/usr/x86_64-w64-mingw32/lib/ocaml/pervasives.mli is in ocaml-mingw-w64-x86-64 4.00.1~20130426-3ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 | (***********************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU Library General Public License, with *)
(* the special exception on linking described in file ../LICENSE. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(** The initially opened module.
This module provides the basic operations over the built-in types
(numbers, booleans, strings, exceptions, references, lists, arrays,
input-output channels, ...).
This module is automatically opened at the beginning of each compilation.
All components of this module can therefore be referred by their short
name, without prefixing them by [Pervasives].
*)
(** {6 Exceptions} *)
external raise : exn -> 'a = "%raise"
(** Raise the given exception value *)
val invalid_arg : string -> 'a
(** Raise exception [Invalid_argument] with the given string. *)
val failwith : string -> 'a
(** Raise exception [Failure] with the given string. *)
exception Exit
(** The [Exit] exception is not raised by any library function. It is
provided for use in your programs.*)
(** {6 Comparisons} *)
external ( = ) : 'a -> 'a -> bool = "%equal"
(** [e1 = e2] tests for structural equality of [e1] and [e2].
Mutable structures (e.g. references and arrays) are equal
if and only if their current contents are structurally equal,
even if the two mutable objects are not the same physical object.
Equality between functional values raises [Invalid_argument].
Equality between cyclic data structures may not terminate. *)
external ( <> ) : 'a -> 'a -> bool = "%notequal"
(** Negation of {!Pervasives.( = )}. *)
external ( < ) : 'a -> 'a -> bool = "%lessthan"
(** See {!Pervasives.( >= )}. *)
external ( > ) : 'a -> 'a -> bool = "%greaterthan"
(** See {!Pervasives.( >= )}. *)
external ( <= ) : 'a -> 'a -> bool = "%lessequal"
(** See {!Pervasives.( >= )}. *)
external ( >= ) : 'a -> 'a -> bool = "%greaterequal"
(** Structural ordering functions. These functions coincide with
the usual orderings over integers, characters, strings
and floating-point numbers, and extend them to a
total ordering over all types.
The ordering is compatible with [( = )]. As in the case
of [( = )], mutable structures are compared by contents.
Comparison between functional values raises [Invalid_argument].
Comparison between cyclic structures may not terminate. *)
external compare : 'a -> 'a -> int = "%compare"
(** [compare x y] returns [0] if [x] is equal to [y],
a negative integer if [x] is less than [y], and a positive integer
if [x] is greater than [y]. The ordering implemented by [compare]
is compatible with the comparison predicates [=], [<] and [>]
defined above, with one difference on the treatment of the float value
{!Pervasives.nan}. Namely, the comparison predicates treat [nan]
as different from any other float value, including itself;
while [compare] treats [nan] as equal to itself and less than any
other float value. This treatment of [nan] ensures that [compare]
defines a total ordering relation.
[compare] applied to functional values may raise [Invalid_argument].
[compare] applied to cyclic structures may not terminate.
The [compare] function can be used as the comparison function
required by the {!Set.Make} and {!Map.Make} functors, as well as
the {!List.sort} and {!Array.sort} functions. *)
val min : 'a -> 'a -> 'a
(** Return the smaller of the two arguments.
The result is unspecified if one of the arguments contains
the float value [nan]. *)
val max : 'a -> 'a -> 'a
(** Return the greater of the two arguments.
The result is unspecified if one of the arguments contains
the float value [nan]. *)
external ( == ) : 'a -> 'a -> bool = "%eq"
(** [e1 == e2] tests for physical equality of [e1] and [e2].
On mutable types such as references, arrays, strings, records with
mutable fields and objects with mutable instance variables,
[e1 == e2] is true if and only if physical modification of [e1]
also affects [e2].
On non-mutable types, the behavior of [( == )] is
implementation-dependent; however, it is guaranteed that
[e1 == e2] implies [compare e1 e2 = 0]. *)
external ( != ) : 'a -> 'a -> bool = "%noteq"
(** Negation of {!Pervasives.( == )}. *)
(** {6 Boolean operations} *)
external not : bool -> bool = "%boolnot"
(** The boolean negation. *)
external ( && ) : bool -> bool -> bool = "%sequand"
(** The boolean ``and''. Evaluation is sequential, left-to-right:
in [e1 && e2], [e1] is evaluated first, and if it returns [false],
[e2] is not evaluated at all. *)
external ( & ) : bool -> bool -> bool = "%sequand"
(** @deprecated {!Pervasives.( && )} should be used instead. *)
external ( || ) : bool -> bool -> bool = "%sequor"
(** The boolean ``or''. Evaluation is sequential, left-to-right:
in [e1 || e2], [e1] is evaluated first, and if it returns [true],
[e2] is not evaluated at all. *)
external ( or ) : bool -> bool -> bool = "%sequor"
(** @deprecated {!Pervasives.( || )} should be used instead.*)
(** {6 Integer arithmetic} *)
(** Integers are 31 bits wide (or 63 bits on 64-bit processors).
All operations are taken modulo 2{^31} (or 2{^63}).
They do not fail on overflow. *)
external ( ~- ) : int -> int = "%negint"
(** Unary negation. You can also write [- e] instead of [~- e]. *)
external ( ~+ ) : int -> int = "%identity"
(** Unary addition. You can also write [+ e] instead of [~+ e].
@since 3.12.0
*)
external succ : int -> int = "%succint"
(** [succ x] is [x + 1]. *)
external pred : int -> int = "%predint"
(** [pred x] is [x - 1]. *)
external ( + ) : int -> int -> int = "%addint"
(** Integer addition. *)
external ( - ) : int -> int -> int = "%subint"
(** Integer subtraction. *)
external ( * ) : int -> int -> int = "%mulint"
(** Integer multiplication. *)
external ( / ) : int -> int -> int = "%divint"
(** Integer division.
Raise [Division_by_zero] if the second argument is 0.
Integer division rounds the real quotient of its arguments towards zero.
More precisely, if [x >= 0] and [y > 0], [x / y] is the greatest integer
less than or equal to the real quotient of [x] by [y]. Moreover,
[(- x) / y = x / (- y) = - (x / y)]. *)
external ( mod ) : int -> int -> int = "%modint"
(** Integer remainder. If [y] is not zero, the result
of [x mod y] satisfies the following properties:
[x = (x / y) * y + x mod y] and
[abs(x mod y) <= abs(y) - 1].
If [y = 0], [x mod y] raises [Division_by_zero].
Note that [x mod y] is negative only if [x < 0].
Raise [Division_by_zero] if [y] is zero. *)
val abs : int -> int
(** Return the absolute value of the argument. Note that this may be
negative if the argument is [min_int]. *)
val max_int : int
(** The greatest representable integer. *)
val min_int : int
(** The smallest representable integer. *)
(** {7 Bitwise operations} *)
external ( land ) : int -> int -> int = "%andint"
(** Bitwise logical and. *)
external ( lor ) : int -> int -> int = "%orint"
(** Bitwise logical or. *)
external ( lxor ) : int -> int -> int = "%xorint"
(** Bitwise logical exclusive or. *)
val lnot : int -> int
(** Bitwise logical negation. *)
external ( lsl ) : int -> int -> int = "%lslint"
(** [n lsl m] shifts [n] to the left by [m] bits.
The result is unspecified if [m < 0] or [m >= bitsize],
where [bitsize] is [32] on a 32-bit platform and
[64] on a 64-bit platform. *)
external ( lsr ) : int -> int -> int = "%lsrint"
(** [n lsr m] shifts [n] to the right by [m] bits.
This is a logical shift: zeroes are inserted regardless of
the sign of [n].
The result is unspecified if [m < 0] or [m >= bitsize]. *)
external ( asr ) : int -> int -> int = "%asrint"
(** [n asr m] shifts [n] to the right by [m] bits.
This is an arithmetic shift: the sign bit of [n] is replicated.
The result is unspecified if [m < 0] or [m >= bitsize]. *)
(** {6 Floating-point arithmetic}
OCaml's floating-point numbers follow the
IEEE 754 standard, using double precision (64 bits) numbers.
Floating-point operations never raise an exception on overflow,
underflow, division by zero, etc. Instead, special IEEE numbers
are returned as appropriate, such as [infinity] for [1.0 /. 0.0],
[neg_infinity] for [-1.0 /. 0.0], and [nan] (``not a number'')
for [0.0 /. 0.0]. These special numbers then propagate through
floating-point computations as expected: for instance,
[1.0 /. infinity] is [0.0], and any arithmetic operation with [nan]
as argument returns [nan] as result.
*)
external ( ~-. ) : float -> float = "%negfloat"
(** Unary negation. You can also write [-. e] instead of [~-. e]. *)
external ( ~+. ) : float -> float = "%identity"
(** Unary addition. You can also write [+. e] instead of [~+. e].
@since 3.12.0
*)
external ( +. ) : float -> float -> float = "%addfloat"
(** Floating-point addition *)
external ( -. ) : float -> float -> float = "%subfloat"
(** Floating-point subtraction *)
external ( *. ) : float -> float -> float = "%mulfloat"
(** Floating-point multiplication *)
external ( /. ) : float -> float -> float = "%divfloat"
(** Floating-point division. *)
external ( ** ) : float -> float -> float = "caml_power_float" "pow" "float"
(** Exponentiation. *)
external sqrt : float -> float = "caml_sqrt_float" "sqrt" "float"
(** Square root. *)
external exp : float -> float = "caml_exp_float" "exp" "float"
(** Exponential. *)
external log : float -> float = "caml_log_float" "log" "float"
(** Natural logarithm. *)
external log10 : float -> float = "caml_log10_float" "log10" "float"
(** Base 10 logarithm. *)
external expm1 : float -> float = "caml_expm1_float" "caml_expm1" "float"
(** [expm1 x] computes [exp x -. 1.0], giving numerically-accurate results
even if [x] is close to [0.0].
@since 3.12.0
*)
external log1p : float -> float = "caml_log1p_float" "caml_log1p" "float"
(** [log1p x] computes [log(1.0 +. x)] (natural logarithm),
giving numerically-accurate results even if [x] is close to [0.0].
@since 3.12.0
*)
external cos : float -> float = "caml_cos_float" "cos" "float"
(** Cosine. Argument is in radians. *)
external sin : float -> float = "caml_sin_float" "sin" "float"
(** Sine. Argument is in radians. *)
external tan : float -> float = "caml_tan_float" "tan" "float"
(** Tangent. Argument is in radians. *)
external acos : float -> float = "caml_acos_float" "acos" "float"
(** Arc cosine. The argument must fall within the range [[-1.0, 1.0]].
Result is in radians and is between [0.0] and [pi]. *)
external asin : float -> float = "caml_asin_float" "asin" "float"
(** Arc sine. The argument must fall within the range [[-1.0, 1.0]].
Result is in radians and is between [-pi/2] and [pi/2]. *)
external atan : float -> float = "caml_atan_float" "atan" "float"
(** Arc tangent.
Result is in radians and is between [-pi/2] and [pi/2]. *)
external atan2 : float -> float -> float = "caml_atan2_float" "atan2" "float"
(** [atan2 y x] returns the arc tangent of [y /. x]. The signs of [x]
and [y] are used to determine the quadrant of the result.
Result is in radians and is between [-pi] and [pi]. *)
external hypot : float -> float -> float
= "caml_hypot_float" "caml_hypot" "float"
(** [hypot x y] returns [sqrt(x *. x + y *. y)], that is, the length
of the hypotenuse of a right-angled triangle with sides of length
[x] and [y], or, equivalently, the distance of the point [(x,y)]
to origin.
@since 4.00.0 *)
external cosh : float -> float = "caml_cosh_float" "cosh" "float"
(** Hyperbolic cosine. Argument is in radians. *)
external sinh : float -> float = "caml_sinh_float" "sinh" "float"
(** Hyperbolic sine. Argument is in radians. *)
external tanh : float -> float = "caml_tanh_float" "tanh" "float"
(** Hyperbolic tangent. Argument is in radians. *)
external ceil : float -> float = "caml_ceil_float" "ceil" "float"
(** Round above to an integer value.
[ceil f] returns the least integer value greater than or equal to [f].
The result is returned as a float. *)
external floor : float -> float = "caml_floor_float" "floor" "float"
(** Round below to an integer value.
[floor f] returns the greatest integer value less than or
equal to [f].
The result is returned as a float. *)
external abs_float : float -> float = "%absfloat"
(** [abs_float f] returns the absolute value of [f]. *)
external copysign : float -> float -> float
= "caml_copysign_float" "caml_copysign" "float"
(** [copysign x y] returns a float whose absolute value is that of [x]
and whose sign is that of [y]. If [x] is [nan], returns [nan].
If [y] is [nan], returns either [x] or [-. x], but it is not
specified which.
@since 4.00.0 *)
external mod_float : float -> float -> float = "caml_fmod_float" "fmod" "float"
(** [mod_float a b] returns the remainder of [a] with respect to
[b]. The returned value is [a -. n *. b], where [n]
is the quotient [a /. b] rounded towards zero to an integer. *)
external frexp : float -> float * int = "caml_frexp_float"
(** [frexp f] returns the pair of the significant
and the exponent of [f]. When [f] is zero, the
significant [x] and the exponent [n] of [f] are equal to
zero. When [f] is non-zero, they are defined by
[f = x *. 2 ** n] and [0.5 <= x < 1.0]. *)
external ldexp : float -> int -> float = "caml_ldexp_float"
(** [ldexp x n] returns [x *. 2 ** n]. *)
external modf : float -> float * float = "caml_modf_float"
(** [modf f] returns the pair of the fractional and integral
part of [f]. *)
external float : int -> float = "%floatofint"
(** Same as {!Pervasives.float_of_int}. *)
external float_of_int : int -> float = "%floatofint"
(** Convert an integer to floating-point. *)
external truncate : float -> int = "%intoffloat"
(** Same as {!Pervasives.int_of_float}. *)
external int_of_float : float -> int = "%intoffloat"
(** Truncate the given floating-point number to an integer.
The result is unspecified if the argument is [nan] or falls outside the
range of representable integers. *)
val infinity : float
(** Positive infinity. *)
val neg_infinity : float
(** Negative infinity. *)
val nan : float
(** A special floating-point value denoting the result of an
undefined operation such as [0.0 /. 0.0]. Stands for
``not a number''. Any floating-point operation with [nan] as
argument returns [nan] as result. As for floating-point comparisons,
[=], [<], [<=], [>] and [>=] return [false] and [<>] returns [true]
if one or both of their arguments is [nan]. *)
val max_float : float
(** The largest positive finite value of type [float]. *)
val min_float : float
(** The smallest positive, non-zero, non-denormalized value of type [float]. *)
val epsilon_float : float
(** The difference between [1.0] and the smallest exactly representable
floating-point number greater than [1.0]. *)
type fpclass =
FP_normal (** Normal number, none of the below *)
| FP_subnormal (** Number very close to 0.0, has reduced precision *)
| FP_zero (** Number is 0.0 or -0.0 *)
| FP_infinite (** Number is positive or negative infinity *)
| FP_nan (** Not a number: result of an undefined operation *)
(** The five classes of floating-point numbers, as determined by
the {!Pervasives.classify_float} function. *)
external classify_float : float -> fpclass = "caml_classify_float"
(** Return the class of the given floating-point number:
normal, subnormal, zero, infinite, or not a number. *)
(** {6 String operations}
More string operations are provided in module {!String}.
*)
val ( ^ ) : string -> string -> string
(** String concatenation. *)
(** {6 Character operations}
More character operations are provided in module {!Char}.
*)
external int_of_char : char -> int = "%identity"
(** Return the ASCII code of the argument. *)
val char_of_int : int -> char
(** Return the character with the given ASCII code.
Raise [Invalid_argument "char_of_int"] if the argument is
outside the range 0--255. *)
(** {6 Unit operations} *)
external ignore : 'a -> unit = "%ignore"
(** Discard the value of its argument and return [()].
For instance, [ignore(f x)] discards the result of
the side-effecting function [f]. It is equivalent to
[f x; ()], except that the latter may generate a
compiler warning; writing [ignore(f x)] instead
avoids the warning. *)
(** {6 String conversion functions} *)
val string_of_bool : bool -> string
(** Return the string representation of a boolean. As the returned values
may be shared, the user should not modify them directly.
*)
val bool_of_string : string -> bool
(** Convert the given string to a boolean.
Raise [Invalid_argument "bool_of_string"] if the string is not
["true"] or ["false"]. *)
val string_of_int : int -> string
(** Return the string representation of an integer, in decimal. *)
external int_of_string : string -> int = "caml_int_of_string"
(** Convert the given string to an integer.
The string is read in decimal (by default) or in hexadecimal (if it
begins with [0x] or [0X]), octal (if it begins with [0o] or [0O]),
or binary (if it begins with [0b] or [0B]).
Raise [Failure "int_of_string"] if the given string is not
a valid representation of an integer, or if the integer represented
exceeds the range of integers representable in type [int]. *)
val string_of_float : float -> string
(** Return the string representation of a floating-point number. *)
external float_of_string : string -> float = "caml_float_of_string"
(** Convert the given string to a float. Raise [Failure "float_of_string"]
if the given string is not a valid representation of a float. *)
(** {6 Pair operations} *)
external fst : 'a * 'b -> 'a = "%field0"
(** Return the first component of a pair. *)
external snd : 'a * 'b -> 'b = "%field1"
(** Return the second component of a pair. *)
(** {6 List operations}
More list operations are provided in module {!List}.
*)
val ( @ ) : 'a list -> 'a list -> 'a list
(** List concatenation. *)
(** {6 Input/output}
Note: all input/output functions can raise [Sys_error] when the system
calls they invoke fail. *)
type in_channel
(** The type of input channel. *)
type out_channel
(** The type of output channel. *)
val stdin : in_channel
(** The standard input for the process. *)
val stdout : out_channel
(** The standard output for the process. *)
val stderr : out_channel
(** The standard error output for the process. *)
(** {7 Output functions on standard output} *)
val print_char : char -> unit
(** Print a character on standard output. *)
val print_string : string -> unit
(** Print a string on standard output. *)
val print_int : int -> unit
(** Print an integer, in decimal, on standard output. *)
val print_float : float -> unit
(** Print a floating-point number, in decimal, on standard output. *)
val print_endline : string -> unit
(** Print a string, followed by a newline character, on
standard output and flush standard output. *)
val print_newline : unit -> unit
(** Print a newline character on standard output, and flush
standard output. This can be used to simulate line
buffering of standard output. *)
(** {7 Output functions on standard error} *)
val prerr_char : char -> unit
(** Print a character on standard error. *)
val prerr_string : string -> unit
(** Print a string on standard error. *)
val prerr_int : int -> unit
(** Print an integer, in decimal, on standard error. *)
val prerr_float : float -> unit
(** Print a floating-point number, in decimal, on standard error. *)
val prerr_endline : string -> unit
(** Print a string, followed by a newline character on standard error
and flush standard error. *)
val prerr_newline : unit -> unit
(** Print a newline character on standard error, and flush
standard error. *)
(** {7 Input functions on standard input} *)
val read_line : unit -> string
(** Flush standard output, then read characters from standard input
until a newline character is encountered. Return the string of
all characters read, without the newline character at the end. *)
val read_int : unit -> int
(** Flush standard output, then read one line from standard input
and convert it to an integer. Raise [Failure "int_of_string"]
if the line read is not a valid representation of an integer. *)
val read_float : unit -> float
(** Flush standard output, then read one line from standard input
and convert it to a floating-point number.
The result is unspecified if the line read is not a valid
representation of a floating-point number. *)
(** {7 General output functions} *)
type open_flag =
Open_rdonly (** open for reading. *)
| Open_wronly (** open for writing. *)
| Open_append (** open for appending: always write at end of file. *)
| Open_creat (** create the file if it does not exist. *)
| Open_trunc (** empty the file if it already exists. *)
| Open_excl (** fail if Open_creat and the file already exists. *)
| Open_binary (** open in binary mode (no conversion). *)
| Open_text (** open in text mode (may perform conversions). *)
| Open_nonblock (** open in non-blocking mode. *)
(** Opening modes for {!Pervasives.open_out_gen} and
{!Pervasives.open_in_gen}. *)
val open_out : string -> out_channel
(** Open the named file for writing, and return a new output channel
on that file, positionned at the beginning of the file. The
file is truncated to zero length if it already exists. It
is created if it does not already exists.
Raise [Sys_error] if the file could not be opened. *)
val open_out_bin : string -> out_channel
(** Same as {!Pervasives.open_out}, but the file is opened in binary mode,
so that no translation takes place during writes. On operating
systems that do not distinguish between text mode and binary
mode, this function behaves like {!Pervasives.open_out}. *)
val open_out_gen : open_flag list -> int -> string -> out_channel
(** [open_out_gen mode perm filename] opens the named file for writing,
as described above. The extra argument [mode]
specify the opening mode. The extra argument [perm] specifies
the file permissions, in case the file must be created.
{!Pervasives.open_out} and {!Pervasives.open_out_bin} are special
cases of this function. *)
val flush : out_channel -> unit
(** Flush the buffer associated with the given output channel,
performing all pending writes on that channel.
Interactive programs must be careful about flushing standard
output and standard error at the right time. *)
val flush_all : unit -> unit
(** Flush all open output channels; ignore errors. *)
val output_char : out_channel -> char -> unit
(** Write the character on the given output channel. *)
val output_string : out_channel -> string -> unit
(** Write the string on the given output channel. *)
val output : out_channel -> string -> int -> int -> unit
(** [output oc buf pos len] writes [len] characters from string [buf],
starting at offset [pos], to the given output channel [oc].
Raise [Invalid_argument "output"] if [pos] and [len] do not
designate a valid substring of [buf]. *)
val output_byte : out_channel -> int -> unit
(** Write one 8-bit integer (as the single character with that code)
on the given output channel. The given integer is taken modulo
256. *)
val output_binary_int : out_channel -> int -> unit
(** Write one integer in binary format (4 bytes, big-endian)
on the given output channel.
The given integer is taken modulo 2{^32}.
The only reliable way to read it back is through the
{!Pervasives.input_binary_int} function. The format is compatible across
all machines for a given version of OCaml. *)
val output_value : out_channel -> 'a -> unit
(** Write the representation of a structured value of any type
to a channel. Circularities and sharing inside the value
are detected and preserved. The object can be read back,
by the function {!Pervasives.input_value}. See the description of module
{!Marshal} for more information. {!Pervasives.output_value} is equivalent
to {!Marshal.to_channel} with an empty list of flags. *)
val seek_out : out_channel -> int -> unit
(** [seek_out chan pos] sets the current writing position to [pos]
for channel [chan]. This works only for regular files. On
files of other kinds (such as terminals, pipes and sockets),
the behavior is unspecified. *)
val pos_out : out_channel -> int
(** Return the current writing position for the given channel. Does
not work on channels opened with the [Open_append] flag (returns
unspecified results). *)
val out_channel_length : out_channel -> int
(** Return the size (number of characters) of the regular file
on which the given channel is opened. If the channel is opened
on a file that is not a regular file, the result is meaningless. *)
val close_out : out_channel -> unit
(** Close the given channel, flushing all buffered write operations.
Output functions raise a [Sys_error] exception when they are
applied to a closed output channel, except [close_out] and [flush],
which do nothing when applied to an already closed channel.
Note that [close_out] may raise [Sys_error] if the operating
system signals an error when flushing or closing. *)
val close_out_noerr : out_channel -> unit
(** Same as [close_out], but ignore all errors. *)
val set_binary_mode_out : out_channel -> bool -> unit
(** [set_binary_mode_out oc true] sets the channel [oc] to binary
mode: no translations take place during output.
[set_binary_mode_out oc false] sets the channel [oc] to text
mode: depending on the operating system, some translations
may take place during output. For instance, under Windows,
end-of-lines will be translated from [\n] to [\r\n].
This function has no effect under operating systems that
do not distinguish between text mode and binary mode. *)
(** {7 General input functions} *)
val open_in : string -> in_channel
(** Open the named file for reading, and return a new input channel
on that file, positionned at the beginning of the file.
Raise [Sys_error] if the file could not be opened. *)
val open_in_bin : string -> in_channel
(** Same as {!Pervasives.open_in}, but the file is opened in binary mode,
so that no translation takes place during reads. On operating
systems that do not distinguish between text mode and binary
mode, this function behaves like {!Pervasives.open_in}. *)
val open_in_gen : open_flag list -> int -> string -> in_channel
(** [open_in_gen mode perm filename] opens the named file for reading,
as described above. The extra arguments
[mode] and [perm] specify the opening mode and file permissions.
{!Pervasives.open_in} and {!Pervasives.open_in_bin} are special
cases of this function. *)
val input_char : in_channel -> char
(** Read one character from the given input channel.
Raise [End_of_file] if there are no more characters to read. *)
val input_line : in_channel -> string
(** Read characters from the given input channel, until a
newline character is encountered. Return the string of
all characters read, without the newline character at the end.
Raise [End_of_file] if the end of the file is reached
at the beginning of line. *)
val input : in_channel -> string -> int -> int -> int
(** [input ic buf pos len] reads up to [len] characters from
the given channel [ic], storing them in string [buf], starting at
character number [pos].
It returns the actual number of characters read, between 0 and
[len] (inclusive).
A return value of 0 means that the end of file was reached.
A return value between 0 and [len] exclusive means that
not all requested [len] characters were read, either because
no more characters were available at that time, or because
the implementation found it convenient to do a partial read;
[input] must be called again to read the remaining characters,
if desired. (See also {!Pervasives.really_input} for reading
exactly [len] characters.)
Exception [Invalid_argument "input"] is raised if [pos] and [len]
do not designate a valid substring of [buf]. *)
val really_input : in_channel -> string -> int -> int -> unit
(** [really_input ic buf pos len] reads [len] characters from channel [ic],
storing them in string [buf], starting at character number [pos].
Raise [End_of_file] if the end of file is reached before [len]
characters have been read.
Raise [Invalid_argument "really_input"] if
[pos] and [len] do not designate a valid substring of [buf]. *)
val input_byte : in_channel -> int
(** Same as {!Pervasives.input_char}, but return the 8-bit integer representing
the character.
Raise [End_of_file] if an end of file was reached. *)
val input_binary_int : in_channel -> int
(** Read an integer encoded in binary format (4 bytes, big-endian)
from the given input channel. See {!Pervasives.output_binary_int}.
Raise [End_of_file] if an end of file was reached while reading the
integer. *)
val input_value : in_channel -> 'a
(** Read the representation of a structured value, as produced
by {!Pervasives.output_value}, and return the corresponding value.
This function is identical to {!Marshal.from_channel};
see the description of module {!Marshal} for more information,
in particular concerning the lack of type safety. *)
val seek_in : in_channel -> int -> unit
(** [seek_in chan pos] sets the current reading position to [pos]
for channel [chan]. This works only for regular files. On
files of other kinds, the behavior is unspecified. *)
val pos_in : in_channel -> int
(** Return the current reading position for the given channel. *)
val in_channel_length : in_channel -> int
(** Return the size (number of characters) of the regular file
on which the given channel is opened. If the channel is opened
on a file that is not a regular file, the result is meaningless.
The returned size does not take into account the end-of-line
translations that can be performed when reading from a channel
opened in text mode. *)
val close_in : in_channel -> unit
(** Close the given channel. Input functions raise a [Sys_error]
exception when they are applied to a closed input channel,
except [close_in], which does nothing when applied to an already
closed channel. Note that [close_in] may raise [Sys_error] if
the operating system signals an error. *)
val close_in_noerr : in_channel -> unit
(** Same as [close_in], but ignore all errors. *)
val set_binary_mode_in : in_channel -> bool -> unit
(** [set_binary_mode_in ic true] sets the channel [ic] to binary
mode: no translations take place during input.
[set_binary_mode_out ic false] sets the channel [ic] to text
mode: depending on the operating system, some translations
may take place during input. For instance, under Windows,
end-of-lines will be translated from [\r\n] to [\n].
This function has no effect under operating systems that
do not distinguish between text mode and binary mode. *)
(** {7 Operations on large files} *)
module LargeFile :
sig
val seek_out : out_channel -> int64 -> unit
val pos_out : out_channel -> int64
val out_channel_length : out_channel -> int64
val seek_in : in_channel -> int64 -> unit
val pos_in : in_channel -> int64
val in_channel_length : in_channel -> int64
end
(** Operations on large files.
This sub-module provides 64-bit variants of the channel functions
that manipulate file positions and file sizes. By representing
positions and sizes by 64-bit integers (type [int64]) instead of
regular integers (type [int]), these alternate functions allow
operating on files whose sizes are greater than [max_int]. *)
(** {6 References} *)
type 'a ref = { mutable contents : 'a }
(** The type of references (mutable indirection cells) containing
a value of type ['a]. *)
external ref : 'a -> 'a ref = "%makemutable"
(** Return a fresh reference containing the given value. *)
external ( ! ) : 'a ref -> 'a = "%field0"
(** [!r] returns the current contents of reference [r].
Equivalent to [fun r -> r.contents]. *)
external ( := ) : 'a ref -> 'a -> unit = "%setfield0"
(** [r := a] stores the value of [a] in reference [r].
Equivalent to [fun r v -> r.contents <- v]. *)
external incr : int ref -> unit = "%incr"
(** Increment the integer contained in the given reference.
Equivalent to [fun r -> r := succ !r]. *)
external decr : int ref -> unit = "%decr"
(** Decrement the integer contained in the given reference.
Equivalent to [fun r -> r := pred !r]. *)
(** {6 Operations on format strings} *)
(** Format strings are used to read and print data using formatted input
functions in module {!Scanf} and formatted output in modules {!Printf} and
{!Format}. *)
(** Format strings have a general and highly polymorphic type
[('a, 'b, 'c, 'd, 'e, 'f) format6]. Type [format6] is built in.
The two simplified types, [format] and [format4] below are
included for backward compatibility with earlier releases of OCaml.
['a] is the type of the parameters of the format,
['b] is the type of the first argument given to
[%a] and [%t] printing functions,
['c] is the type of the result of the [%a] and [%t] functions, and
also the type of the argument transmitted to the first argument
of [kprintf]-style functions,
['d] is the result type for the [scanf]-style functions,
['e] is the type of the receiver function for the [scanf]-style functions,
['f] is the result type for the [printf]-style function.
*)
type ('a, 'b, 'c, 'd) format4 = ('a, 'b, 'c, 'c, 'c, 'd) format6
type ('a, 'b, 'c) format = ('a, 'b, 'c, 'c) format4
val string_of_format : ('a, 'b, 'c, 'd, 'e, 'f) format6 -> string
(** Converts a format string into a string. *)
external format_of_string :
('a, 'b, 'c, 'd, 'e, 'f) format6 ->
('a, 'b, 'c, 'd, 'e, 'f) format6 = "%identity"
(** [format_of_string s] returns a format string read from the string
literal [s]. *)
val ( ^^ ) :
('a, 'b, 'c, 'd, 'e, 'f) format6 ->
('f, 'b, 'c, 'e, 'g, 'h) format6 ->
('a, 'b, 'c, 'd, 'g, 'h) format6
(** [f1 ^^ f2] catenates formats [f1] and [f2]. The result is a format
that accepts arguments from [f1], then arguments from [f2]. *)
(** {6 Program termination} *)
val exit : int -> 'a
(** Terminate the process, returning the given status code
to the operating system: usually 0 to indicate no errors,
and a small positive integer to indicate failure.
All open output channels are flushed with [flush_all].
An implicit [exit 0] is performed each time a program
terminates normally. An implicit [exit 2] is performed if the program
terminates early because of an uncaught exception. *)
val at_exit : (unit -> unit) -> unit
(** Register the given function to be called at program
termination time. The functions registered with [at_exit]
will be called when the program executes {!Pervasives.exit},
or terminates, either normally or because of an uncaught exception.
The functions are called in ``last in, first out'' order:
the function most recently added with [at_exit] is called first. *)
(**/**)
(* The following is for system use only. Do not call directly. *)
val valid_float_lexem : string -> string
val unsafe_really_input : in_channel -> string -> int -> int -> unit
val do_at_exit : unit -> unit
|