This file is indexed.

/usr/share/netgen/libsrc/linalg/opti.hpp is in netgen-headers 4.9.13.dfsg-8build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#ifndef FILE_OPTI
#define FILE_OPTI

/**************************************************************************/
/* File:   opti.hpp                                                       */
/* Author: Joachim Schoeberl                                              */
/* Date:   01. Jun. 95                                                    */
/**************************************************************************/



namespace netgen
{

  /** 
      Function to be minimized.
  */
  class MinFunction 
  {
  public:
    ///
    virtual double Func (const Vector & x) const;
    ///
    virtual void Grad (const Vector & x, Vector & g) const;
    /// function and gradient
    virtual double FuncGrad (const Vector & x, Vector & g) const;
    /// directional derivative
    virtual double FuncDeriv (const Vector & x, const Vector & dir, double & deriv) const;
    /// if |g| < gradaccuray, then stop bfgs
    virtual double GradStopping (const Vector & /* x */) const { return 0; } 

    ///
    virtual void ApproximateHesse (const Vector & /* x */,
				   DenseMatrix & /* hesse */) const;
  };


  class OptiParameters
  {
  public:
    int maxit_linsearch;
    int maxit_bfgs;
    double typf;
    double typx;

    OptiParameters ()
    {
      maxit_linsearch = 100;
      maxit_bfgs = 100;
      typf = 1;
      typx = 1;
    }
  };
  
  
  /** Implementation of BFGS method.
      Efficient method for non-linear minimiztion problems.
      @param x initial value and solution 
      @param fun function to be minimized
  */
  extern double BFGS (Vector & x, const MinFunction & fun, 
		      const OptiParameters & par,
		      double eps = 1e-8);

  /** Steepest descent method.
      Simple method for non-linear minimization problems.
      @param x initial value and solution 
      @param fun function to be minimized
  */
  void SteepestDescent (Vector & x, const MinFunction & fun,
			const OptiParameters &  par);


  extern void lines (
		     Vector & x,         // i: Ausgangspunkt der Liniensuche
		     Vector & xneu,      // o: Loesung der Liniensuche bei Erfolg
		     Vector & p,         // i: Suchrichtung
		     double & f,         // i: Funktionswert an der Stelle x
		     // o: Funktionswert an der Stelle xneu, falls ifail = 0
		     Vector & g,         // i: Gradient an der Stelle x
		     // o: Gradient an der Stelle xneu, falls ifail = 0

		     const MinFunction & fun,  // function to minmize
		     const OptiParameters & par, // parameters
		     double & alphahat,  // i: Startwert für alpha_hat
		     // o: Loesung falls ifail = 0
		     double fmin,        // i: untere Schranke für f
		     double mu1,         // i: Parameter mu_1 aus Alg.2.1
		     double sigma,       // i: Parameter sigma aus Alg.2.1
		     double xi1,         // i: Parameter xi_1 aus Alg.2.1
		     double xi2,         // i: Parameter xi_1 aus Alg.2.1
		     double tau,         // i: Parameter tau aus Alg.2.1
		     double tau1,        // i: Parameter tau_1 aus Alg.2.1
		     double tau2,        // i: Parameter tau_2 aus Alg.2.1
		     int & ifail);        // o:  0 bei erfolgreicher Liniensuche
  //    -1 bei Abbruch wegen Unterschreiten von fmin
  //    1 bei Abbruch, aus sonstigen Gründen




  /**  
       Solver for linear programming problem.

       \begin{verbatim}
       min      c^t x
       A x <= b    
       \end{verbatim}
  */
  extern void LinearOptimize (const DenseMatrix & a, const Vector & b, 
			      const Vector & c, Vector & x);


#ifdef NONE

  /**
     Simple projection iteration.
  
     find $u = argmin_{v >= 0}  0.5 u A u - f u$
  */
  extern void ApproxProject (const BaseMatrix & a, Vector & u, 
			     const Vector & f,
			     double tau, int its);
 

  /**
     CG Algorithm for quadratic programming problem.
     See: Dostal ...

     d ... diag(A) ^{-1}
  */
  extern void ApproxProjectCG (const BaseMatrix & a, Vector & x, 
			       const Vector & b, const class DiagMatrix & d,
			       double gamma, int & steps, int & changes);

#endif


}

#endif