/usr/share/netgen/libsrc/linalg/opti.hpp is in netgen-headers 4.9.13.dfsg-8build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 | #ifndef FILE_OPTI
#define FILE_OPTI
/**************************************************************************/
/* File: opti.hpp */
/* Author: Joachim Schoeberl */
/* Date: 01. Jun. 95 */
/**************************************************************************/
namespace netgen
{
/**
Function to be minimized.
*/
class MinFunction
{
public:
///
virtual double Func (const Vector & x) const;
///
virtual void Grad (const Vector & x, Vector & g) const;
/// function and gradient
virtual double FuncGrad (const Vector & x, Vector & g) const;
/// directional derivative
virtual double FuncDeriv (const Vector & x, const Vector & dir, double & deriv) const;
/// if |g| < gradaccuray, then stop bfgs
virtual double GradStopping (const Vector & /* x */) const { return 0; }
///
virtual void ApproximateHesse (const Vector & /* x */,
DenseMatrix & /* hesse */) const;
};
class OptiParameters
{
public:
int maxit_linsearch;
int maxit_bfgs;
double typf;
double typx;
OptiParameters ()
{
maxit_linsearch = 100;
maxit_bfgs = 100;
typf = 1;
typx = 1;
}
};
/** Implementation of BFGS method.
Efficient method for non-linear minimiztion problems.
@param x initial value and solution
@param fun function to be minimized
*/
extern double BFGS (Vector & x, const MinFunction & fun,
const OptiParameters & par,
double eps = 1e-8);
/** Steepest descent method.
Simple method for non-linear minimization problems.
@param x initial value and solution
@param fun function to be minimized
*/
void SteepestDescent (Vector & x, const MinFunction & fun,
const OptiParameters & par);
extern void lines (
Vector & x, // i: Ausgangspunkt der Liniensuche
Vector & xneu, // o: Loesung der Liniensuche bei Erfolg
Vector & p, // i: Suchrichtung
double & f, // i: Funktionswert an der Stelle x
// o: Funktionswert an der Stelle xneu, falls ifail = 0
Vector & g, // i: Gradient an der Stelle x
// o: Gradient an der Stelle xneu, falls ifail = 0
const MinFunction & fun, // function to minmize
const OptiParameters & par, // parameters
double & alphahat, // i: Startwert für alpha_hat
// o: Loesung falls ifail = 0
double fmin, // i: untere Schranke für f
double mu1, // i: Parameter mu_1 aus Alg.2.1
double sigma, // i: Parameter sigma aus Alg.2.1
double xi1, // i: Parameter xi_1 aus Alg.2.1
double xi2, // i: Parameter xi_1 aus Alg.2.1
double tau, // i: Parameter tau aus Alg.2.1
double tau1, // i: Parameter tau_1 aus Alg.2.1
double tau2, // i: Parameter tau_2 aus Alg.2.1
int & ifail); // o: 0 bei erfolgreicher Liniensuche
// -1 bei Abbruch wegen Unterschreiten von fmin
// 1 bei Abbruch, aus sonstigen Gründen
/**
Solver for linear programming problem.
\begin{verbatim}
min c^t x
A x <= b
\end{verbatim}
*/
extern void LinearOptimize (const DenseMatrix & a, const Vector & b,
const Vector & c, Vector & x);
#ifdef NONE
/**
Simple projection iteration.
find $u = argmin_{v >= 0} 0.5 u A u - f u$
*/
extern void ApproxProject (const BaseMatrix & a, Vector & u,
const Vector & f,
double tau, int its);
/**
CG Algorithm for quadratic programming problem.
See: Dostal ...
d ... diag(A) ^{-1}
*/
extern void ApproxProjectCG (const BaseMatrix & a, Vector & x,
const Vector & b, const class DiagMatrix & d,
double gamma, int & steps, int & changes);
#endif
}
#endif
|