This file is indexed.

/usr/share/octave/packages/geometry-1.7.0/geom3d/doc-cache is in octave-geometry 1.7.0-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
# Created by Octave 3.8.0, Tue Feb 25 00:01:33 2014 UTC <root@aatxe>
# name: cache
# type: cell
# rows: 3
# columns: 57
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
anglePoints3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 530
 -- Function File: ALPHA = anglePoints3d (P1, P2)
 -- Function File: ALPHA = anglePoints3d (P1, P2,P3)
 -- Function File: ALPHA = anglePoints3d (PTS)
     Compute angle between three 3D points

     ALPHA = anglePoints3d(P1, P2) Computes angle (P1, O, P2), in
     radians, between 0 and PI.

     ALPHA = anglePoints3d(P1, P2, P3) Computes angle (P1, P2, P3), in
     radians, between 0 and PI.

     ALPHA = anglePoints3d(PTS) PTS is a 3x3 or 2x3 array containing
     coordinate of points.

     See also: points3d, angles3d.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Compute angle between three 3D points



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
angleSort3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 981
 -- Function File: PTS2 = angleSort3d (PTS)
 -- Function File: PTS2 = angleSort3d (PTS,PTS0)
 -- Function File: PTS2 = angleSort3d (PTS,PTS0,PTS1)
 -- Function File: [PTS2 I]= angleSort3d (...)
     Sort 3D coplanar points according to their angles in plane

     PTS2 = angleSort3d(PTS); Considers all points are located on the
     same plane, and sort them according to the angle on plane.  PTS is
     a [Nx2] array.  Note that the result depend on plane orientation:
     points can be in reverse order compared to expected.  The reference
     plane is computed besed on the 3 first points.

     PTS2 = angleSort3d(PTS, PTS0); Computes angles between each point
     of PTS and PT0.  By default, uses centroid of points.

     PTS2 = angleSort3d(PTS, PTS0, PTS1); Specifies the point which will
     be used as a start.

     [PTS2, I] = angleSort3d(...); Also return in I the indices of PTS,
     such that PTS2 = PTS(I, :);

     See also: points3d, angles3d, angleSort.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Sort 3D coplanar points according to their angles in plane



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
angles3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1461
 -- Function File: angles3d ()
     ANGLES3D Conventions for manipulating angles in 3D

     Contrary to the plane, there are no oriented angles in 3D. Angles
     between lines or between planes are comprised between 0 and PI.

     Spherical angles Spherical angles are defined by 2 angles: * THETA,
     the colatitude, representing angle with Oz axis (between 0 and PI)
     * PHI, the azimut, representing angle with Ox axis of horizontal
     projection of the direction (between 0 and 2*PI)

     Spherical coordinates can be represented by THETA, PHI, and the
     distance RHO to the origin.

     Euler angles Some functions for creating rotations use Euler
     angles.  They follow the ZYX convention in the global reference
     system, that is eqivalent to the XYZ convention ine a local
     reference system. Euler angles are given by a triplet of angles
     [PHI THETA PSI] that represents the succession of 3 rotations: *
     rotation around X by angle PSI ("roll") * rotation around Y by
     angle THETA ("pitch") * rotation around Z by angle PHI ("yaw")

     In this library, euler angles are given in degrees.  The functions
     that use euler angles use the keyword 'Euler' in their name.

     See also: cart2sph2, sph2cart2, cart2sph2d, sph2cart2d
     anglePoints3d, angleSort3d, sphericalAngle, randomAngle3d
     dihedralAngle, polygon3dNormalAngle, eulerAnglesToRotation3d
     rotation3dAxisAndAngle, rotation3dToEulerAngles.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
ANGLES3D Conventions for manipulating angles in 3D



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
boundingBox3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 540
 -- Function File: BOX = boundingBox3d (POINTS)
     Bounding box of a set of 3D points

     Returns the bounding box of the set of points POINTS. POINTS is a
     N-by-3 array containing points coordinates.  The result BOX is a
     1-by-6 array, containing: [XMIN XMAX YMIN YMAX ZMIN ZMAX]

     Example
     # Draw bounding box of a cubeoctehedron [v e f] =
     createCubeOctahedron; box3d = boundingBox3d(v); figure; hold on;
     drawMesh(v, f); drawBox3d(box3d); axis([-2 2 -2 2 -2 2]); view(3)

     See also: boxes3d, drawBox3d.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Bounding box of a set of 3D points



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
box3dVolume


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 391
 -- Function File: V = box3dVolume (BOX)
     Volume of a 3-dimensional box

     A box is represented as a set of limits in each direction: BOX =
     [XMIN XMAX YMIN YMAX ZMIN ZMAX].

     Example
            [n e f] = createCubeOctahedron;
            box = boundingBox3d(n);
            vol = box3dVolume(box)
            vol =
                8

     See also: boxes3d, boundingBox3d.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
Volume of a 3-dimensional box



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
boxes3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 455
 -- Function File: boxes3d ()
     BOXES3D Description of functions operating on 3D boxes

     A box defined by its coordinate extents: BOX = [XMIN XMAX YMIN YMAX
     ZMIN ZMAX].

     Example # Draw a polyhedron together with its bounding box [n e f]=
     createIcosahedron; drawPolyhedron(n, f); hold on;
     drawBox3d(point3dBounds(n))

     See also: point3dBounds, box3dVolume, drawBox3d intersectBoxes3d,
     mergeBoxes3d, randomPointInBox3d.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
BOXES3D Description of functions operating on 3D boxes



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
cart2cyl


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 761
 -- Function File: CYL = cart2cyl (POINT)
 -- Function File: CYL = cart2cyl (X, Y, Z)
     Convert cartesian to cylindrical coordinates

     CYL = cart2cyl(POINT) convert the 3D cartesian coordinates of
     points POINT (given by [X Y Z] where X, Y, Z have the same size)
     into cylindrical coordinates CYL, given by [THETA R Z]. THETA is
     the arctangent of the ratio Y/X (between 0 and 2*PI) R can be
     computed using sqrt(X^2+Y^2) Z keeps the same value.  The size of
     THETA, and R is the same as the size of X, Y and Z.

     CYL = cart2cyl(X, Y, Z) provides coordinates as 3 different
     parameters

     Example
            cart2cyl([-1 0 2])
            gives : 4.7124    1.0000     2.0000

     See also: agles3d, cart2pol, cart2sph2.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Convert cartesian to cylindrical coordinates



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
cart2sph2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 858
 -- Function File: [THETA PHI RHO] = cart2sph2([ X Y Z])
 -- Function File: [THETA PHI RHO] = cart2sph2( X, Y, Z)
     Convert cartesian coordinates to spherical coordinates

     The following convention is used: THETA is the colatitude, in
     radians, 0 for north pole, +pi for south pole, pi/2 for points with
     z=0.  PHI is the azimuth, in radians, defined as matlab cart2sph:
     angle from Ox axis, counted counter-clockwise.  RHO is the distance
     of the point to the origin.  Discussion on choice for convention
     can be found at:
     <http://www.physics.oregonstate.edu/bridge/papers/spherical.pdf>

     Example:
            cart2sph2([1 0 0])  returns [pi/2 0 1];
            cart2sph2([1 1 0])  returns [pi/2 pi/4 sqrt(2)];
            cart2sph2([0 0 1])  returns [0 0 1];

     See also: angles3d, sph2cart2, cart2sph, cart2sph2d.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Convert cartesian coordinates to spherical coordinates



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
cart2sph2d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 960
 -- Function File: [THETA PHI RHO] = cart2sph2d (COORD)
 -- Function File: [...] = cart2sph2d (X,Y,Z)
     Convert cartesian coordinates to spherical coordinates in degrees

     The following convention is used: THETA is the colatitude, in
     degrees, 0 for north pole, 180 degrees for south pole, 90 degrees
     for points with z=0.  PHI is the azimuth, in degrees, defined as
     matlab cart2sph: angle from Ox axis, counted counter-clockwise.
     RHO is the distance of the point to the origin.  Discussion on
     choice for convention can be found at:
     <http://www.physics.oregonstate.edu/bridge/papers/spherical.pdf>

     Example:
              cart2sph2d([1 0 0])
              ans =
                90   0   1

              cart2sph2d([1 1 0])
              ans =
                90   45   1.4142

              cart2sph2d([0 0 1])
              ans =
                0    0    1

     See also: angles3d, sph2cart2d, cart2sph, cart2sph2.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Convert cartesian coordinates to spherical coordinates in degrees



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
circle3dOrigin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 327
 -- Function File: P = circle3dOrigin([ XC YC ZC R THETA PHI])
 -- Function File: P = circle3dOrigin([ XC YC ZC R THETA PHI PSI])
     Return the first point of a 3D circle

     Returns the origin point of the circle, i.e.  the first point used
     for drawing circle.

     See also: circles3d, points3d, circle3dPosition.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Return the first point of a 3D circle



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
circle3dPoint


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 661
 -- Function File: POINT = circle3dPoint (CIRCLE,POS)
     Coordinates of a point on a 3D circle from its position

     Example
            circle = [0 0 0 1 45 45 0];
            # Draw some points on a 3D circle
              figure; hold on;
              # origin point
              pos1 = 0;
              drawPoint3d(circle3dPoint(circle, pos1), 'ro')
              # few points regularly spaced
              for i = 10:10:40
                  drawPoint3d(circle3dPoint(circle, i))
              end
              # Draw point opposite to origin
              drawPoint3d(circle3dPoint(circle, 180), 'k*')

     See also: circles3d, circle3dPosition.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Coordinates of a point on a 3D circle from its position



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
circle3dPosition


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 415
 -- Function File: POS = circle3dPosition( POINT, CIRCLE)
     Return the angular position of a point on a 3D circle

     Returns angular position of point on the circle, in degrees,
     between 0 and 360.  with POINT: [xp yp zp] and CIRCLE: [X0 Y0 Z0 R
     THETA PHI] or [X0 Y0 Z0 R THETA PHI PSI] (THETA being the
     colatitude, and PHI the azimut)

     See also: circles3d, circle3dOrigin, circle3dPoint.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Return the angular position of a point on a 3D circle



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
circles3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 703
 -- Function File: circles3d ()
     CIRCLES3D Description of functions operating on 3D circles

     Circles are represented by a center, a radius and a 3D angle
     representing the normal of the plane containing the circle. C = [xc
     yc zc R theta phi psi]. THETA is the colatitude of the normal, in
     degrees, between 0 and 180 PHI is the azimut of the normal, in
     degrees, between 0 and 360 PSI is the proper rotation of the circle
     around the normal, between 0 and 360 degrees The parameter PSI is
     used to locate a point on the 3D circle.

     See also: circle3dOrigin, circle3dPosition, circle3dPoint,
     intersectPlaneSphere drawCircle3d, drawCircleArc3d, drawEllipse3d.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
CIRCLES3D Description of functions operating on 3D circles



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
createPlane


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1060
 -- Function File: PLANE = createPlane (PTS)
 -- Function File: PLANE = createPlane (P0, N)
 -- Function File: PLANE = createPlane (P1, P2, P3)
     Create a plane in parametrized form

     PLANE = createPlane(PTS) The 3 points are packed into a single 3x3
     array.

     PLANE = createPlane(P0, N); Creates a plane from a point and from a
     normal to the plane.  The parameter N is given either as a 3D
     vector (1-by-3 row vector), or as [THETA PHI], where THETA is the
     colatitute (angle with the vertical axis) and PHI is angle with Ox
     axis, counted counter-clockwise (both given in radians).

     PLANE = createPlane(P1, P2, P3) creates a plane containing the 3
     points

     The created plane data has the following format: PLANE = [X0 Y0 Z0
     DX1 DY1 DZ1 DX2 DY2 DZ2], with - (X0, Y0, Z0) is a point belonging
     to the plane - (DX1, DY1, DZ1) is a first direction vector - (DX2,
     DY2, DZ2) is a second direction vector The 2 direction vectors are
     normalized and orthogonal.

     See also: planes3d, medianPlane.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Create a plane in parametrized form



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
createRotationOx


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 943
 -- Function File: TRANS = createRotationOx (THETA)
 -- Function File: TRANS = createRotationOx (ORIGIN,THETA)
 -- Function File: TRANS = createRotationOx (X0,Y0,Z0,THETA)
     Create the 4x4 matrix of a 3D rotation around x-axis

     TRANS = createRotationOx(THETA); Returns the transform matrix
     corresponding to a rotation by the angle THETA (in radians) around
     the Ox axis.  A rotation by an angle of PI/2 would transform the
     vector [0 1 0] into the vector [0 0 1].

     The returned matrix has the form: [1 0 0 0] [0 cos(THETA)
     -sin(THETA) 0] [0 sin(THETA) cos(THETA) 0] [0 0 0 1]

     TRANS = createRotationOx(ORIGIN, THETA); TRANS =
     createRotationOx(X0, Y0, Z0, THETA); Also specifies origin of
     rotation.  The result is similar as performing translation(-X0,
     -Y0, -Z0), rotation, and translation(X0, Y0, Z0).

     See also: transforms3d, transformPoint3d, createRotationOy,
     createRotationOz.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Create the 4x4 matrix of a 3D rotation around x-axis



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
createRotationOy


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 943
 -- Function File: TRANS = createRotationOy (THETA)
 -- Function File: TRANS = createRotationOy (ORIGIN,THETA)
 -- Function File: TRANS = createRotationOy (X0,Y0,Z0,THETA)
     Create the 4x4 matrix of a 3D rotation around x-axis

     TRANS = createRotationOy(THETA); Returns the transform matrix
     corresponding to a rotation by the angle THETA (in radians) around
     the Oy axis.  A rotation by an angle of PI/2 would transform the
     vector [0 1 0] into the vector [0 0 1].

     The returned matrix has the form: [1 0 0 0] [0 cos(THETA)
     -sin(THETA) 0] [0 sin(THETA) cos(THETA) 0] [0 0 0 1]

     TRANS = createRotationOy(ORIGIN, THETA); TRANS =
     createRotationOy(X0, Y0, Z0, THETA); Also specifies origin of
     rotation.  The result is similar as performing translation(-X0,
     -Y0, -Z0), rotation, and translation(X0, Y0, Z0).

     See also: transforms3d, transformPoint3d, createRotationOx,
     createRotationOz.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Create the 4x4 matrix of a 3D rotation around x-axis



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
createRotationOz


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 943
 -- Function File: TRANS = createRotationOz (THETA)
 -- Function File: TRANS = createRotationOz (ORIGIN,THETA)
 -- Function File: TRANS = createRotationOz (X0,Y0,Z0,THETA)
     Create the 4x4 matrix of a 3D rotation around x-axis

     TRANS = createRotationOz(THETA); Returns the transform matrix
     corresponding to a rotation by the angle THETA (in radians) around
     the Oz axis.  A rotation by an angle of PI/2 would transform the
     vector [0 1 0] into the vector [0 0 1].

     The returned matrix has the form: [1 0 0 0] [0 cos(THETA)
     -sin(THETA) 0] [0 sin(THETA) cos(THETA) 0] [0 0 0 1]

     TRANS = createRotationOz(ORIGIN, THETA); TRANS =
     createRotationOz(X0, Y0, Z0, THETA); Also specifies origin of
     rotation.  The result is similar as performing translation(-X0,
     -Y0, -Z0), rotation, and translation(X0, Y0, Z0).

     See also: transforms3d, transformPoint3d, createRotationOx,
     createRotationOy.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Create the 4x4 matrix of a 3D rotation around x-axis



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
createScaling3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 751
 -- Function File: TRANS = createScaling3d (S)
 -- Function File: TRANS = createScaling3d (SX, SY, SZ)
     Create the 4x4 matrix of a 3D scaling

     TRANS = createScaling3d(S); returns the scaling transform
     corresponding to a scaling factor S in each direction.  S can be a
     scalar, or a 1x3 vector containing the scaling factor in each
     direction.

     TRANS = createScaling3d(SX, SY, SZ); returns the scaling transform
     corresponding to a different scaling factor in each direction.

     The returned matrix has the form :
     [SX 0 0 0] [ 0 SY 0 0] [ 0 0 SZ 0] [ 0 0 0 0]

     See also: transforms3d, transformPoint3d, transformVector3d,
     createTranslation3d, createRotationOx, createRotationOy,
     createRotationOz.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Create the 4x4 matrix of a 3D scaling



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
createTranslation3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 603
 -- Function File: = createTranslation3d (DX, DY, DZ)
 -- Function File: = createTranslation3d (VECT)
     Create the 4x4 matrix of a 3D translation

     usage: TRANS = createTranslation3d(DX, DY, DZ); return the
     translation corresponding to DX and DY. The returned matrix has the
     form : [1 0 0 DX] [0 1 0 DY] [0 0 1 DZ] [0 0 0 1]

     TRANS = createTranslation3d(VECT); return the translation
     corresponding to the given vector [x y z].

     See also: transforms3d, transformPoint3d, transformVector3d,
     createRotationOx, createRotationOy, createRotationOz,
     createScaling3d.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Create the 4x4 matrix of a 3D translation



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
cyl2cart


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 682
 -- Function File: CART = cyl2cart (CYL)
 -- Function File: CART = cyl2cart (THETA,R,Z)
     Convert cylindrical to cartesian coordinates

     CART = cyl2cart(CYL) convert the 3D cylindrical coordinates of
     points CYL (given by [THETA R Z] where THETA, R, and Z have the
     same size) into cartesian coordinates CART, given by [X Y Z]. The
     transforms is the following : X = R*cos(THETA); Y = R*sin(THETA); Z
     remains inchanged.

     CART = cyl2cart(THETA, R, Z) provides coordinates as 3 different
     parameters

     Example
            cyl2cart([-1 0 2])
            gives : 4.7124    1.0000     2.0000

     See also: angles3d, cart2pol, cart2sph2, cart2cyl.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Convert cylindrical to cartesian coordinates



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
distancePointLine3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 493
 -- Function File: D = distancePointLine3d (POINT, LINE)
     Euclidean distance between 3D point and line

     Returns the distance between point POINT and the line LINE, given
     as: POINT : [x0 y0 z0] LINE : [x0 y0 z0 dx dy dz] D : (positive)
     scalar

     Run 'demo distancePointLine3d' to see examples.

     References
     http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html

     See also: lines3d, distancePointLine, distancePointEdge3d,
     projPointOnLine3d.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Euclidean distance between 3D point and line



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
distancePoints


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 908
 -- Function File: D = distancePoints( P1, P2)
 -- Function File: D = distancePoints( P1, P2,NORM)
 -- Function File: D = distancePoints (..., 'diag')
     Compute euclidean distance between pairs of points in any dimension

     Return distance D between points P1 and P2, given as [X Y Z ...
     Wdim].

     If P1 and P2 are two arrays of points, result is a N1-by-N2 array
     containing distance between each point of P1 and each point of P2.

     D = distancePoints(P1, P2, NORM) with NORM being 1, 2, or Inf,
     corresponfing to the norm used.  Default is 2 (euclidean norm).  1
     correspond to manhattan (or taxi driver) distance and Inf to
     maximum difference in each coordinate.

     When 'diag' is given, computes only distances between 'P1(i,:)' and
     'P2(i,:)'.  In this case the numer of points in each array must be
     the same.

     See also: points3d, minDistancePoints.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
Compute euclidean distance between pairs of points in any dimension



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
drawAxis3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 506
 -- Function File: drawAxis3d ()
 -- Function File: drawAxis3d ( L,R)
     Draw a coordinate system and an origin

     Adds 3 cylinders to the current axis, corresponding to the
     directions of the 3 basis vectors Ox, Oy and Oz.  Ox vector is red,
     Oy vector is green, and Oz vector is blue.

     L specifies the length and R the radius of the cylinders
     representing the different axes.

     WARNING: This function doesn't work in gnuplot (as of version 4.2).

     See also: drawAxisCube.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Draw a coordinate system and an origin



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
drawBox3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 689
 -- Function File: drawBox3d ( BOX)
 -- Function File: drawBox3d ( ...,OPT)
     Draw a 3D box defined by coordinate extents

     Draw a box defined by its coordinate extents: BOX = [XMIN XMAX YMIN
     YMAX ZMIN ZMAX]. The function draws only the outline edges of the
     box.  Extra options OPT are passed to the function 'drawEdges3d'.

     Example
              # Draw bounding box of a cubeoctehedron
              [v e f] = createCubeOctahedron;
              box3d = boundingBox3d(v);
              figure; hold on;
              drawMesh(v, f);
              drawBox3d(box3d);
              axis([-2 2 -2 2 -2 2]);
              view(3)

     See also: boxes3d, boundingBox3d.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Draw a 3D box defined by coordinate extents



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
drawCircle3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1949
 -- Function File: H = drawCircle3d (CIRCLE2D, NORMAL)
 -- Function File: H = drawCircle3d (XC, YC, ZC, R, THETA, PHI, PSI)
     Draw a 3D circle

     Possible calls for the function: drawCircle3d([XC YC ZC R THETA
     PHI]) drawCircle3d([XC YC ZC R], [THETA PHI])

     where XC, YC, ZY are coordinates of circle center, R is the circle
     radius, PHI and THETA are 3D angles in degrees of the normal to the
     plane containing the circle: * THETA between 0 and 180 degrees,
     corresponding to the colatitude (angle with Oz axis).  * PHI
     between 0 and 360 degrees corresponding to the longitude (angle
     with Ox axis)

     drawCircle3d([XC YC ZC R THETA PHI PSI]) drawCircle3d([XC YC ZC R],
     [THETA PHI PSI]) drawCircle3d([XC YC ZC R], THETA, PHI)
     drawCircle3d([XC YC ZC], R, THETA, PHI) drawCircle3d([XC YC ZC R],
     THETA, PHI, PSI) drawCircle3d([XC YC ZC], R, THETA, PHI, PSI)
     drawCircle3d(XC, YC, ZC, R, THETA, PHI) drawCircle3d(XC, YC, ZC, R,
     THETA, PHI, PSI) Are other possible syntaxes for this function.

     H = drawCircle3d(...)  return handle on the created LINE object

     Example
              # display 3 mutually orthogonal 3D circles
              figure; hold on;
              drawCircle3d([10 20 30 50  0  0], 'LineWidth', 2, 'Color', 'b');
              drawCircle3d([10 20 30 50 90  0], 'LineWidth', 2, 'Color', 'r');
              drawCircle3d([10 20 30 50 90 90], 'LineWidth', 2, 'Color', 'g');
              axis equal;
              axis([-50 100 -50 100 -50 100]);
              view([-10 20])

              # Draw several circles at once
              center = [10 20 30];
              circ1 = [center 50  0  0];
              circ2 = [center 50 90  0];
              circ3 = [center 50 90 90];
              figure; hold on;
              drawCircle3d([circ1 ; circ2 ; circ3]);
              axis equal;

     See also: circles3d, drawCircleArc3d, drawEllipse3d, drawSphere.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
Draw a 3D circle



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
drawCircleArc3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 558
 -- Function File: drawCircleArc3d([ XC YC ZC R THETA PHI PSI START
          EXTENT])
     Draw a 3D circle arc

     [XC YC ZC] : coordinate of arc center R : arc radius [THETA PHI] :
     orientation of arc normal, in degrees (theta: 0->180).  PSI : roll
     of arc (rotation of circle origin) START : starting angle of arc,
     from arc origin, in degrees EXTENT : extent of circle arc, in
     degrees (can be negative)

     Drawing options can be specified, as for the plot command.

     See also: angles3, circles3d, drawCircle3d, drawCircleArc.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
Draw a 3D circle arc



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
drawCube


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1186
 -- Function File: H = drawCube (CUBE)
 -- Function File: [X,Y,Z] = drawCube (CUBE)
     Draw a 3D centered cube, eventually rotated

     drawCube(CUBE) Displays a 3D cube on current axis.  CUBE is given
     by: [XC YC ZC SIDE THETA PHI PSI] where (XC, YC, ZC) is the CUBE
     center, SIDE is the length of the cube main sides, and THETA PHI
     PSI are angles representing the cube orientation, in degrees.
     THETA is the colatitude of the cube, between 0 and 90 degrees, PHI
     is the longitude, and PSI is the rotation angle around the axis of
     the normal.

     CUBE can be axis aligned, in this case it should only contain
     center and side information: CUBE = [XC YC ZC SIDE]

     The function drawCuboid is closely related, but uses a different
     angle convention, and allows for different sizes along directions.

     Example
            # Draw a cube with small rotations
              figure; hold on;
              drawCube([10 20 30  50  10 20 30], 'FaceColor', 'g');
              axis equal;
              view(3);

     WARNING: This function doesn't work in gnuplot (as of version 4.2).

     See also: meshes3d, polyhedra, createCube, drawCuboid.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Draw a 3D centered cube, eventually rotated



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
drawCylinder


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1234
 -- Function File: H = drawCylinder (CYL)
 -- Function File: H = drawCylinder (CYL,N)
 -- Function File: H = drawCylinder (..., OPT)
 -- Function File: H = drawCylinder (..., "Facecolor",COLOR)
 -- Function File: H = drawCylinder (...)
     Draw a cylinder

     drawCylinder(CYL) where CYL is a cylinder defined by [x1 y1 z1 x2
     y2 z2 r]: [x1 y2 z1] are coordinates of starting point, [x2 y2 z2]
     are coordinates of ending point, and R is the radius of the
     cylinder, draws the corresponding cylinder on the current axis.

     drawCylinder(CYL, N) uses N points for discretisation of angle.
     Default value is 32.

     drawCylinder(..., OPT) with OPT = 'open' (default) or 'closed',
     specify if bases of the cylinder should be drawn.

     drawCylinder(..., "FaceColor", COLOR) Specifies the color of the
     cylinder.  Any couple of parameters name and value can be given as
     argument, and will be transfered to the 'surf' matlab function

     H = drawCylinder(...)  returns a handle to the patch representing
     the cylinder.

     Run 'demo drawCylinder' to see several examples.

     WARNING: This function doesn't work in gnuplot (as of version 4.2).

     See also: drawSphere, drawLine3d, surf.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
Draw a cylinder



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
drawEdge3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 199
 -- Function File: H = drawEdge (EDGE)
     Draw 3D edge in the current Window

     draw the edge EDGE on the current axis.  EDGE has the form: [x1 y1
     z1 x2 y2 z2].  No clipping is performed.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Draw 3D edge in the current Window



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
drawPoint3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 632
 -- Function File: H = drawPoint3d (X, Y, Z)
 -- Function File: H = drawPoint3d (COORD)
 -- Function File: H = drawPoint3d (...)
     Draw 3D point on the current axis.

     drawPoint3d(X, Y, Z) will draw points defined by coordinates X and
     Y. X and Y are N*1 array, with N being number of points to be
     drawn.

     drawPoint3d(COORD) packs coordinates in a single [N*3] array.

     drawPoint3d(..., OPT) will draw each point with given option.  OPT
     is a string compatible with 'plot' model.

     H = drawPoint3d(...) Also return a handle to each of the drawn
     points.

     See also: points3d, clipPoints3d.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Draw 3D point on the current axis.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
drawPolygon3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 611
 -- Function File: H = drawPolygon3d (POLY)
 -- Function File: H = drawPolygon3d (PX,PY,PZ)
 -- Function File: H = drawPolygon3d (...,PARAM,VALUE)
     Draw a 3D polygon specified by a list of vertices

     drawPolygon3d(POLY); packs coordinates in a single N-by-3 array.

     drawPolygon3d(PX, PY, PZ); specifies coordinates in separate
     arrays.

     drawPolygon3d(..., PARAM, VALUE); Specifies style options to draw
     the polyline, see plot for details.

     H = drawPolygon3d(...); also return a handle to the list of line
     objects.

     See also: polygons3d, fillPolygon3d, drawPolyline3d.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Draw a 3D polygon specified by a list of vertices



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
drawPolyline3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 868
 -- Function File: H = drawPolyline3d (POLY)
 -- Function File: H = drawPolyline3d (PX,PY,PZ)
 -- Function File: H = drawPolyline3d (...,CLOSED)
 -- Function File: H = drawPolyline3d (...,PARAM,VALUE)
     Draw a 3D polyline specified by a list of vertices

     drawPolyline3d(POLY); packs coordinates in a single N-by-3 array.

     drawPolyline3d(PX, PY, PZ); specify coordinates in separate arrays.

     drawPolyline3d(..., CLOSED); Specifies if the polyline is closed or
     open.  CLOSED can be one of: - 'closed' - 'open' (the default) - a
     boolean variable with value TRUE for closed polylines.

     drawPolyline3d(..., PARAM, VALUE); Specifies style options to draw
     the polyline, see plot for details.

     H = drawPolyline3d(...); also return a handle to the list of line
     objects.

     See also: polygons3d, drawPolygon3d, fillPolygon3d.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Draw a 3D polyline specified by a list of vertices



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
drawSphere


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1090
 -- Function File: = function_name (, )
     Draw a sphere as a mesh

     drawSphere(SPHERE) Where SPHERE = [XC YC ZC R], draw the sphere
     centered on the point with coordinates [XC YC ZC] and with radius
     R, using a quad mesh.

     drawSphere(CENTER, R) Where CENTER = [XC YC ZC], specifies the
     center and the radius with two arguments.

     drawSphere(XC, YC, ZC, R) Specifiy sphere center and radius as four
     arguments.

     drawSphere(..., NAME, VALUE); Specifies one or several options
     using parameter name-value pairs.  Available options are usual
     drawing options, as well as: 'nPhi' the number of arcs used for
     drawing the meridians 'nTheta' the number of circles used for
     drawing the parallels

     H = drawSphere(...)  Return a handle to the graphical object
     created by the function.

     [X Y Z] = drawSphere(...)  Return the coordinates of the vertices
     used by the sphere.  In this case, the sphere is not drawn.

     Run 'demo drawSphere' to see several examples.

     See also: spheres, circles3d, sphere, drawEllipsoid.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Draw a sphere as a mesh



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
drawSphericalEdge


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 319
 -- Function File: drawSphericalEdge ( SPHERE, EDGE)
     Draw an edge on the surface of a sphere

     EDGE is given as a couple of 3D corodinates corresponding to edge
     extremities.  The shortest spherical edge joining the two
     extremities is drawn on the current axes.

     See also: drawSphericalPolygon.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Draw an edge on the surface of a sphere



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
drawSphericalPolygon


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 88
 -- Function File: = drawSphericalPolygon (SPHERE, POLY)
     Draw a spherical polygon




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Draw a spherical polygon



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
drawSphericalTriangle


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 163
 -- Function File: H = function_name (SPHERE, P1,P2,P3)
     Draw a triangle on a sphere

     See also: drawSphere, fillSphericalTriangle, drawSphericalPolygon.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
Draw a triangle on a sphere



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
drawTorus


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 529
 -- Function File: drawTorus (TORUS)
     Draw a torus (3D ring)

     drawTorus(TORUS) Draws the torus on the current axis.  TORUS is
     given by [XC YC ZY R1 R2 THETA PHI] where (XC YZ ZC) is the center
     of the torus, R1 is the main radius, R2 is the radius of the torus
     section, and (THETA PHI) is the angle of the torus normal vector
     (both in degrees).

     Example
            figure;
            drawTorus([50 50 50 30 10 30 45]);
            axis equal;

     See also: drawEllipsoid, revolutionSurface.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Draw a torus (3D ring)



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
drawVector3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 318
 -- Function File: H = function_name (POS, VECT)
     Draw vector at a given position

     Example
              figure; hold on;
              drawVector3d([2 3 4], [1 0 0]);
              drawVector3d([2 3 4], [0 1 0]);
              drawVector3d([2 3 4], [0 0 1]);
              view(3);

     See also: quiver3.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Draw vector at a given position



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
geom3d_Contents


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9111
 -- Function File: geom3d_Contents ()
     GEOM3D Geometry 3D Toolbox Version 1.0 21-Mar-2011 .

     Creation, transformations, algorithms and visualization of
     geometrical 3D primitives, such as points, lines, planes,
     polyhedra, circles and spheres.

     Euler Angles are defined as follow: PHI is the azimut, i.e.  the
     angle of the projection on horizontal plane with the Ox axis, with
     value beween 0 and 180 degrees.  THETA is the latitude, i.e.  the
     angle with the Oz axis, with value between -90 and +90 degrees.
     PSI is the 'roll', i.e.  the rotation around the (PHI, THETA)
     direction, with value in degrees See also the 'angles3d' page.

     Base format for primitives: Point: [x0 y0 z0] Vector: [dx dy dz]
     Line: [x0 y0 z0 dx dy dz] Edge: [x1 y1 z1 x2 y2 z2] Plane: [x0 y0
     z0 dx1 dy1 dz1 dx2 dy2 dz2] Sphere: [x0 y0 z0 R] Circle: [x0 y0 z0
     R PHI THETA PSI] (origin+center+normal+'roll').  Cylinder: [X1 Y1
     Z1 X2 Y2 Z2 R] Box: [xmin xmax ymin ymax zmin zmax].  Used for
     clipping shapes.

     Polygons are represented by N-by-3 array of points, the last point
     is not necessarily the same as the first one.  Points must be
     coplanar.

     Meshes and Polyhedra are represented by a couple of variables {V,
     F}: V: N-by-3 array of vetrtices: [x1 y1 z1; ...  ;xn yn zn]; F: is
     either a [Nf*3] or [Nf*4] array containing reference for vertices
     of each face, or a [Nf*1] cell array, where each cell is an array
     containing a variable number of node indices.  For some functions,
     the array E of edges is needed.  It consists in a Ne-by-2 array
     containing indices of source and target vertices.

     3D Points points3d - Description of functions operating on 3D
     points midPoint3d - Middle point of two 3D points or of a 3D edge
     isCoplanar - Tests input points for coplanarity in 3-space.
     transformPoint3d - Transform a point with a 3D affine transform
     distancePoints - Compute euclidean distance between pairs of 3D
     Points clipPoints3d - Clip a set of points by a box drawPoint3d -
     Draw 3D point on the current axis.

     3D Vectors vectors3d - Description of functions operating on 3D
     vectors transformVector3d - Transform a vector with a 3D affine
     transform normalizeVector3d - Normalize a 3D vector to have norm
     equal to 1 vectorNorm3d - Norm of a 3D vector or of set of 3D
     vectors vectorAngle3d - Angle between two 3D vectors isParallel3d -
     Check parallelism of two 3D vectors isPerpendicular3d - Check
     orthogonality of two 3D vectors

     Angles angles3d - Conventions for manipulating angles in 3D
     anglePoints3d - Compute angle between three 3D points
     sphericalAngle - Compute angle between points on the sphere
     angleSort3d - Sort 3D coplanar points according to their angles in
     plane randomAngle3d - Return a 3D angle uniformly distributed on
     unit sphere

     Coordinate transforms sph2cart2 - Convert spherical coordinates to
     cartesian coordinates cart2sph2 - Convert cartesian coordinates to
     spherical coordinates cart2sph2d - Convert cartesian coordinates to
     spherical coordinates in degrees sph2cart2d - Convert spherical
     coordinates to cartesian coordinates in degrees cart2cyl - Convert
     cartesian to cylindrical coordinates cyl2cart - Convert cylindrical
     to cartesian coordinates

     3D Lines and Edges lines3d - Description of functions operating on
     3D lines createLine3d - Create a line with various inputs.
     transformLine3d - Transform a 3D line with a 3D affine transform
     clipLine3d - Clip a line with a box and return an edge midPoint3d -
     Middle point of two 3D points or of a 3D edge distancePointLine3d -
     Euclidean distance between 3D point and line distanceLines3d -
     Minimal distance between two 3D lines linePosition3d - Return the
     position of a 3D point on a 3D line drawEdge3d - Draw 3D edge in
     the current Window drawLine3d - Draw a 3D line on the current axis

     Planes planes3d - Description of functions operating on 3D planes
     createPlane - Create a plane in parametrized form normalizePlane -
     Normalize parametric representation of a plane intersectPlanes -
     Return intersection line between 2 planes in space
     intersectLinePlane - Return intersection point between a plane and
     a line intersectEdgePlane - Return intersection point between a
     plane and a edge distancePointPlane - Signed distance betwen 3D
     point and plane projPointOnPlane - Return the orthogonal projection
     of a point on a plane isBelowPlane - Test whether a point is below
     or above a plane medianPlane - Create a plane in the middle of 2
     points planeNormal - Compute the normal to a plane planePosition -
     Compute position of a point on a plane planePoint - Compute 3D
     position of a point in a plane dihedralAngle - Compute dihedral
     angle between 2 planes drawPlane3d - Draw a plane clipped in the
     current window

     3D Polygons and curves polygons3d - Description of functions
     operating on 3D polygons polygonCentroid3d - Centroid (or center of
     mass) of a polygon triangleArea3d - Area of a 3D triangle
     polygon3dNormalAngle - Normal angle at a vertex of the 3D polygon
     intersectLinePolygon3d - Intersection point of a 3D line and a 3D
     polygon intersectLineTriangle3d - Intersection point of a 3D line
     and a 3D triangle intersectRayPolygon3d - Intersection point of a
     3D ray and a 3D polygon clipConvexPolygon3dHP - Clip a convex 3D
     polygon with Half-space drawPolygon3d - Draw a 3D polygon specified
     by a list of vertices drawPolyline3d - Draw a 3D polyline specified
     by a list of vertices fillPolygon3d - Fill a 3D polygon specified
     by a list of points

     3D circles and ellipses circles3d - Description of functions
     operating on 3D circles circle3dPosition - Return the angular
     position of a point on a 3D circle circle3dPoint - Coordinates of a
     point on a 3D circle from its position circle3dOrigin - Return the
     first point of a 3D circle drawCircle3d - Draw a 3D circle
     drawCircleArc3d - Draw a 3D circle arc drawEllipse3d - Draw a 3D
     ellipse

     Spheres spheres - Description of functions operating on 3D spheres
     createSphere - Create a sphere containing 4 points
     intersectLineSphere - Return intersection points between a line and
     a sphere intersectPlaneSphere - Return intersection circle between
     a plane and a sphere drawSphere - Draw a sphere as a mesh
     drawSphericalTriangle - Draw a triangle on a sphere

     Smooth surfaces inertiaEllipsoid - Inertia ellipsoid of a set of 3D
     points intersectLineCylinder - Compute intersection points between
     a line and a cylinder revolutionSurface - Create a surface of
     revolution from a planar curve surfaceCurvature - Curvature on a
     surface from angle and principal curvatures drawEllipsoid - Draw a
     3D ellipsoid drawTorus - Draw a torus (3D ring) drawCylinder - Draw
     a cylinder drawSurfPatch - Draw a 3D surface patch, with 2
     parametrized surfaces

     Bounding boxes management boxes3d - Description of functions
     operating on 3D boxes point3dBounds - Bounding box of a set of 3D
     points intersectBoxes3d - Intersection of two 3D bounding boxes
     mergeBoxes3d - Merge 3D boxes, by computing their greatest extent
     box3dVolume - Volume of a 3-dimensional box randomPointInBox3d -
     Generate random point(s) within a 3D box drawBox3d - Draw a 3D box
     defined by coordinate extents

     Geometric transforms transforms3d - Conventions for manipulating 3D
     affine transforms createTranslation3d - Create the 4x4 matrix of a
     3D translation createScaling3d - Create the 4x4 matrix of a 3D
     scaling createRotationOx - Create the 4x4 matrix of a 3D rotation
     around x-axis createRotationOy - Create the 4x4 matrix of a 3D
     rotation around y-axis createRotationOz - Create the 4x4 matrix of
     a 3D rotation around z-axis createBasisTransform3d - Compute matrix
     for transforming a basis into another basis eulerAnglesToRotation3d
     - Convert 3D Euler angles to 3D rotation matrix
     rotation3dToEulerAngles - Extract Euler angles from a rotation
     matrix createRotation3dLineAngle - Create rotation around a line by
     an angle theta rotation3dAxisAndAngle - Determine axis and angle of
     a 3D rotation matrix recenterTransform3d - Change the fixed point
     of an affine 3D transform composeTransforms3d - Concatenate several
     space transformations

     Various drawing Functions drawGrid3d - Draw a 3D grid on the
     current axis drawAxis3d - Draw a coordinate system and an origin
     drawAxisCube - Draw a colored cube representing axis orientation
     drawCube - Draw a 3D centered cube, eventually rotated drawCuboid -
     Draw a 3D cuboid, eventually rotated

     Credits: * function isCoplanar was originally written by Brett
     Shoelson.  * Songbai Ji enhanced file intersectPlaneLine
     (6/23/2006).




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
GEOM3D Geometry 3D Toolbox Version 1.0 21-Mar-2011 .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
intersectLinePlane


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1255
 -- Function File: PT = intersectLinePlane (LINE, PLANE)
 -- Function File: PT = intersectLinePlane (..., TOL)
     Intersection point between a 3D line and a plane

     PT = intersectLinePlane(LINE, PLANE) Returns the intersection point
     of the given line and the given plane.  LINE: [x0 y0 z0 dx dy dz]
     PLANE: [x0 y0 z0 dx1 dy1 dz1 dx2 dy2 dz2] PT: [xi yi zi] If LINE
     and PLANE are parallel, return [NaN NaN NaN]. If LINE (or PLANE) is
     a matrix with 6 (or 9) columns and N rows, result is an array of
     points with N rows and 3 columns.

     PT = intersectLinePlane(LINE, PLANE, TOL) Specifies the tolerance
     factor to test if a line is parallel to a plane.  Default is 1e-14.

     Example
              # define horizontal plane through origin
              plane = [0 0 0   1 0 0   0 1 0];
              # intersection with a vertical line
              line = [2 3 4  0 0 1];
              intersectLinePlane(line, plane)
              ans =
                 2   3   0
              # intersection with a line "parallel" to plane
              line = [2 3 4  1 2 0];
              intersectLinePlane(line, plane)
              ans =
                NaN  NaN  NaN

     See also: lines3d, planes3d, points3d, clipLine3d.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Intersection point between a 3D line and a plane



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
intersectPlaneSphere


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 978
 -- Function File: CIRC = intersectPlaneSphere( PLANE, SPHERE)
     Return intersection circle between a plane and a sphere

     Returns the circle which is the intersection of the given plane and
     sphere.  PLANE : [x0 y0 z0 dx1 dy1 dz1 dx2 dy2 dz2] SPHERE : [XS YS
     ZS RS] CIRC : [XC YC ZC RC THETA PHI PSI] [x0 y0 z0] is the origin
     of the plane, [dx1 dy1 dz1] and [dx2 dy2 dz2] are two direction
     vectors, [XS YS ZS] are coordinates of the sphere center, RS is the
     sphere radius, [XC YC ZC] are coordinates of the circle center, RC
     is the radius of the circle, [THETA PHI] is the normal of the plane
     containing the circle (THETA being the colatitude, and PHI the
     azimut), and PSI is a rotation angle around the normal (equal to
     zero in this function, but kept for compatibility with other
     functions).  All angles are given in degrees.

     See also: planes3d, spheres, circles3d, intersectLinePlane,
     intersectLineSphere.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Return intersection circle between a plane and a sphere



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
lines3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 369
 -- Function File: lines3d ()
     LINES3D Description of functions operating on 3D lines

     A 3D Line is represented by a 3D point (its origin) and a 3D vector
     (its direction): LINE = [X0 Y0 Z0 DX DY DZ];

     See also: createLine3d, transformLine3d, distancePointLine3d,
     linePosition3d intersectLinePlane, distanceLines3d, clipLine3d,
     drawLine3d.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
LINES3D Description of functions operating on 3D lines



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
normalizePlane


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 672
 -- Function File: PLANE2 = normalizePlane (PLANE1)
     Normalize parametric representation of a plane

     PLANE2 = normalizePlane(PLANE1); Transforms the plane PLANE1 in the
     following format: [X0 Y0 Z0 DX1 DY1 DZ1 DX2 DY2 DZ2], where: - (X0,
     Y0, Z0) is a point belonging to the plane - (DX1, DY1, DZ1) is a
     first direction vector - (DX2, DY2, DZ2) is a second direction
     vector into another plane, with the same format, but with: - (x0 y0
     z0) is the closest point of plane to the origin - (DX1 DY1 DZ1) has
     norm equal to 1 - (DX2 DY2 DZ2) has norm equal to 1 and is
     orthogonal to (DX1 DY1 DZ1)

     See also: planes3d, createPlane.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Normalize parametric representation of a plane



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
planeNormal


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 248
 -- Function File: N = planeNormal (PLANE)
     Compute the normal to a plane

     N = planeNormal(PLANE) compute the normal of the given plane PLANE
     : [x0 y0 z0 dx1 dy1 dz1 dx2 dy2 dz2] N : [dx dy dz]

     See also: planes3d, createPlane.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
Compute the normal to a plane



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
planePosition


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 631
 -- Function File: PT2 = planePosition (POINT, PLANE)
     Compute position of a point on a plane

     PT2 = planePosition(POINT, PLANE) POINT has format [X Y Z], and
     plane has format [X0 Y0 Z0 DX1 DY1 DZ1 DX2 DY2 DZ2], where : - (X0,
     Y0, Z0) is a point belonging to the plane - (DX1, DY1, DZ1) is a
     first direction vector - (DX2, DY2, DZ2) is a second direction
     vector

     Result PT2 has the form [XP YP], with [XP YP] coordinate of the
     point in the coordinate system of the plane.

     CAUTION: WORKS ONLY FOR PLANES WITH ORTHOGONAL DIRECTION VECTORS

     See also: planes3d, points3d, planePoint.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Compute position of a point on a plane



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
planes3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 503
 -- Function File: planes3d ()
     PLANES3D Description of functions operating on 3D planes

     Planes are represented by a 3D point (the plane origin) and 2
     direction vectors, which should not be colinear. PLANE = [X0 Y0 Z0
     DX1 DY1 DZ1 DX2 DY2 DZ2];

     See also: createPlane, medianPlane, normalizePlane, planeNormal,
     planePosition, dihedralAngle, intersectPlanes, projPointOnPlane,
     isBelowPlane, intersectLinePlane, intersectEdgePlane,
     distancePointPlane, drawPlane3d.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
PLANES3D Description of functions operating on 3D planes



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
points3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 417
 -- Function File: points3d ()
     POINTS3D Description of functions operating on 3D points

     Points are represented by their 3 Cartesian coordinates: P = [X Y
     Z];

     Arrays of points consist in N*3 arrays, each row being a point.

     See also: isCoplanar, distancePoints, anglePoints3d, angleSort3d,
     sphericalAngle, sph2cart2, cart2sph2, cart2cyl, cyl2cart,
     transformPoint3d, clipPoints3d.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
POINTS3D Description of functions operating on 3D points



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
polygonArea3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 387
 -- Function File: AREA = polygonArea3d( POLY)
     Area of a 3D polygon

     POLY is given as a N-by-3 array of vertex coordinates.  The
     resulting area is positive.

     Example
          poly = [10 30 20;20 30 20;20 40 20;10 40 20];
          polygonArea3d(poly)
          ans =
             100

     See also: polygons3d, triangleArea3d, polygonArea,
     polygonCentroid3d.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
Area of a 3D polygon



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
polygons3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 576
 -- Function File: polygons3d ()
     POLYGONS3D Description of functions operating on 3D polygons

     A 3D polygon is simply a set of 3D points (called vertices) which
     are assumed to be located in the same plane. Several functions are
     provided for computing basic geometrical parameters (centroid,
     angles), or intersections with lines or planes.

     See also: polygon3dNormalAngle, polygonCentroid3d,
     clipConvexPolygon3dHP intersectLinePolygon3d,
     intersectLineTriangle3d, intersectRayPolygon3d drawPolygon3d,
     drawPolyline3d, fillPolygon3d.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
POLYGONS3D Description of functions operating on 3D polygons



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
projPointOnPlane


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 617
 -- Function File: PT2 = projPointOnPlane (PT1, PLANE)
     Return the orthogonal projection of a point on a plane

     PT2 = projPointOnPlane(PT1, PLANE); Compute the (orthogonal)
     projection of point PT1 onto the line PLANE.

     Function works also for multiple points and planes.  In this case,
     it returns multiple points.  Point PT1 is a [N*3] array, and PLANE
     is a [N*9] array (see createPlane for details).  Result PT2 is a
     [N*3] array, containing coordinates of orthogonal projections of
     PT1 onto planes PLANE.

     See also: planes3d, points3d, planePosition, intersectLinePlane.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Return the orthogonal projection of a point on a plane



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
revolutionSurface


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1823
 -- Function File: [X, Y, Z] = revolutionSurface (C1, C2, N)
 -- Function File: [X, Y, Z] = revolutionSurface (CURVE, N)
 -- Function File: [X, Y, Z] = revolutionSurface (..., THETA)
 -- Function File: [X, Y, Z] = revolutionSurface (..., LINE)
     Create a surface of revolution from a planar curve

     usage [X Y Z] = revolutionSurface(C1, C2, N); create the surface of
     revolution of parametrized function (xt, yt), with N+1 equally
     spaced slices, around the Oz axis.  It assumed that C1 corresponds
     to the x coordinate, and that C2 corresponds to the Oz coordinate.

     [X Y Z] = revolutionSurface(CURVE, N); is the same, but generating
     curve is given in a single parameter CURVE, which is a [Nx2] array
     of 2D points.

     [X Y Z] = revolutionSurface(..., THETA) where THETA is a vector,
     uses values of THETA for computing revolution angles.

     [X Y Z] = revolutionSurface(..., LINE); where LINE is a 1x4 array,
     specifes the revolution axis in the coordinate system of the curve.
     LINE is a row vector of 4 parameters, containing [x0 y0 dx dy],
     where (x0,y0) is the origin of the line and (dx,dy) is a direction
     vector of the line.  The resulting revolution surface still has Oz
     axis as symmetry axis.  It can be transformed using
     transformPoint3d function.  Surface can be displayed using : 'H =
     surf(X, Y, Z);' H is a handle to the created patch.

     revolutionSurface(...); by itself, directly shows the created
     patch.

     Example
            # draws a piece of torus
            circle = circleAsPolygon([10 0 3], 50);
            [x y z] = revolutionSurface(circle, linspace(0, 4*pi/3, 50));
            surf(x, y, z);
            axis square equal;

     See also: surf, transformPoint3d, drawSphere, drawTorus,
     drawEllipsoid.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Create a surface of revolution from a planar curve



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
sph2cart2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 976
 -- Function File: C = sph2cart2 (S)
 -- Function File: C = sph2cart2 (THETA, PHI)
 -- Function File: C = sph2cart2 (THETA, PHI, RHO)
 -- Function File: [X Y Z]= sph2cart2 (...)
     Convert spherical coordinates to cartesian coordinates

     C = SPH2CART2(S) C = SPH2CART2(THETA, PHI) (assume rho = 1) C =
     SPH2CART2(THETA, PHI, RHO) [X, Y, Z] = SPH2CART2(THETA, PHI, RHO);

     S = [phi theta rho] (spherical coordinate).  C = [X Y Z] (cartesian
     coordinate)

     The following convention is used: THETA is the colatitude, in
     radians, 0 for north pole, +pi for south pole, pi/2 for points with
     z=0.  PHI is the azimuth, in radians, defined as matlab cart2sph:
     angle from Ox axis, counted counter-clockwise.  RHO is the distance
     of the point to the origin.  Discussion on choice for convention
     can be found at:
     http://www.physics.oregonstate.edu/bridge/papers/spherical.pdf

     See also: angles3d, cart2sph2, sph2cart, sph2cart2d.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Convert spherical coordinates to cartesian coordinates



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
sph2cart2d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 920
 -- Function File: C = sph2cart2d( THETA, PHI, RHO)
 -- Function File: C = sph2cart2d( THETA, PHI)
 -- Function File: C = sph2cart2d( S)
 -- Function File: [X,Y,Z] = sph2cart2d( THETA, PHI, RHO)
     Convert spherical coordinates to cartesian coordinates in degrees

     C = SPH2CART2(THETA, PHI) assumes RHO = 1.

     S = [THETA, PHI, RHO] (spherical coordinate).  C = [X,Y,Z]
     (cartesian coordinate)

     The following convention is used: THETA is the colatitude, in
     degrees, 0 for north pole, +180 degrees for south pole, +90 degrees
     for points with z=0.  PHI is the azimuth, in degrees, defined as
     matlab cart2sph: angle from Ox axis, counted counter-clockwise.
     RHO is the distance of the point to the origin.  Discussion on
     choice for convention can be found at:
     <http://www.physics.oregonstate.edu/bridge/papers/spherical.pdf>

     See also: angles3d, cart2sph2d, sph2cart2.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Convert spherical coordinates to cartesian coordinates in degrees



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
spheres


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 688
 -- Function File: spheres ()
     Description of functions operating on 3D spheres

     Spheres are represented by their center and their radius: S = [xc
     yc zc r];

     An ellipsoid is defined by: ELL = [XC YC ZC A B C PHI THETA PSI]
     where [XC YC ZY] is the center, [A B C] are length of semi-axes (in
     decreasing order), and [PHI THETA PSI] are euler angles
     representing the ellipsoid orientation.

     See also: createSphere, inertiaEllipsoid, intersectLineSphere,
     intersectPlaneSphere, sphericalVoronoiDomain, drawSphere,
     drawEllipsoid, drawSphericalEdge, drawSphericalTriangle,
     drawSphericalPolygon, fillSphericalTriangle, fillSphericalPolygon.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Description of functions operating on 3D spheres



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
transformPoint3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1319
 -- Function File: PT2 = transformPoint3d (PT1, TRANS)
 -- Function File: PT2 = transformPoint3d (X1,Y1,Z1, TRANS)
 -- Function File: [X2,Y2,Z2] = transformPoint3d (...)
     Transform a point with a 3D affine transform

     PT2 = transformPoint3d(PT1, TRANS); PT2 = transformPoint3d(X1, Y1,
     Z1, TRANS); where PT1 has the form [xp yp zp], and TRANS is a
     [3x3], [3x4], [4x4] matrix, return the point transformed according
     to the affine transform specified by TRANS.

     Format of TRANS is a 4-by-4 matrix.

     The function accepts transforms given using the following formats:
     [a b c] , [a b c j] , or [a b c j] [d e f] [d e f k] [d e f k] [g h
     i] [g h i l] [g h i l] [0 0 0 1]

     PT2 = transformPoint3d(PT1, TRANS) also work when PT1 is a
     [Nx3xMxPxETC] array of double.  In this case, PT2 has the same size
     as PT1.

     PT2 = transformPoint3d(X1, Y1, Z1, TRANS); also work when X1, Y1
     and Z1 are 3 arrays with the same size.  In this case, PT2 will be
     a 1-by-3 cell containing {X Y Z} outputs of size(X1).

     [X2 Y2 Z2] = transformPoint3d(...); returns the result in 3
     different arrays the same size as the input.  This form can be
     useful when used with functions like meshgrid or warp.

     See also: points3d, transforms3d, translation3d,meshgrid.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Transform a point with a 3D affine transform



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
vectorAngle3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 477
 -- Function File: THETA = vectorAngle3d (V1, V2)
     Angle between two 3D vectors

     THETA = vectorAngle3d(V1, V2) Computes the angle between the 2 3D
     vectors V1 and V2.  The result THETA is given in radians, between 0
     and PI.

     Example # angle between 2 orthogonal vectors vectorAngle3d([1 0 0],
     [0 1 0]) ans = 1.5708

     # angle between 2 parallel vectors v0 = [3 4 5];
     vectorAngle3d(3*v0, 5*v0) ans = 0

     See also: vectors3d, vectorNorm.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
Angle between two 3D vectors



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
vectors3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 408
 -- Function File: vectors3d ()
     VECTORS3D Description of functions operating on 3D vectors

     Vectors are represented by their 3 Cartesian coordinates: V = [VX
     VY VZ];

     List of vectors are represented by N*3 arrays, with the coordinates
     of each vector on a row.

     See also: vectorNorm3d, normalizeVector3d, vectorAngle3d
     isParallel3d, isPerpendicular3d, createTranslation3d.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
VECTORS3D Description of functions operating on 3D vectors