This file is indexed.

/usr/share/octave/packages/geometry-1.7.0/polygons2d/curvature.m is in octave-geometry 1.7.0-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
## Copyright (C) 2004-2011 David Legland <david.legland@grignon.inra.fr>
## Copyright (C) 2004-2011 INRA - CEPIA Nantes - MIAJ (Jouy-en-Josas)
## Copyright (C) 2012 Adapted to Octave by Juan Pablo Carbajal <carbajal@ifi.uzh.ch>
## All rights reserved.
## 
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
## 
##     1 Redistributions of source code must retain the above copyright notice,
##       this list of conditions and the following disclaimer.
##     2 Redistributions in binary form must reproduce the above copyright
##       notice, this list of conditions and the following disclaimer in the
##       documentation and/or other materials provided with the distribution.
## 
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{kappa} = } curvature (@var{t}, @var{px}, @var{py},@var{method},@var{degree})
## @deftypefnx {Function File} {@var{kappa} = } curvature (@var{t}, @var{poly},@var{method},@var{degree})
## @deftypefnx {Function File} {@var{kappa} = } curvature (@var{px}, @var{py},@var{method},@var{degree})
## @deftypefnx {Function File} {@var{kappa} = } curvature (@var{points},@var{method},@var{degree})
## @deftypefnx {Function File} {[@var{kappa} @var{poly} @var{t}] = } curvature (@dots{})
## Estimate curvature of a polyline defined by points.
##
## First compute an approximation of the curve given by PX and PY, with
## the parametrization @var{t}. Then compute the curvature of approximated curve
## for each point.
## @var{method} used for approximation can be only: 'polynom', with specified degree.
## Further methods will be provided in a future version.
## @var{t}, @var{px}, and @var{py} are N-by-1 array of the same length. The points
## can be specified as a single N-by-2 array.
##
## If the argument @var{t} is not given, the parametrization is estimated using
## function @code{parametrize}.
##
## If requested, @var{poly} contains the approximating polygon evlauted at the
## parametrization @var{t}.
##
## @seealso{parametrize, polygons2d}
## @end deftypefn

function [kappa, varargout] = curvature(varargin)

  # default values
  degree = 5;
  t=0;                    # parametrization of curve
  tc=0;                   # indices of points wished for curvature


  # =================================================================

  # Extract method and degree ------------------------------

  nargin = length(varargin);
  varN = varargin{nargin};
  varN2 = varargin{nargin-1};

  if ischar(varN2)
      # method and degree are specified
      method = varN2;
      degree = varN;
      varargin = varargin(1:nargin-2);
  elseif ischar(varN)
      # only method is specified, use degree 6 as default
      method = varN;
      varargin = varargin{1:nargin-1};
  else
      # method and degree are implicit : use 'polynom' and 6
      method = 'polynom';
  end

  # extract input parametrization and curve. -----------------------
  nargin = length(varargin);
  if nargin==1
      # parameters are just the points -> compute caracterization.
      var = varargin{1};
      px = var(:,1);
      py = var(:,2);
  elseif nargin==2
      var = varargin{2};
      if size(var, 2)==2
          # parameters are t and POINTS
          px = var(:,1);
          py = var(:,2);
          t = varargin{1};
      else
          # parameters are px and py
          px = varargin{1};
          py = var;
      end
  elseif nargin==3
      var = varargin{2};
      if size(var, 2)==2
          # parameters are t, POINTS, and tc
          px = var(:,1);
          py = var(:,2);
          t = varargin{1};
      else
          # parameters are t, px and py
          t = varargin{1};
          px = var;
          py = varargin{3};
      end
  elseif nargin==4
      # parameters are t, px, py and tc
      t  = varargin{1};
      px = varargin{2};
      py = varargin{3};
      tc = varargin{4};
  end

  # compute implicit parameters --------------------------

  # if t and/or tc are not computed, use implicit definition
  if t==0
      t = parametrize(px, py, 'norm');
  end

  # if tc not defined, compute curvature for all points
  if tc==0
      tc = t;
  else
      # else convert from indices to parametrization values
      tc = t(tc);
  end


  # =================================================================
  #    compute curvature for each point of the curve

  if strcmp(method, 'polynom')
      # compute coefficients of interpolation functions
      x0 = polyfit(t, px, degree);
      y0 = polyfit(t, py, degree);

      # compute coefficients of first and second derivatives. In the case of a
      # polynom, it is possible to compute coefficient of derivative by
      # multiplying with a matrix.
      derive = diag(degree:-1:0);
      xp = circshift(x0*derive, [0 1]);
      yp = circshift(y0*derive, [0 1]);
      xs = circshift(xp*derive, [0 1]);
      ys = circshift(yp*derive, [0 1]);

      # compute values of first and second derivatives for needed points
      xprime = polyval(xp, tc);
      yprime = polyval(yp, tc);
      xsec = polyval(xs, tc);
      ysec = polyval(ys, tc);

      # compute value of curvature
      kappa = (xprime.*ysec - xsec.*yprime)./ ...
          power(xprime.*xprime + yprime.*yprime, 3/2);

      if nargout > 1
        varargout{1} = [polyval(x0,tc(:)) polyval(y0,tc(:))];
        if nargout > 2
          varargout{2} = tc;
        end
      end
  else
      error('unknown method');
  end

endfunction