 554
 PERCENTILE calculates the percentiles of histograms and sample arrays.  

  Q = percentile(Y,q)      
  Q = percentile(Y,q,DIM)      
     returns the q-th percentile along dimension DIM of sample array Y.
     size(Q) is equal size(Y) except for dimension DIM which is size(Q,DIM)=length(Q)

  Q = percentile(HIS,q)
     returns the q-th percentile from the histogram HIS. 
     HIS must be a HISTOGRAM struct as defined in HISTO2 or HISTO3.
     If q is a vector, the each row of Q returns the q(i)-th percentile 

 see also: HISTO2, HISTO3, QUANTILE



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
 PERCENTILE calculates the percentiles of histograms and sample arrays.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
prctile


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 576
 PRCTILE calculates the percentiles of histograms and sample arrays.  
 (its the same than PERCENTILE.M)

  Q = prctile(Y,q)      
  Q = prctile(Y,q,DIM)      
     returns the q-th percentile along dimension DIM of sample array Y.
     size(Q) is equal size(Y) except for dimension DIM which is size(Q,DIM)=length(Q)

  Q = prctile(HIS,q)
     returns the q-th percentile from the histogram HIS. 
     HIS must be a HISTOGRAM struct as defined in HISTO2 or HISTO3.
     If q is a vector, the each row of Q returns the q(i)-th percentile 

 see also: HISTO2, HISTO3, QUANTILE



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
 PRCTILE calculates the percentiles of histograms and sample arrays.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
quantile


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 528
 QUANTILE calculates the quantiles of histograms and sample arrays.  

  Q = quantile(Y,q)
  Q = quantile(Y,q,DIM)
     returns the q-th quantile along dimension DIM of sample array Y.
     size(Q) is equal size(Y) except for dimension DIM which is size(Q,DIM)=length(Q)

  Q = quantile(HIS,q)
     returns the q-th quantile from the histogram HIS. 
     HIS must be a HISTOGRAM struct as defined in HISTO2 or HISTO3.
     If q is a vector, the each row of Q returns the q(i)-th quantile 

 see also: HISTO2, HISTO3, PERCENTILE



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
 QUANTILE calculates the quantiles of histograms and sample arrays.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
range


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 371
 RANGE calculates the range of Y 
  Missing values (encoded as NaN) are ignored. 

  Q = range(Y)
  Q = range(Y,DIM)
     returns the range along dimension DIM of sample array Y.

  Q = range(HIS)
     returns the RANGE from the histogram HIS.
     HIS must be a HISTOGRAM struct as defined in HISTO2 or HISTO3.

 see also: IQR, MAD, HISTO2, HISTO3, PERCENTILE, QUANTILE



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 RANGE calculates the range of Y 
  Missing values (encoded as NaN) are ignored.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
rankcorr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 668
 RANKCORR calculated the rank correlation coefficient.
 This function is replaced by CORRCOEF. 
 Significance test and confidence intervals can be obtained from CORRCOEF, too. 

 R = CORRCOEF(X, [Y, ] 'Rank');

 The rank correlation   r = corrcoef(ranks(x)). 
 is often confused with Spearman's rank correlation.  
 Spearman's correlation is defined as 
   r(x,y) = 1-6*sum((ranks(x)-ranks(y)).^2)/(N*(N*N-1))
 The results are different. Here, the former version is implemented. 

 see also: CORRCOEF, SPEARMAN, RANKS

 REFERENCES:
 [1] http://mathworld.wolfram.com/SpearmanRankCorrelationCoefficient.html
 [2] http://mathworld.wolfram.com/CorrelationCoefficient.html



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
 RANKCORR calculated the rank correlation coefficient.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ranks


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1062
 RANKS gives the rank of each element in a vector.
 This program uses an advanced algorithm with averge effort O(m.n.log(n)) 
 NaN in the input yields NaN in the output.
 
 r = ranks(X[,DIM])
   if X is a vector, return the vector of ranks of X adjusted for ties.
   if X is matrix, the rank is calculated along dimension DIM. 
   if DIM is zero or empty, the lowest dimension with more then 1 element is used. 
 r = ranks(X,DIM,'traditional')
   implements the traditional algorithm with O(n^2) computational 
   and O(n^2) memory effort
 r = ranks(X,DIM,'mtraditional')
   implements the traditional algorithm with O(n^2) computational 
   and O(n) memory effort
 r = ranks(X,DIM,'advanced   ')
   implements an advanced algorithm with O(n*log(n)) computational 
   and O(n.log(n)) memory effort
 r = ranks(X,DIM,'advanced-ties')
   implements an advanced algorithm with O(n*log(n)) computational 
   and O(n.log(n)) memory effort
   but without correction for ties 
   This is the fastest algorithm 

 see also: CORRCOEF, SPEARMAN, RANKCORR

 REFERENCES:
 --



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
 RANKS gives the rank of each element in a vector.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
rms


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 560
 RMS calculates the root mean square
   can deal with complex data. 

 y = rms(x,DIM,W)

 DIM	dimension
	1 STD of columns
	2 STD of rows
 	N STD of  N-th dimension 
	default or []: first DIMENSION, with more than 1 element
 W	weights to compute weighted s.d. (default: [])
	if W=[], all weights are 1. 
	number of elements in W must match size(x,DIM) 

 y	estimated standard deviation

 features:
 - can deal with NaN's (missing values)
 - weighting of data 
 - dimension argument also in Octave
 - compatible to Matlab and Octave

 see also: SUMSKIPNAN, MEAN



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
 RMS calculates the root mean square
   can deal with complex data.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
row_col_deletion


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 739
 ROW_COL_DELETION selects the rows and columns for removing any missing values. 
    A heuristic based on maximizing the number of remaining sample values
    is used. In other words, if there are more rows than columns, it is 
    more likely that a row-wise deletion will be applied and vice versa. 
 
    [rix,cix] = row_col_deletion(d)
    [rix,cix] = row_col_deletion(d,c,w)
 
 Input: 
    d        data (each row is a sample, each column a feature)
    c        classlabels (not really used) [OPTIONAL]
    w        weight for each sample vector [OPTIONAL]   
 Output:
    rix      selected samples
    cix      selected columns    
 
   d(rix,cix) does not contain any NaN's i.e. missing values      
 
 see also: TRAIN_SC, TEST_SC



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
 ROW_COL_DELETION selects the rows and columns for removing any missing values.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
sem


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 695
 SEM calculates the standard error of the mean
 
 [SE,M] = SEM(x [, DIM [,W]])
   calculates the standard error (SE) in dimension DIM
   the default DIM is the first non-single dimension
   M returns the mean. 
   Can deal with complex data, too. 

 DIM	dimension
	1: SEM of columns
	2: SEM of rows
 	N: SEM of  N-th dimension 
	default or []: first DIMENSION, with more than 1 element
 W	weights to compute weighted mean and s.d. (default: [])
	if W=[], all weights are 1. 
	number of elements in W must match size(x,DIM) 

 features:
 - can deal with NaN's (missing values)
 - weighting of data 
 - dimension argument 
 - compatible to Matlab and Octave

 see also: SUMSKIPNAN, MEAN, VAR, STD



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 SEM calculates the standard error of the mean
 
 [SE,M] = SEM(x [, DIM [,W]])
 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
skewness


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 405
 SKEWNESS estimates the skewness 

 y = skewness(x,DIM)
   calculates skewness of x in dimension DIM

 DIM	dimension
	1: STATS of columns
	2: STATS of rows
	default or []: first DIMENSION, with more than 1 element

 features:
 - can deal with NaN's (missing values)
 - dimension argument 
 - compatible to Matlab and Octave

 see also: SUMSKIPNAN, STATISTIC

 REFERENCE(S):
 http://mathworld.wolfram.com/



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
 SKEWNESS estimates the skewness 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
spearman


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 683
 SPEARMAN Spearman's rank correlation coefficient.
 This function is replaced by CORRCOEF. 
 Significance test and confidence intervals can be obtained from CORRCOEF. 

 [R,p,ci1,ci2] = CORRCOEF(x, [y, ] 'Rank');

 For some (unknown) reason, in previous versions Spearman's rank correlation  
   r = corrcoef(ranks(x)). 
 But according to [1], Spearman's correlation is defined as 
   r = 1-6*sum((ranks(x)-ranks(y)).^2)/(N*(N*N-1))
 The results are different. Here, the later version is implemented. 

 see also: CORRCOEF, RANKCORR

 REFERENCES:
 [1] http://mathworld.wolfram.com/SpearmanRankCorrelationCoefficient.html
 [2] http://mathworld.wolfram.com/CorrelationCoefficient.html



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
 SPEARMAN Spearman's rank correlation coefficient.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
statistic


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 938
 STATISTIC estimates various statistics at once.
 
 R = STATISTIC(x,DIM)
   calculates all statistic (see list of fun) in dimension DIM
   R is a struct with all statistics 

 y = STATISTIC(x,fun)
   estimate of fun on dimension DIM
   y gives the statistic of fun	

 DIM	dimension
	1: STATS of columns
	2: STATS of rows
 	N: STATS of  N-th dimension 
	default or []: first DIMENSION, with more than 1 element

 fun	'mean'	mean
	'std'	standard deviation
	'var'	variance
	'sem'	standard error of the mean
	'rms'	root mean square
	'meansq' mean of squares
	'sum'	sum
	'sumsq'	sum of squares
	'CM#'	central moment of order #
	'skewness' skewness 
	'kurtosis' excess coefficient (Fisher kurtosis)
	'mad'	mean absolute deviation

 features:
 - can deal with NaN's (missing values)
 - dimension argument 
 - compatible to Matlab and Octave

 see also: SUMSKIPNAN

 REFERENCE(S):
 [1] http://www.itl.nist.gov/
 [2] http://mathworld.wolfram.com/



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
 STATISTIC estimates various statistics at once.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
std


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 983
 STD calculates the standard deviation.
 
 [y,v] = std(x [, opt[, DIM [, W]]])
 
 opt   option 
	0:  normalizes with N-1 [default]
		provides the square root of best unbiased estimator of the variance
	1:  normalizes with N, 
		this provides the square root of the second moment around the mean
 	otherwise: 
               best unbiased estimator of the standard deviation (see [1])      

 DIM	dimension
 	N STD of  N-th dimension 
	default or []: first DIMENSION, with more than 1 element
 W	weights to compute weighted s.d. (default: [])
	if W=[], all weights are 1. 
	number of elements in W must match size(x,DIM) 

 y	estimated standard deviation

 features:
 - provides an unbiased estimation of the S.D. 
 - can deal with NaN's (missing values)
 - weighting of data 
 - dimension argument also in Octave
 - compatible to Matlab and Octave

 see also: RMS, SUMSKIPNAN, MEAN, VAR, MEANSQ,


 References(s):
 [1] http://mathworld.wolfram.com/StandardDeviationDistribution.html



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
 STD calculates the standard deviation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
sumskipnan


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1234
 SUMSKIPNAN adds all non-NaN values. 

 All NaN's are skipped; NaN's are considered as missing values. 
 SUMSKIPNAN of NaN's only  gives O; and the number of valid elements is return. 
 SUMSKIPNAN is also the elementary function for calculating 
 various statistics (e.g. MEAN, STD, VAR, RMS, MEANSQ, SKEWNESS, 
 KURTOSIS, MOMENT, STATISTIC etc.) from data with missing values.  
 SUMSKIPNAN implements the DIMENSION-argument for data with missing values.
 Also the second output argument return the number of valid elements (not NaNs) 
 
 Y = sumskipnan(x [,DIM])
 [Y,N,SSQ] = sumskipnan(x [,DIM])
 [...] = sumskipnan(x, DIM, W)
 
 x	input data 	
 DIM	dimension (default: [])
	empty DIM sets DIM to first non singleton dimension	
 W	weight vector for weighted sum, numel(W) must fit size(x,DIM)
 Y	resulting sum
 N	number of valid (not missing) elements
 SSQ	sum of squares

 the function FLAG_NANS_OCCURED() returns whether any value in x
  is a not-a-number (NaN)

 features:
 - can deal with NaN's (missing values)
 - implements dimension argument. 
 - computes weighted sum 
 - compatible with Matlab and Octave

 see also: FLAG_NANS_OCCURED, SUM, NANSUM, MEAN, STD, VAR, RMS, MEANSQ, 
      SSQ, MOMENT, SKEWNESS, KURTOSIS, SEM



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
 SUMSKIPNAN adds all non-NaN values.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
sumsq


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 391
 SUMSQ calculates the sum of squares.
 
 [y] = sumsq(x [,  DIM])
 
 DIM	dimension
 	N STD of  N-th dimension 
	default or []: first DIMENSION, with more than 1 element

 y	estimated standard deviation

 features:
 - can deal with NaN's (missing values)
 - dimension argument also in Octave
 - compatible to Matlab and Octave

 see also: RMS, SUMSKIPNAN, MEAN, VAR, MEANSQ,


 References(s):



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
 SUMSQ calculates the sum of squares.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
tcdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 254
 TCDF returns student cumulative distribtion function

 cdf = tcdf(x,DF);

 Computes the CDF of the students distribution 
    with DF degrees of freedom 
 x,DF must be matrices of same size, or any one can be a scalar. 

 see also: NORMCDF, TPDF, TINV 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
 TCDF returns student cumulative distribtion function



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
test_sc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1441
 TEST_SC: apply statistical and SVM classifier to test data 

  R = test_sc(CC,D,TYPE [,target_Classlabel]) 
       R.output     	output: "signed" distance for each class. 
		This represents the distances between sample D and the separating hyperplane
		The "signed distance" is possitive if it matches the target class, and 
		and negative if it lays on the opposite side of the separating hyperplane. 
       R.classlabel 	class for output data
  The target class is optional. If it is provided, the following values are returned. 
       R.kappa 	Cohen's kappa coefficient
       R.ACC   	Classification accuracy 
       R.H     	Confusion matrix 

 The classifier CC is typically obtained by TRAIN_SC. If a statistical 
 classifier is used, TYPE can be used to modify the classifier. 
    TYPE = 'MDA'    mahalanobis distance based classifier
    TYPE = 'MD2'    mahalanobis distance based classifier
    TYPE = 'MD3'    mahalanobis distance based classifier
    TYPE = 'GRB'    Gaussian radial basis function 
    TYPE = 'QDA'    quadratic discriminant analysis
    TYPE = 'LD2'    linear discriminant analysis
    TYPE = 'LD3', 'LDA', 'FDA, 'FLDA'   (Fisher's) linear discriminant analysis
    TYPE = 'LD4'    linear discriminant analysis
    TYPE = 'GDBC'   general distance based classifier
 
 see also: TRAIN_SC

 References: 
 [1] R. Duda, P. Hart, and D. Stork, Pattern Classification, second ed. 
       John Wiley & Sons, 2001.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
 TEST_SC: apply statistical and SVM classifier to test data 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
tiedrank


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 272
 TIEDRANK compute rank of samples, the mean value is used in case of ties
  this function is just a wrapper for RANKS, and provided for compatibility 
  with the statistics toolbox of matlab(tm)
 
    R = tiedrank(X)
	computes the rank R of vector X
    
 see also: RANKS



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 TIEDRANK compute rank of samples, the mean value is used in case of ties
  this



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
tinv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 330
 TINV returns inverse cumulative function of the student distribution

 x = tinv(p,v);

 Computes the quantile (inverse of the CDF) of a the student
    cumulative distribution with mean m and standard deviation s
 p,v must be matrices of same size, or any one can be a scalar. 

 see also: TPDF, TCDF, NORMPDF, NORMCDF, NORMINV 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
 TINV returns inverse cumulative function of the student distribution



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
tpdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 261
 TPDF returns student probability density 

 pdf = tpdf(x,DF);

 Computes the PDF of a the student distribution 
    with DF degreas of freedom
 x,DF must be matrices of same size, or any one can be a scalar. 

 see also: TINV, TCDF, NORMPDF, NORMCDF, NORMINV 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
 TPDF returns student probability density 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
train_lda_sparse


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1689
 Linear Discriminant Analysis for the Small Sample Size Problem as described in
 Algorithm 1 of J. Duintjer Tebbens, P. Schlesinger: 'Improving
 Implementation of Linear Discriminant Analysis for the High Dimension/Small Sample Size
 Problem', Computational Statistics and Data Analysis, vol. 52, no. 1, pp. 423-437, 2007.  
 Input:
               X                 ......       (sparse) training data matrix
               G                 ......       group coding matrix of the training data
               test              ......       (sparse) test data matrix
               Gtest             ......       group coding matrix of the test data
               par               ......       if par = 0 then classification exploits sparsity too
               tol               ......       tolerance to distinguish zero eigenvalues
 Output:
               err               ......       Wrong classification rate (in %)
               trafo             ......       LDA transformation vectors

 Reference(s): 
 J. Duintjer Tebbens, P. Schlesinger: 'Improving
 Implementation of Linear Discriminant Analysis for the High Dimension/Small Sample Size
 Problem', Computational Statistics and Data Analysis, vol. 52, no. 1, 
 pp. 423-437, 2007.

 Copyright (C) by J. Duintjer Tebbens, Institute of Computer Science of the Academy of Sciences of the Czech Republic,
 Pod Vodarenskou vezi 2, 182 07 Praha 8 Liben, 18.July.2006. 
 This work was supported by the Program Information Society under project
 1ET400300415.


 Modified for the use with Matlab6.5 by A. Schloegl, 22.Aug.2006

	$Id$
       This function is part of the NaN-toolbox
       http://pub.ist.ac.at/~schloegl/matlab/NaN/



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 Linear Discriminant Analysis for the Small Sample Size Problem as described in




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
train_sc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7655
 Train a (statistical) classifier
 
  CC = train_sc(D,classlabel)
  CC = train_sc(D,classlabel,MODE)
  CC = train_sc(D,classlabel,MODE, W)
	weighting D(k,:) with weight W(k) (not all classifiers supported weighting)

 CC contains the model parameters of a classifier which can be applied 
   to test data using test_sc. 
   R = test_sc(CC,D,...) 

   D		training samples (each row is a sample, each column is a feature)	
   classlabel	labels of each sample, must have the same number of rows as D. 
 		Two different encodings are supported: 
		{-1,1}-encoding (multiple classes with separate columns for each class) or
		1..M encoding. 
 		So [1;2;3;1;4] is equivalent to 
			[+1,-1,-1,-1;
			[-1,+1,-1,-1;
			[-1,-1,+1,-1;
			[+1,-1,-1,-1]
			[-1,-1,-1,+1]
		Note, samples with classlabel=0 are ignored. 

  The following classifier types are supported MODE.TYPE
    'MDA'      mahalanobis distance based classifier [1]
    'MD2'      mahalanobis distance based classifier [1]
    'MD3'      mahalanobis distance based classifier [1]
    'GRB'      Gaussian radial basis function     [1]
    'QDA'      quadratic discriminant analysis    [1]
    'LD2'      linear discriminant analysis (see LDBC2) [1]
		MODE.hyperparameter.gamma: regularization parameter [default 0] 
    'LD3', 'FDA', 'LDA', 'FLDA'
               linear discriminant analysis (see LDBC3) [1]
		MODE.hyperparameter.gamma: regularization parameter [default 0] 
    'LD4'      linear discriminant analysis (see LDBC4) [1]
		MODE.hyperparameter.gamma: regularization parameter [default 0] 
    'LD5'      another LDA (motivated by CSP)
		MODE.hyperparameter.gamma: regularization parameter [default 0] 
    'RDA'      regularized discriminant analysis [7]
		MODE.hyperparameter.gamma: regularization parameter 
		MODE.hyperparameter.lambda =
		gamma = 0, lambda = 0 : MDA
		gamma = 0, lambda = 1 : LDA [default]
		Hint: hyperparameter are used only in test_sc.m, testing different 
		the hyperparameters do not need repetitive calls to train_sc, 
		it is sufficient to modify CC.hyperparameter before calling test_sc. 	
    'GDBC'     general distance based classifier  [1]
    ''         statistical classifier, requires Mode argument in TEST_SC	
    '###/DELETION'  if the data contains missing values (encoded as NaNs), 
		a row-wise or column-wise deletion (depending on which method 
		removes less data values) is applied;  
    '###/GSVD'	GSVD and statistical classifier [2,3], 
    '###/sparse'  sparse  [5] 
		'###' must be 'LDA' or any other classifier 
    'PLS'	(linear) partial least squares regression 
    'REG'      regression analysis;
    'WienerHopf'	Wiener-Hopf equation  
    'NBC'	Naive Bayesian Classifier [6]     
    'aNBC'	Augmented Naive Bayesian Classifier [6]
    'NBPW'	Naive Bayesian Parzen Window [9]     

    'PLA'	Perceptron Learning Algorithm [11]
		MODE.hyperparameter.alpha = alpha [default: 1]
		 w = w + alpha * e'*x
    'LMS', 'AdaLine'  Least mean squares, adaptive line element, Widrow-Hoff, delta rule 
		MODE.hyperparameter.alpha = alpha [default: 1]
    'Winnow2'  Winnow2 algorithm [12]

    'PSVM'	Proximal SVM [8] 
		MODE.hyperparameter.nu  (default: 1.0)
    'LPM'      Linear Programming Machine
                 uses and requires train_LPM of the iLog CPLEX optimizer 
		MODE.hyperparameter.c_value = 
    'CSP'	CommonSpatialPattern is very experimental and just a hack
		uses a smoothing window of 50 samples.
    'SVM','SVM1r'  support vector machines, one-vs-rest
		MODE.hyperparameter.c_value = 
    'SVM11'    support vector machines, one-vs-one + voting
		MODE.hyperparameter.c_value = 
    'RBF'      Support Vector Machines with RBF Kernel
		MODE.hyperparameter.c_value = 
		MODE.hyperparameter.gamma = 
    'SVM:LIB'    libSVM [default SVM algorithm)
    'SVM:bioinfo' uses and requires svmtrain from the bioinfo toolbox        
    'SVM:OSU'   uses and requires mexSVMTrain from the OSU-SVM toolbox 
    'SVM:LOO'   uses and requires svcm_train from the LOO-SVM toolbox 
    'SVM:Gunn'  uses and requires svc-functios from the Gunn-SVM toolbox 
    'SVM:KM'    uses and requires svmclass-function from the KM-SVM toolbox 
    'SVM:LINz'  LibLinear [10] (requires train.mex from LibLinear somewhere in the path)
            z=0 (default) LibLinear with -- L2-regularized logistic regression
            z=1 LibLinear with -- L2-loss support vector machines (dual)
            z=2 LibLinear with -- L2-loss support vector machines (primal)
            z=3 LibLinear with -- L1-loss support vector machines (dual)
    'SVM:LIN4'  LibLinear with -- multi-class support vector machines by Crammer and Singer
    'DT'	decision tree - not implemented yet.  

 {'REG','MDA','MD2','QDA','QDA2','LD2','LD3','LD4','LD5','LD6','NBC','aNBC','WienerHopf','LDA/GSVD','MDA/GSVD', 'LDA/sparse','MDA/sparse', 'PLA', 'LMS','LDA/DELETION','MDA/DELETION','NBC/DELETION','RDA/DELETION','REG/DELETION','RDA','GDBC','SVM','RBF','PSVM','SVM11','SVM:LIN4','SVM:LIN0','SVM:LIN1','SVM:LIN2','SVM:LIN3','WINNOW', 'DT'};

 CC contains the model parameters of a classifier. Some time ago,     
 CC was a statistical classifier containing the mean 
 and the covariance of the data of each class (encoded in the 
  so-called "extended covariance matrices". Nowadays, also other 
 classifiers are supported. 

 see also: TEST_SC, COVM, ROW_COL_DELETION

 References: 
 [1] R. Duda, P. Hart, and D. Stork, Pattern Classification, second ed. 
       John Wiley & Sons, 2001. 
 [2] Peg Howland and Haesun Park,
       Generalizing Discriminant Analysis Using the Generalized Singular Value Decomposition
       IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(8), 2004.
       dx.doi.org/10.1109/TPAMI.2004.46
 [3] http://www-static.cc.gatech.edu/~kihwan23/face_recog_gsvd.htm
 [4] Jieping Ye, Ravi Janardan, Cheong Hee Park, Haesun Park
       A new optimization criterion for generalized discriminant analysis on undersampled problems.
       The Third IEEE International Conference on Data Mining, Melbourne, Florida, USA
       November 19 - 22, 2003
 [5] J.D. Tebbens and P. Schlesinger (2006), 
       Improving Implementation of Linear Discriminant Analysis for the Small Sample Size Problem
	Computational Statistics & Data Analysis, vol 52(1): 423-437, 2007
       http://www.cs.cas.cz/mweb/download/publi/JdtSchl2006.pdf
 [6] H. Zhang, The optimality of Naive Bayes, 
	 http://www.cs.unb.ca/profs/hzhang/publications/FLAIRS04ZhangH.pdf
 [7] J.H. Friedman. Regularized discriminant analysis. 
	Journal of the American Statistical Association, 84:165–175, 1989.
 [8] G. Fung and O.L. Mangasarian, Proximal Support Vector Machine Classifiers, KDD 2001.
        Eds. F. Provost and R. Srikant, Proc. KDD-2001: Knowledge Discovery and Data Mining, August 26-29, 2001, San Francisco, CA.
 	p. 77-86.
 [9] Kai Keng Ang, Zhang Yang Chin, Haihong Zhang, Cuntai Guan.
	Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface.
	IEEE International Joint Conference on Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). 
	1-8 June 2008 Page(s):2390 - 2397
 [10] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. 
       LIBLINEAR: A Library for Large Linear Classification, Journal of Machine Learning Research 9(2008), 1871-1874. 
       Software available at http://www.csie.ntu.edu.tw/~cjlin/liblinear 
 [11] http://en.wikipedia.org/wiki/Perceptron#Learning_algorithm
 [12] Littlestone, N. (1988) 
       "Learning Quickly When Irrelevant Attributes Abound: A New Linear-threshold Algorithm" 
       Machine Learning 285-318(2)
 	http://en.wikipedia.org/wiki/Winnow_(algorithm)



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 Train a (statistical) classifier
 
  CC = train_sc(D,classlabel)
  CC = train_s



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
trimean


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 276
 TRIMEAN yields the weighted mean of the median and the quartiles
    m = TRIMEAN(y).

 The trimean is  m = (Q1+2*MED+Q3)/4
    with quartile Q1 and Q3 and median MED   

 N-dimensional data is supported
 
 REFERENCES:
 [1] http://mathworld.wolfram.com/Trimean.html



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 TRIMEAN yields the weighted mean of the median and the quartiles
    m = TRIME



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
trimmean


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 664
 TRIMMEAN calculates the trimmed mean by removing the fraction of p/2 upper and 
 p/2 lower samples. Missing values (encoded as NaN) are ignored and not taken into account. 
 The same number from the upper and lower values are removed, and is compatible to various
 spreadsheet programs including GNumeric [1], LibreOffice, OpenOffice and MS Excel.

  Q = trimmean(Y,p)
  Q = trimmean(Y,p,DIM)
     returns the TRIMMEAN along dimension DIM of sample array Y.
  If p is a vector, the TRIMMEAN for each p is computed. 

 see also: MAD, RANGE, HISTO2, HISTO3, PERCENTILE, QUANTILE

 References:
 [1] http://www.fifi.org/doc/gnumeric-doc/html/C/gnumeric-trimmean.html



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 TRIMMEAN calculates the trimmed mean by removing the fraction of p/2 upper and 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ttest


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1474
 TTEST (paired) t-test
     For a sample X from a normal distribution with unknown mean and
     variance, perform a t-test of the null hypothesis `mean (X) == M'.
     Under the null, the test statistic T follows a Student
     distribution with `DF = length (X) - 1' degrees of freedom.

     TTEST treads NaNs as "Missing values" and ignores these. 

 H = ttest(x,m)
	tests Null-hypothesis that mean of x is m. 		
 H = ttest(x,y)
 	size of x and size of y must match, it is tested whether the 
	difference x-y is significantly different to m=0; 
 H = ttest(x,y,alpha)
 H = ttest(x,y,alpha,tail)
 H = ttest(x,y,alpha,tail,DIM)
 [H,PVAL] = ttest(...)

     H=1 indicates a rejection of the Null-hypothesis at a significance 
     level of alpha (default alpha = 0.05).	 
 
     With the optional argument string TAIL, the alternative of interest
     can be selected.  If TAIL is '!=' or '<>' or 'both', the null is tested
     against the two-sided Alternative `mean (X) ~= mean (Y)'.  If TAIL
     is '>' or 'right', the one-sided Alternative `mean (X) > mean (Y)' is used.
     Similarly for '<' or 'left', the one-sided Alternative `mean (X) < mean
     (Y)' is used.  The default is the two-sided case.
 
     H returns whether the Null-Hypotheses must be rejected. 
     The p-value of the test is returned in PVAL. 
 
     TTEST works on the first non-singleton dimension or on DIM. 

     If no output argument is given, the p-value of the test is
     displayed.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 TTEST (paired) t-test
     For a sample X from a normal distribution with unkno



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ttest2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1491
 TTEST2 (unpaired) t-test
     For two samples x and y from normal distributions with unknown
     means and unknown equal variances, perform a two-sample t-test of
     the null hypothesis of equal means.  Under the null, the test
     statistic T follows a Student distribution with DF degrees of
     freedom.

     TTEST2 treads NaNs as "Missing values" and ignores these. 

 H = ttest2(x,y)
 H = ttest2(x,y,alpha)
 H = ttest2(x,y,alpha,tail)
 H = ttest2(x,y,alpha,tail,vartype)
 H = ttest2(x,y,alpha,tail,vartype,DIM)
 [H,PVAL] = ttest2(...)
 [h,p,ci,stats] = ttest2(...)

     H=1 indicates a rejection of the Null-hypothesis at a significance 
     level of alpha (default alpha = 0.05).	 
 
     With the optional argument string TAIL, the Alternative of interest
     can be selected.  If TAIL is '!=' or '<>' or 'both', the null is tested
     against the two-sided Alternative `mean (X) ~= mean (Y)'.  If TAIL
     is '>' or 'right', the one-sided Alternative `mean (X) > mean (Y)' is used.
     Similarly for '<' or 'left', the one-sided Alternative `mean (X) < mean
     (Y)' is used.  The default is the two-sided case.
 
     vartype support only 'equal' (default value); the value 'unequal' is not supported. 

     H returns whether the Null-Hypotheses must be rejected. 
     The p-value of the test is returned in PVAL. 
 
     TTEST2 works on the first non-singleton dimension or on DIM. 

     If no output argument is given, the p-value of the test is
     displayed.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 TTEST2 (unpaired) t-test
     For two samples x and y from normal distributions



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
var


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 772
 VAR calculates the variance.
 
 y = var(x [, opt[, DIM]])
   calculates the variance in dimension DIM
   the default DIM is the first non-single dimension

 opt   0: normalizes with N-1 [default]
	1: normalizes with N 
 DIM	dimension
	1: VAR of columns
	2: VAR of rows
 	N: VAR of  N-th dimension 
	default or []: first DIMENSION, with more than 1 element
 W	weights to compute weighted variance (default: [])
	if W=[], all weights are 1. 
	number of elements in W must match size(x,DIM) 
 
 usage: 
	var(x)	
	var(x, opt, DIM)	
	var(x, [], DIM)	
	var(x, W, DIM)
	var(x, opt, DIM, W)	

 features:
 - can deal with NaN's (missing values)
 - weighting of data 
 - dimension argument 
 - compatible to Matlab and Octave

 see also: MEANSQ, SUMSQ, SUMSKIPNAN, MEAN, RMS, STD,



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
 VAR calculates the variance.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
xcovf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1059
 XCOVF generates cross-covariance function. 
 XCOVF is the same as XCORR except 
   X and Y can contain missing values encoded with NaN.
   NaN's are skipped, NaN do not result in a NaN output. 
   The output gives NaN only if there are insufficient input data

 [C,N,LAGS] = xcovf(X,MAXLAG,SCALEOPT);
      calculates the (auto-)correlation function of X
 [C,N,LAGS] = xcovf(X,Y,MAXLAG,SCALEOPT);
      calculates the crosscorrelation function between X and Y

  SCALEOPT   [character string] specifies the type of scaling applied
          to the correlation vector (or matrix). is one of:
    'none'      return the unscaled correlation, R,
    'biased'    return the biased average, R/N, 
    'unbiased'  return the unbiassed average, R(k)/(N-|k|), 
    'coeff'     return the correlation coefficient, R/(rms(x).rms(y)),
          where "k" is the lag, and "N" is the length of X.
          If omitted, the default value is "none".
          If Y is supplied but does not have the ame length as X,
          scale must be "none".


 see also: COVM, XCORR



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
 XCOVF generates cross-covariance function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
xptopen


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1138
 XPTOPEN read of several file formats and writing of the SAS Transport Format (*.xpt)
   Supported are ARFF, SAS-XPT and STATA files.
   XPTOPEN is a mex-file and must be compiled before use. 
   More detailed help can be obtained by the command 
     xptopen
   without an additional argument

     X = xptopen(filename)
     X = xptopen(filename,'r')
   read file with filename and return variables in struct X

   X = xptopen(filename,'w',X)
        save fields of struct X in filename.
 
   The fields of X must be column vectors of equal length.
   Each vector is either a numeric vector or a cell array of strings.
   The SAS-XPT format stores Date/Time as numeric value counting the number of days since 1960-01-01.

 References:
 [1]	TS-140 THE RECORD LAYOUT OF A DATA SET IN SAS TRANSPORT (XPORT) FORMAT
	http://support.sas.com/techsup/technote/ts140.html
 [2] IBM floating point format
	http://en.wikipedia.org/wiki/IBM_Floating_Point_Architecture
 [3] see http://old.nabble.com/Re%3A-IBM-integer-and-double-formats-p20428979.html
 [4] STATA File Format
	http://www.stata.com/help.cgi?dta
	http://www.stata.com/help.cgi?dta_113



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 XPTOPEN read of several file formats and writing of the SAS Transport Format (*



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
xval


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2980
 XVAL is used for crossvalidation 

  [R,CC] = xval(D,classlabel)
  .. = xval(D,classlabel,CLASSIFIER)
  .. = xval(D,classlabel,CLASSIFIER,type)
  .. = xval(D,{classlabel,W},CLASSIFIER)
  .. = xval(D,{classlabel,W,NG},CLASSIFIER)
 
  example: 
      load_fisheriris;    %builtin iris dataset      
      C = species;
      K = 5; NG = [1:length(C)]'*K/length(C);
      [R,CC] = xval(meas,{C,[],NG},'NBC');            

 Input:
    D:	data features (one feature per column, one sample per row)
    classlabel	labels of each sample, must have the same number of rows as D. 
 		Two different encodings are supported: 
		{-1,1}-encoding (multiple classes with separate columns for each class) or
		1..M encoding. 
 		So [1;2;3;1;4] is equivalent to 
			[+1,-1,-1,-1;
			[-1,+1,-1,-1;
			[-1,-1,+1,-1;
			[+1,-1,-1,-1]
			[-1,-1,-1,+1]
		Note, samples with classlabel=0 are ignored. 

    CLASSIFIER can be any classifier supported by train_sc (default='LDA')
       {'REG','MDA','MD2','QDA','QDA2','LD2','LD3','LD4','LD5','LD6','NBC','aNBC','WienerHopf', 'RDA','GDBC',
	 'SVM','RBF','PSVM','SVM11','SVM:LIN4','SVM:LIN0','SVM:LIN1','SVM:LIN2','SVM:LIN3','WINNOW'}
       these can be modified by ###/GSVD, ###/sparse and ###/DELETION. 
	   /DELETION removes in case of NaN's either the rows or the columns (which removes less data values) with any NaN
	   /sparse and /GSVD preprocess the data an reduce it to some lower-dimensional space. 
       Hyperparameters (like alpha for PLA, gamma/lambda for RDA, c_value for SVM, etc) can be defined as 
 	CLASSIFIER.hyperparameter.alpha, etc. and 
 	CLASSIFIER.TYPE = 'PLA' (as listed above). 
       See train_sc for details.
    W:	weights for each sample (row) in D. 
	default: [] (i.e. all weights are 1)
	number of elements in W must match the number of rows of D 
    NG: used to define the type of cross-valdiation
 	Leave-One-Out-Method (LOOM): NG = [1:length(classlabel)]' (default)
 	Leave-K-Out-Method: NG = ceil([1:length(classlabel)]'/K)
	K-fold XV:  NG = ceil([1:length(classlabel)]'*K/length(classlabel))
	group-wise XV (if samples are not indepentent) can be also defined here
	samples from the same group (dependent samples) get the same identifier
	samples from different groups get different classifiers
    TYPE:  defines the type of cross-validation procedure if NG is not specified 
	'LOOM'  leave-one-out-method
       k	k-fold crossvalidation

 OUTPUT: 
    R contains the resulting performance metric
    CC contains the classifier  

    plota(R) shows the confusion matrix of the results

 see also: TRAIN_SC, TEST_SC, CLASSIFY, PLOTA

 References: 
 [1] R. Duda, P. Hart, and D. Stork, Pattern Classification, second ed. 
       John Wiley & Sons, 2001. 
 [2] A. Schl�gl, J. Kronegg, J.E. Huggins, S. G. Mason;
       Evaluation criteria in BCI research.
       (Eds.) G. Dornhege, J.R. Millan, T. Hinterberger, D.J. McFarland, K.-R.Müller;
       Towards Brain-Computer Interfacing, MIT Press, 2007, p.327-342



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
 XVAL is used for crossvalidation 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
zScoreMedian


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 326
 zScoreMedian removes the median and standardizes by the 1.483*median absolute deviation

 Usage:  Z = zScoreMedian(X, DIM)
 Input:  X  : data
         DIM: dimension along which z-score should be calculated (1=columns, 2=rows) 
              (optional, default=first dimension with more than 1 element
 Output: Z  : z-scores



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 zScoreMedian removes the median and standardizes by the 1.483*median absolute d



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
zscore


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 614
 ZSCORE removes the mean and normalizes data 
 to a variance of 1. Can be used for pre-whitening of data, too. 

 [z,r,m] = zscore(x,DIM)
   z   z-score of x along dimension DIM
   r   is the inverse of the standard deviation
   m   is the mean of x

 The data x can be reconstucted with 
     x = z*diag(1./r) + repmat(m,size(z)./size(m))  
     z = x*diag(r) - repmat(m.*v,size(z)./size(m))  

 DIM	dimension
	1: STATS of columns
	2: STATS of rows
	default or []: first DIMENSION, with more than 1 element

 see also: SUMSKIPNAN, MEAN, STD, DETREND

 REFERENCE(S):
 [1] http://mathworld.wolfram.com/z-Score.html



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
 ZSCORE removes the mean and normalizes data 
 to a variance of 1.