This file is indexed.

/usr/share/octave/packages/control-2.6.2/@tf/__sys2ss__.m is in octave-control 2.6.2-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
## Copyright (C) 2009-2014   Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope.  If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## TF to SS conversion.
## Reference:
## Varga, A.: Computation of irreducible generalized state-space realizations. 
## Kybernetika, 26:89-106, 1990

## Special thanks to Vasile Sima and Andras Varga for their advice.
## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: October 2009
## Version: 0.5

function [retsys, retlti] = __sys2ss__ (sys)

  ## TODO: determine appropriate tolerance from number of inputs
  ##       (since we multiply all denominators in a row), index, ...
  ##       default tolerance from TB01UD is TOLDEF = N*N*EPS 

  ## SECRET WISH: a routine which accepts individual denominators for
  ##              each channel and which supports descriptor systems

  [p, m] = size (sys);
  [num, den] = tfdata (sys);

  len_num = cellfun (@length, num);
  len_den = cellfun (@length, den);

  ## check for properness  
  ## tfpoly ensures that there are no leading zeros
  tmp = len_num > len_den;
  if (any (tmp(:)))       # non-proper transfer function
    ## separation into strictly proper and polynomial part
    [numq, numr] = cellfun (@deconv, num, den, "uniformoutput", false);
    numq = cellfun (@__remove_leading_zeros__, numq, "uniformoutput", false);
    numr = cellfun (@__remove_leading_zeros__, numr, "uniformoutput", false);

    ## minimal state-space realization for the proper part
    [a1, b1, c1] = __proper_tf2ss__ (numr, den, p, m);
    e1 = eye (size (a1));

    ## minimal realization for the polynomial part   
    [e2, a2, b2, c2] = __polynomial_tf2ss__ (numq, p, m);

    ## assemble irreducible descriptor realization
    e = blkdiag (e1, e2);
    a = blkdiag (a1, a2);
    b = vertcat (b1, b2);
    c = horzcat (c1, c2);
    retsys = dss (a, b, c, [], e);
  else                    # proper transfer function
    [a, b, c, d] = __proper_tf2ss__ (num, den, p, m);
    retsys = ss (a, b, c, d);
  endif

  retlti = sys.lti;       # preserve lti properties such as tsam

endfunction


## transfer function to state-space conversion for proper models
function [a, b, c, d] = __proper_tf2ss__ (num, den, p, m)

  ## new cells for the TF of same row denominators
  numc = cell (p, m);
  denc = cell (p, 1);

  ## set zero denominators to 1 for convolution
  zero_idx = cellfun (@(x) all (x == 0), den);
  den(zero_idx) = 1;
  
  ## multiply all denominators in a row and
  ## update each numerator accordingly
  ## except for single-input models and those
  ## with equal denominators in a row
  for i = 1 : p
    if (m == 1 || isequal (den{i,:}))
      denc(i) = den{i,1};
      numc(i,:) = num(i,:);
    else
      denc(i) = __conv__ (den{i,:});
      for j = 1 : m
        idx = setdiff (1:m, j);
        numc(i,j) = __conv__ (num{i,j}, den{i,idx});
      endfor
    endif
  endfor

  ## set numerators to zero if their denominators are zero
  numc(zero_idx) = 0;

  len_numc = cellfun (@length, numc);
  len_denc = cellfun (@length, denc);

  ## check for properness  
  ## tfpoly ensures that there are no leading zeros
  ## tmp = len_numc > repmat (len_denc, 1, m);
  ## if (any (tmp(:)))
  ##   error ("tf: tf2ss: system must be proper");
  ## endif

  ## create arrays and fill in the data
  ## in a way that Slicot TD04AD can use
  max_len_denc = max (len_denc(:));
  ucoeff = zeros (p, m, max_len_denc);
  dcoeff = zeros (p, max_len_denc);
  index = len_denc-1;

  for i = 1 : p
    len = len_denc(i);
    dcoeff(i, 1:len) = denc{i};
    for j = 1 : m
      ucoeff(i, j, len-len_numc(i,j)+1 : len) = numc{i,j};
    endfor
  endfor

  tol = min (sqrt (eps), eps*prod (index));
  [a, b, c, d] = __sl_td04ad__ (ucoeff, dcoeff, index, tol);
  
endfunction


## realization of the polynomial part according to Andras' paper
function [e2, a2, b2, c2] = __polynomial_tf2ss__ (numq, p, m)

  len_numq = cellfun (@length, numq);
  max_len_numq = max (len_numq(:));
  numq = cellfun (@(x) prepad (x, max_len_numq, 0, 2), numq, "uniformoutput", false);
  f = @(y) cellfun (@(x) x(y), numq);
  s = 1 : max_len_numq;
  D = arrayfun (f, s, "uniformoutput", false);

  e2 = diag (ones (p*(max_len_numq-1), 1), -p);
  a2 = eye (p*max_len_numq);
  b2 = vertcat (D{:});
  c2 = horzcat (zeros (p, p*(max_len_numq-1)), -eye (p));

  ## remove uncontrollable part
  [a2, e2, b2, c2] = __sl_tg01jd__ (a2, e2, b2, c2, 0.0, true, 1, 2);

endfunction


## convolution for more than two arguments
function vec = __conv__ (vec, varargin)

  if (nargin == 1)
    return;
  else
    for k = 1 : nargin-1
      vec = conv (vec, varargin{k});
    endfor
  endif

endfunction


## remove leading zeros from polynomial vector
function p = __remove_leading_zeros__ (p)

  idx = find (p != 0);

  if (isempty (idx))
    p = 0;
  else
    p = p(idx(1) : end);  # p(idx) would remove all zeros
  endif

endfunction