This file is indexed.

/usr/share/octave/packages/control-2.6.2/sigma.m is in octave-control 2.6.2-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
## Copyright (C) 2009-2014   Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope.  If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {} sigma (@var{sys})
## @deftypefnx {Function File} {} sigma (@var{sys1}, @var{sys2}, @dots{}, @var{sysN})
## @deftypefnx {Function File} {} sigma (@var{sys1}, @var{sys2}, @dots{}, @var{sysN}, @var{w})
## @deftypefnx {Function File} {} sigma (@var{sys1}, @var{'style1'}, @dots{}, @var{sysN}, @var{'styleN'})
## @deftypefnx{Function File} {[@var{sv}, @var{w}] =} sigma (@var{sys})
## @deftypefnx{Function File} {[@var{sv}, @var{w}] =} sigma (@var{sys}, @var{w})
## Singular values of frequency response.  If no output arguments are given,
## the singular value plot is printed on the screen.
##
## @strong{Inputs}
## @table @var
## @item sys
## @acronym{LTI} system.  Multiple inputs and/or outputs (MIMO systems) make practical sense.
## @item w
## Optional vector of frequency values.  If @var{w} is not specified,
## it is calculated by the zeros and poles of the system.
## Alternatively, the cell @code{@{wmin, wmax@}} specifies a frequency range,
## where @var{wmin} and @var{wmax} denote minimum and maximum frequencies
## in rad/s.
## @item 'style'
## Line style and color, e.g. 'r' for a solid red line or '-.k' for a dash-dotted
## black line.  See @command{help plot} for details.
## @end table
##
## @strong{Outputs}
## @table @var
## @item sv
## Array of singular values.  For a system with m inputs and p outputs, the array sv
## has @code{min (m, p)} rows and as many columns as frequency points @code{length (w)}.
## The singular values at the frequency @code{w(k)} are given by @code{sv(:,k)}.
## @item w
## Vector of frequency values used.
## @end table
##
## @seealso{bodemag, svd}
## @end deftypefn

## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: May 2009
## Version: 0.7

function [sv_r, w_r] = sigma (varargin)

  if (nargin == 0)
    print_usage ();
  endif

  [H, w] = __frequency_response__ (varargin, true, "std", true);

  sv = cellfun (@(H) cellfun (@svd, H, "uniformoutput", false), H, "uniformoutput", false);
  sv = cellfun (@(sv) horzcat (sv{:}), sv, "uniformoutput", false);

  if (! nargout)  # plot the information

    ## convert to dB for plotting
    sv_db = cellfun (@(sv) 20 * log10 (sv), sv, "uniformoutput", false);

    tmp = cellfun (@isa, varargin, {"lti"});
    sys_idx = find (tmp);
    tmp = cellfun (@ischar, varargin);
    style_idx = find (tmp);

    len = numel (H);  
    plot_args = {};
    legend_args = cell (len, 1);
    colororder = get (gca, "colororder");
    rc = rows (colororder);

    for k = 1:len
      col = colororder(1+rem (k-1, rc), :);
      if (k == len)
        lim = nargin;
      else
        lim = sys_idx(k+1);
      endif
      style = varargin(style_idx(style_idx > sys_idx(k) & style_idx <= lim));
      if (isempty (style))
        plot_args = cat (2, plot_args, w(k), sv_db(k), {"-", "color", col});
      else
        plot_args = cat (2, plot_args, w(k), sv_db(k), style);
      endif
      try
        legend_args{k} = inputname(sys_idx(k));  # watch out for sigma (lticell{:})
      catch
        legend_args{k} = "";
      end_try_catch
    endfor

    ## adjust line colors in legend  
    idx = horzcat (1, cellfun (@rows, sv_db)(1:end-1));
    idx = cumsum (idx);

    ## plot results
    h = semilogx (plot_args{:});
    axis ("tight")
    ylim (__axis_margin__ (ylim))
    grid ("on")
    title ("Singular Values")
    xlabel ("Frequency [rad/s]")
    ylabel ("Singular Values [dB]")
    legend (h(idx), legend_args)
  else            # return values
    sv_r = sv{1};
    w_r = reshape (w{1}, [], 1);
  endif

endfunction


%!shared sv_exp, w_exp, sv_obs, w_obs
%! A = [1, 2; 3, 4];
%! B = [5, 6; 7, 8];
%! C = [4, 3; 2, 1];
%! D = [8, 7; 6, 5];
%! w = [2, 3, 4];
%! sv_exp = [7.9176, 8.6275, 9.4393;
%!           0.6985, 0.6086, 0.5195];
%! w_exp = [2; 3; 4];
%! [sv_obs, w_obs] = sigma (ss (A, B, C, D), w);
%!assert (sv_obs, sv_exp, 1e-4);
%!assert (w_obs, w_exp, 1e-4);