This file is indexed.

/usr/share/octave/packages/control-2.6.2/@lti/zero.m is in octave-control 2.6.2-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
## Copyright (C) 2009-2014   Lukas F. Reichlin
## Copyright (C) 2011        Ferdinand Svaricek, UniBw Munich.
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope.  If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{z} =} zero (@var{sys})
## @deftypefnx {Function File} {@var{z} =} zero (@var{sys}, @var{type})
## @deftypefnx {Function File} {[@var{z}, @var{k}, @var{info}] =} zero (@var{sys})
## Compute zeros and gain of @acronym{LTI} model.
## By default, @command{zero} computes the invariant zeros,
## also known as Smith zeros.  Alternatively, when called with
## a second input argument, @command{zero} can also compute
## the system zeros, transmission zeros, input decoupling zeros
## and output decoupling zeros.  See paper [1] for an explanation
## of the various zero flavors as well as for further details.
##
## @strong{Inputs}
## @table @var
## @item sys
## @acronym{LTI} model.
## @item type
## String specifying the type of zeros:
## @table @var
## @item 'system', 's'
## Compute the system zeros.
## The system zeros include in all cases
## (square, non-square, degenerate or non-degenerate system) 
## all transmission and decoupling zeros.
## @item 'invariant', 'inv'
## Compute invariant zeros.  Default selection.
## @item 'transmission', 't'
## Compute transmission zeros.  Transmission zeros
## are a subset of the invariant zeros.  
## The transmission zeros are the zeros of the
## Smith-McMillan form of the transfer function matrix.
## @item 'input', 'inp', 'id'
## Compute input decoupling zeros.  The input decoupling zeros are
## also known as the uncontrollable eigenvalues of the pair (A,B).
## @item 'output', 'o', 'od'
## Compute output decoupling zeros.  The output decoupling zeros are
## also known as the unobservable eigenvalues of the pair (A,C).
## @end table
## @end table
##
## @strong{Outputs}
## @table @var
## @item z
## Depending on argument @var{type}, @var{z} contains the
## invariant (default), system, transmission, input decoupling
## or output decoupling zeros of @var{sys} as defined in [1].
## @item k
## Gain of @acronym{SISO} system @var{sys}.  For @acronym{MIMO}
## systems, an empty matrix @code{[]} is returned.
## @item info
## Struct containing additional information.  For details,
## see the documentation of @acronym{SLICOT} routines
## @acronym{AB08ND} and @acronym{AG08BD}.
## @item info.rank
## The normal rank of the transfer function matrix (regular state-space models)
## or of the system pencil (descriptor state-space models).
## @item info.infz
## Contains information on the infinite elementary divisors as follows:
## the system has info.infz(i) infinite elementary divisors of degree i,
## where i=1,2,...,length(info.infz).
## @item info.kronr
## Right Kronecker (column) indices.
## @item info.kronl
## Left Kronecker (row) indices.
## @end table
##
## @strong{Examples}
## @example
## @group
## [z, k, info] = zero (sys)        # invariant zeros
## z = zero (sys, 'system')         # system zeros
## z = zero (sys, 'invariant')      # invariant zeros
## z = zero (sys, 'transmission')   # transmission zeros
## z = zero (sys, 'output')         # output decoupling zeros
## z = zero (sys, 'input')          # input decoupling zeros
## @end group
## @end example
##
## @strong{Algorithm}@*
## For (descriptor) state-space models, @command{zero}
## relies on SLICOT AB08ND and AG08BD by courtesy of
## @uref{http://www.slicot.org, NICONET e.V.}
## For @acronym{SISO} transfer functions, @command{zero}
## uses Octave's @command{roots}.
## @acronym{MIMO} transfer functions are converted to
## a @emph{minimal} state-space representation for the
## computation of the zeros.
##
## @strong{References}@*
## [1] MacFarlane, A. and Karcanias, N.
## @cite{Poles and zeros of linear multivariable systems:
## a survey of the algebraic, geometric and complex-variable
## theory}.  Int. J. Control, vol. 24, pp. 33-74, 1976.@*
## [2] Rosenbrock, H.H.
## @cite{Correction to 'The zeros of a system'}.
## Int. J. Control, vol. 20, no. 3, pp. 525-527, 1974.@*
## [3] Svaricek, F.
## @cite{Computation of the structural invariants of linear
## multivariable systems with an extended version of the
## program ZEROS}.
## Systems & Control Letters, vol. 6, pp. 261-266, 1985.@*
## [4] Emami-Naeini, A. and Van Dooren, P.
## @cite{Computation of zeros of linear multivariable systems}.
## Automatica, vol. 26, pp. 415-430, 1982.@*
##
## @end deftypefn

## TODO: write a short summary about the characteristics of the
##       various zero flavors and add it to the docstring.

## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: October 2009
## Version: 0.3

function [zer, gain, info] = zero (sys, type = "invariant")

  if (nargin > 2)
    print_usage ();
  endif

  if (strncmpi (type, "invariant", 3))                              # invariant zeros, default
    [zer, gain, info] = __zero__ (sys, nargout);
  elseif (strncmpi (type, "transmission", 1))                       # transmission zeros
    [zer, gain, info] = zero (minreal (sys));
  elseif (strncmpi (type, "input", 3) || strncmpi (type, "id", 2))  # input decoupling zeros
    [a, b, c, d, e, tsam] = dssdata (sys, []);
    tmp = dss (a, b, zeros (0, columns (a)), zeros (0, columns (b)), e, tsam);
    [zer, gain, info] = zero (tmp);
  elseif (strncmpi (type, "output", 1))                             # output decoupling zeros
    [a, b, c, d, e, tsam] = dssdata (sys, []);
    tmp = dss (a, zeros (rows (a), 0), c, zeros (rows (c), 0), e, tsam);
    [zer, gain, info] = zero (tmp);
  elseif (strncmpi (type, "system", 1))                             # system zeros
    [zer, gain, info] = __szero__ (sys);
  else
    error ("zero: type '%s' invalid", type);
  endif

endfunction


## Function for computing the system zeros.
## Adapted from Ferdinand Svaricek's szero.m
function [z, gain, info] = __szero__ (sys)

  ## TODO: support descriptor state-space models
  ##       with singular 'E' matrices

  [a, b, c, d] = ssdata (sys);
  [pp, mm] = size (sys);
  nn = rows (a);

  ## Tolerance for intersection of zeros
  Zeps = 10 * sqrt ((nn+pp)*(nn+mm)) * eps * norm (a,'fro');

  [z, gain, info] = zero (ss (a, b, c, d));    # zero (sys) lets descriptor test fail
  Rank = info.rank;

  ## System is not degenerated and square
  if (Rank == 0 || (Rank == min(pp,mm) && mm == pp))
    return;
  endif

  ## System (A,B,C,D) is degenerated and/or non-square
  z = [];

  ## Computation of the greatest common divisor of all minors of the 
  ## Rosenbrock system matrix that have the following form
  ##
  ##    1, 2, ..., n, n+i_1, n+i_2, ..., n+i_k
  ##   P
  ##    1, 2, ..., n, n+j_1, n+j_2, ..., n+j_k
  ## 
  ## with k = Rank.

  NKP = nchoosek (1:pp, Rank);
  [IP, JP] = size (NKP);
  NKM = nchoosek (1:mm, Rank);
  [IM, JM] = size (NKM);

  for i = 1:IP
    for j = 1:JP
      k = NKP(i,j);
      C1(j,:) = c(k,:);         # Build C of dimension (Rank x n)
    endfor
    for ii = 1:IM
      for jj = 1:JM
        k = NKM(ii,jj);
        B1(:,jj) = b(:,k);      # Build B of dimension (n x Rank)
      endfor
      [z1, ~, info1] = zero (ss (a, B1, C1, zeros (Rank, Rank)));
      rank1 = info1.rank;
      if (rank1 == Rank)
        if (isempty (z1))
          z = z1;               # Subsystem has no zeros -> system has no system zeros
          return;
        else
          if (isempty (z))
            z = z1;             # Zeros of the first subsystem
          else                  # Compute intersection of z and z1 with tolerance Zeps 
            z2 = [];
            for ii=1:length(z)
              for jj=1:length(z1)
                if (abs (z(ii)-z1(jj)) < Zeps)
                  z2(end+1) = z(ii);
                  z1(jj) = [];
                  break;
                endif
              endfor
            endfor
            z = z2;             # System zeros are the common zeros of all subsystems
          endif
        endif
      endif
    endfor
  endfor

endfunction


## Invariant zeros of state-space models
##
## Results from the "Dark Side" 7.5 and 7.8
##
##  -13.2759
##   12.5774
##  -0.0155
##
## Results from Scilab 5.2.0b1 (trzeros)
##
##  - 13.275931  
##    12.577369  
##  - 0.0155265
##
%!shared z, z_exp
%! A = [   -0.7   -0.0458     -12.2        0
%!            0    -0.014   -0.2904   -0.562
%!            1   -0.0057      -1.4        0
%!            1         0         0        0 ];
%!
%! B = [  -19.1      -3.1
%!      -0.0119   -0.0096
%!        -0.14     -0.72
%!            0         0 ];
%!
%! C = [      0         0        -1        1
%!            0         0     0.733        0 ];
%!
%! D = [      0         0
%!       0.0768    0.1134 ];
%!
%! sys = ss (A, B, C, D, "scaled", true);
%! z = sort (zero (sys));
%!
%! z_exp = sort ([-13.2759; 12.5774; -0.0155]);
%!
%!assert (z, z_exp, 1e-4);


## Invariant zeros of regular state-space models
%!shared z, z_exp, info, rank_exp, infz_exp, kronr_exp, kronl_exp
%! A = [  1.0   0.0   0.0   0.0   0.0   0.0
%!        0.0   1.0   0.0   0.0   0.0   0.0
%!        0.0   0.0   3.0   0.0   0.0   0.0
%!        0.0   0.0   0.0  -4.0   0.0   0.0
%!        0.0   0.0   0.0   0.0  -1.0   0.0
%!        0.0   0.0   0.0   0.0   0.0   3.0 ];
%!
%! B = [  0.0  -1.0
%!       -1.0   0.0
%!        1.0  -1.0
%!        0.0   0.0
%!        0.0   1.0
%!       -1.0  -1.0 ];
%!
%! C = [  1.0   0.0   0.0   1.0   0.0   0.0
%!        0.0   1.0   0.0   1.0   0.0   1.0
%!        0.0   0.0   1.0   0.0   0.0   1.0 ];
%!
%! D = [  0.0   0.0
%!        0.0   0.0
%!        0.0   0.0 ];
%!
%! sys = ss (A, B, C, D, "scaled", true);
%! [z, ~, info] = zero (sys);
%!
%! z_exp = [ 2.0000
%!          -1.0000 ];
%!
%! rank_exp = 2;
%! infz_exp = 2;
%! kronr_exp = zeros (1, 0);
%! kronl_exp = 2;
%!
%!assert (z, z_exp, 1e-4);
%!assert (info.rank, rank_exp);
%!assert (info.infz, infz_exp);
%!assert (info.kronr, kronr_exp);
%!assert (info.kronl, kronl_exp);


## Invariant zeros of descriptor state-space models
%!shared z, z_exp, info, rank_exp, infz_exp, kronr_exp, kronl_exp
%! A = [  1     0     0     0     0     0     0     0     0
%!        0     1     0     0     0     0     0     0     0
%!        0     0     1     0     0     0     0     0     0
%!        0     0     0     1     0     0     0     0     0
%!        0     0     0     0     1     0     0     0     0
%!        0     0     0     0     0     1     0     0     0
%!        0     0     0     0     0     0     1     0     0
%!        0     0     0     0     0     0     0     1     0
%!        0     0     0     0     0     0     0     0     1 ];
%!
%! E = [  0     0     0     0     0     0     0     0     0
%!        1     0     0     0     0     0     0     0     0
%!        0     1     0     0     0     0     0     0     0
%!        0     0     0     0     0     0     0     0     0
%!        0     0     0     1     0     0     0     0     0
%!        0     0     0     0     1     0     0     0     0
%!        0     0     0     0     0     0     0     0     0
%!        0     0     0     0     0     0     1     0     0
%!        0     0     0     0     0     0     0     1     0 ];
%!
%! B = [ -1     0     0
%!        0     0     0
%!        0     0     0
%!        0    -1     0
%!        0     0     0
%!        0     0     0
%!        0     0    -1
%!        0     0     0
%!        0     0     0 ];
%!
%! C = [  0     1     1     0     3     4     0     0     2
%!        0     1     0     0     4     0     0     2     0
%!        0     0     1     0    -1     4     0    -2     2 ];
%!
%! D = [  1     2    -2
%!        0    -1    -2
%!        0     0     0 ];
%!
%! sys = dss (A, B, C, D, E, "scaled", true);
%! [z, ~, info] = zero (sys);
%!
%! z_exp = 1;
%!
%! rank_exp = 11;
%! infz_exp = [0, 1];
%! kronr_exp = 2;
%! kronl_exp = 1;
%!
%!assert (z, z_exp, 1e-4);
%!assert (info.rank, rank_exp);
%!assert (info.infz, infz_exp);
%!assert (info.kronr, kronr_exp);
%!assert (info.kronl, kronl_exp);


## Gain of descriptor state-space models
%!shared p, pi, z, zi, k, ki, p_tf, pi_tf, z_tf, zi_tf, k_tf, ki_tf
%! P = ss (-2, 3, 4, 5);
%! Pi = inv (P);
%!
%! p = pole (P);
%! [z, k] = zero (P);
%!
%! pi = pole (Pi);
%! [zi, ki] = zero (Pi);
%!
%! P_tf = tf (P);
%! Pi_tf = tf (Pi);
%!
%! p_tf = pole (P_tf);
%! [z_tf, k_tf] = zero (P_tf);
%!
%! pi_tf = pole (Pi_tf);
%! [zi_tf, ki_tf] = zero (Pi_tf);
%!
%!assert (p, zi, 1e-4);
%!assert (z, pi, 1e-4);
%!assert (k, inv (ki), 1e-4);
%!assert (p_tf, zi_tf, 1e-4);
%!assert (z_tf, pi_tf, 1e-4);
%!assert (k_tf, inv (ki_tf), 1e-4);


## Example taken from Paper [1]
## Regular state-space system
%!shared z_inv, z_tra, z_inp, z_out, z_sys, z_inv_e, z_tra_e, z_inp_e, z_out_e, z_sys_e
%! A = diag ([1, 1, 3, -4, -1, 3]);
%! 
%! B = [  0,  -1
%!       -1,   0
%!        1,  -1
%!        0,   0
%!        0,   1
%!       -1,  -1  ];
%!        
%! C = [  1,  0,  0,  1,  0,  0
%!        0,  1,  0,  1,  0,  1
%!        0,  0,  1,  0,  0,  1  ];
%!         
%! D = zeros (3, 2);
%! 
%! SYS = ss (A, B, C, D);
%!
%! z_inv = zero (SYS);
%! z_tra = zero (SYS, "transmission");
%! z_inp = zero (SYS, "input decoupling");
%! z_out = zero (SYS, "output decoupling");
%! z_sys = zero (SYS, "system");
%!
%! z_inv_e = [2; -1];
%! z_tra_e = [2];
%! z_inp_e = [-4];
%! z_out_e = [-1];
%! z_sys_e = [-4, -1, 2];
%! 
%!assert (z_inv, z_inv_e, 1e-4); 
%!assert (z_tra, z_tra_e, 1e-4); 
%!assert (z_inp, z_inp_e, 1e-4); 
%!assert (z_out, z_out_e, 1e-4); 
%!assert (z_sys, z_sys_e, 1e-4);


## Example taken from Paper [1]
## Well, this is not exactly a descriptor state-space model,
## but it is the best thing I have right now and it is better
## than no test at all.  The routine for the system zeros works
## only for descriptor state-space models with regular 'E' matrices.
%!shared z_inv, z_tra, z_inp, z_out, z_sys, z_inv_e, z_tra_e, z_inp_e, z_out_e, z_sys_e
%! A = diag ([1, 1, 3, -4, -1, 3]);
%! 
%! B = [  0,  -1
%!       -1,   0
%!        1,  -1
%!        0,   0
%!        0,   1
%!       -1,  -1  ];
%!        
%! C = [  1,  0,  0,  1,  0,  0
%!        0,  1,  0,  1,  0,  1
%!        0,  0,  1,  0,  0,  1  ];
%!         
%! D = zeros (3, 2);
%!
%! E = eye (6);
%! 
%! SYS = dss (A, B, C, D, E);
%!
%! z_inv = zero (SYS);
%! z_tra = zero (SYS, "transmission");
%! z_inp = zero (SYS, "input decoupling");
%! z_out = zero (SYS, "output decoupling");
%! z_sys = zero (SYS, "system");
%!
%! z_inv_e = [2; -1];
%! z_tra_e = [2];
%! z_inp_e = [-4];
%! z_out_e = [-1];
%! z_sys_e = [-4, -1, 2];
%! 
%!assert (z_inv, z_inv_e, 1e-4); 
%!assert (z_tra, z_tra_e, 1e-4); 
%!assert (z_inp, z_inp_e, 1e-4); 
%!assert (z_out, z_out_e, 1e-4); 
%!assert (z_sys, z_sys_e, 1e-4);