This file is indexed.

/usr/include/llvm-3.5/llvm/IR/Value.h is in llvm-3.5-dev 1:3.5~svn201651-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
//===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the Value class. 
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_VALUE_H
#define LLVM_IR_VALUE_H

#include "llvm-c/Core.h"
#include "llvm/IR/Use.h"
#include "llvm/Support/CBindingWrapping.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"

namespace llvm {

class APInt;
class Argument;
class AssemblyAnnotationWriter;
class BasicBlock;
class Constant;
class DataLayout;
class Function;
class GlobalAlias;
class GlobalValue;
class GlobalVariable;
class InlineAsm;
class Instruction;
class LLVMContext;
class MDNode;
class Module;
class StringRef;
class Twine;
class Type;
class ValueHandleBase;
class ValueSymbolTable;
class raw_ostream;

template<typename ValueTy> class StringMapEntry;
typedef StringMapEntry<Value*> ValueName;

//===----------------------------------------------------------------------===//
//                                 Value Class
//===----------------------------------------------------------------------===//

/// This is a very important LLVM class. It is the base class of all values 
/// computed by a program that may be used as operands to other values. Value is
/// the super class of other important classes such as Instruction and Function.
/// All Values have a Type. Type is not a subclass of Value. Some values can
/// have a name and they belong to some Module.  Setting the name on the Value
/// automatically updates the module's symbol table.
///
/// Every value has a "use list" that keeps track of which other Values are
/// using this Value.  A Value can also have an arbitrary number of ValueHandle
/// objects that watch it and listen to RAUW and Destroy events.  See
/// llvm/Support/ValueHandle.h for details.
///
/// @brief LLVM Value Representation
class Value {
  const unsigned char SubclassID;   // Subclass identifier (for isa/dyn_cast)
  unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
protected:
  /// SubclassOptionalData - This member is similar to SubclassData, however it
  /// is for holding information which may be used to aid optimization, but
  /// which may be cleared to zero without affecting conservative
  /// interpretation.
  unsigned char SubclassOptionalData : 7;

private:
  /// SubclassData - This member is defined by this class, but is not used for
  /// anything.  Subclasses can use it to hold whatever state they find useful.
  /// This field is initialized to zero by the ctor.
  unsigned short SubclassData;

  Type *VTy;
  Use *UseList;

  friend class ValueSymbolTable; // Allow ValueSymbolTable to directly mod Name.
  friend class ValueHandleBase;
  ValueName *Name;

  void operator=(const Value &) LLVM_DELETED_FUNCTION;
  Value(const Value &) LLVM_DELETED_FUNCTION;

protected:
  /// printCustom - Value subclasses can override this to implement custom
  /// printing behavior.
  virtual void printCustom(raw_ostream &O) const;

  Value(Type *Ty, unsigned scid);
public:
  virtual ~Value();

  /// dump - Support for debugging, callable in GDB: V->dump()
  //
  void dump() const;

  /// print - Implement operator<< on Value.
  ///
  void print(raw_ostream &O, AssemblyAnnotationWriter *AAW = 0) const;

  /// \brief Print the name of this Value out to the specified raw_ostream.
  /// This is useful when you just want to print 'int %reg126', not the
  /// instruction that generated it. If you specify a Module for context, then
  /// even constanst get pretty-printed; for example, the type of a null
  /// pointer is printed symbolically.
  void printAsOperand(raw_ostream &O, bool PrintType = true, const Module *M = 0) const;

  /// All values are typed, get the type of this value.
  ///
  Type *getType() const { return VTy; }

  /// All values hold a context through their type.
  LLVMContext &getContext() const;

  // All values can potentially be named.
  bool hasName() const { return Name != 0 && SubclassID != MDStringVal; }
  ValueName *getValueName() const { return Name; }
  void setValueName(ValueName *VN) { Name = VN; }
  
  /// getName() - Return a constant reference to the value's name. This is cheap
  /// and guaranteed to return the same reference as long as the value is not
  /// modified.
  StringRef getName() const;

  /// setName() - Change the name of the value, choosing a new unique name if
  /// the provided name is taken.
  ///
  /// \param Name The new name; or "" if the value's name should be removed.
  void setName(const Twine &Name);

  
  /// takeName - transfer the name from V to this value, setting V's name to
  /// empty.  It is an error to call V->takeName(V). 
  void takeName(Value *V);

  /// replaceAllUsesWith - Go through the uses list for this definition and make
  /// each use point to "V" instead of "this".  After this completes, 'this's
  /// use list is guaranteed to be empty.
  ///
  void replaceAllUsesWith(Value *V);

  //----------------------------------------------------------------------
  // Methods for handling the chain of uses of this Value.
  //
  typedef value_use_iterator<User>       use_iterator;
  typedef value_use_iterator<const User> const_use_iterator;

  bool               use_empty() const { return UseList == 0; }
  use_iterator       use_begin()       { return use_iterator(UseList); }
  const_use_iterator use_begin() const { return const_use_iterator(UseList); }
  use_iterator       use_end()         { return use_iterator(0);   }
  const_use_iterator use_end()   const { return const_use_iterator(0);   }
  User              *use_back()        { return *use_begin(); }
  const User        *use_back()  const { return *use_begin(); }

  /// hasOneUse - Return true if there is exactly one user of this value.  This
  /// is specialized because it is a common request and does not require
  /// traversing the whole use list.
  ///
  bool hasOneUse() const {
    const_use_iterator I = use_begin(), E = use_end();
    if (I == E) return false;
    return ++I == E;
  }

  /// hasNUses - Return true if this Value has exactly N users.
  ///
  bool hasNUses(unsigned N) const;

  /// hasNUsesOrMore - Return true if this value has N users or more.  This is
  /// logically equivalent to getNumUses() >= N.
  ///
  bool hasNUsesOrMore(unsigned N) const;

  bool isUsedInBasicBlock(const BasicBlock *BB) const;

  /// getNumUses - This method computes the number of uses of this Value.  This
  /// is a linear time operation.  Use hasOneUse, hasNUses, or hasNUsesOrMore
  /// to check for specific values.
  unsigned getNumUses() const;

  /// addUse - This method should only be used by the Use class.
  ///
  void addUse(Use &U) { U.addToList(&UseList); }

  /// An enumeration for keeping track of the concrete subclass of Value that
  /// is actually instantiated. Values of this enumeration are kept in the 
  /// Value classes SubclassID field. They are used for concrete type
  /// identification.
  enum ValueTy {
    ArgumentVal,              // This is an instance of Argument
    BasicBlockVal,            // This is an instance of BasicBlock
    FunctionVal,              // This is an instance of Function
    GlobalAliasVal,           // This is an instance of GlobalAlias
    GlobalVariableVal,        // This is an instance of GlobalVariable
    UndefValueVal,            // This is an instance of UndefValue
    BlockAddressVal,          // This is an instance of BlockAddress
    ConstantExprVal,          // This is an instance of ConstantExpr
    ConstantAggregateZeroVal, // This is an instance of ConstantAggregateZero
    ConstantDataArrayVal,     // This is an instance of ConstantDataArray
    ConstantDataVectorVal,    // This is an instance of ConstantDataVector
    ConstantIntVal,           // This is an instance of ConstantInt
    ConstantFPVal,            // This is an instance of ConstantFP
    ConstantArrayVal,         // This is an instance of ConstantArray
    ConstantStructVal,        // This is an instance of ConstantStruct
    ConstantVectorVal,        // This is an instance of ConstantVector
    ConstantPointerNullVal,   // This is an instance of ConstantPointerNull
    MDNodeVal,                // This is an instance of MDNode
    MDStringVal,              // This is an instance of MDString
    InlineAsmVal,             // This is an instance of InlineAsm
    PseudoSourceValueVal,     // This is an instance of PseudoSourceValue
    FixedStackPseudoSourceValueVal, // This is an instance of 
                                    // FixedStackPseudoSourceValue
    InstructionVal,           // This is an instance of Instruction
    // Enum values starting at InstructionVal are used for Instructions;
    // don't add new values here!

    // Markers:
    ConstantFirstVal = FunctionVal,
    ConstantLastVal  = ConstantPointerNullVal
  };

  /// getValueID - Return an ID for the concrete type of this object.  This is
  /// used to implement the classof checks.  This should not be used for any
  /// other purpose, as the values may change as LLVM evolves.  Also, note that
  /// for instructions, the Instruction's opcode is added to InstructionVal. So
  /// this means three things:
  /// # there is no value with code InstructionVal (no opcode==0).
  /// # there are more possible values for the value type than in ValueTy enum.
  /// # the InstructionVal enumerator must be the highest valued enumerator in
  ///   the ValueTy enum.
  unsigned getValueID() const {
    return SubclassID;
  }

  /// getRawSubclassOptionalData - Return the raw optional flags value
  /// contained in this value. This should only be used when testing two
  /// Values for equivalence.
  unsigned getRawSubclassOptionalData() const {
    return SubclassOptionalData;
  }

  /// clearSubclassOptionalData - Clear the optional flags contained in
  /// this value.
  void clearSubclassOptionalData() {
    SubclassOptionalData = 0;
  }

  /// hasSameSubclassOptionalData - Test whether the optional flags contained
  /// in this value are equal to the optional flags in the given value.
  bool hasSameSubclassOptionalData(const Value *V) const {
    return SubclassOptionalData == V->SubclassOptionalData;
  }

  /// intersectOptionalDataWith - Clear any optional flags in this value
  /// that are not also set in the given value.
  void intersectOptionalDataWith(const Value *V) {
    SubclassOptionalData &= V->SubclassOptionalData;
  }

  /// hasValueHandle - Return true if there is a value handle associated with
  /// this value.
  bool hasValueHandle() const { return HasValueHandle; }

  /// \brief Strips off any unneeded pointer casts, all-zero GEPs and aliases
  /// from the specified value, returning the original uncasted value.
  ///
  /// If this is called on a non-pointer value, it returns 'this'.
  Value *stripPointerCasts();
  const Value *stripPointerCasts() const {
    return const_cast<Value*>(this)->stripPointerCasts();
  }

  /// \brief Strips off any unneeded pointer casts and all-zero GEPs from the
  /// specified value, returning the original uncasted value.
  ///
  /// If this is called on a non-pointer value, it returns 'this'.
  Value *stripPointerCastsNoFollowAliases();
  const Value *stripPointerCastsNoFollowAliases() const {
    return const_cast<Value*>(this)->stripPointerCastsNoFollowAliases();
  }

  /// \brief Strips off unneeded pointer casts and all-constant GEPs from the
  /// specified value, returning the original pointer value.
  ///
  /// If this is called on a non-pointer value, it returns 'this'.
  Value *stripInBoundsConstantOffsets();
  const Value *stripInBoundsConstantOffsets() const {
    return const_cast<Value*>(this)->stripInBoundsConstantOffsets();
  }

  /// \brief Strips like \c stripInBoundsConstantOffsets but also accumulates
  /// the constant offset stripped.
  ///
  /// Stores the resulting constant offset stripped into the APInt provided.
  /// The provided APInt will be extended or truncated as needed to be the
  /// correct bitwidth for an offset of this pointer type.
  ///
  /// If this is called on a non-pointer value, it returns 'this'.
  Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
                                                   APInt &Offset);
  const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
                                                         APInt &Offset) const {
    return const_cast<Value *>(this)
        ->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
  }

  /// \brief Strips off unneeded pointer casts and any in-bounds offsets from
  /// the specified value, returning the original pointer value.
  ///
  /// If this is called on a non-pointer value, it returns 'this'.
  Value *stripInBoundsOffsets();
  const Value *stripInBoundsOffsets() const {
    return const_cast<Value*>(this)->stripInBoundsOffsets();
  }

  /// isDereferenceablePointer - Test if this value is always a pointer to
  /// allocated and suitably aligned memory for a simple load or store.
  bool isDereferenceablePointer() const;
  
  /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
  /// return the value in the PHI node corresponding to PredBB.  If not, return
  /// ourself.  This is useful if you want to know the value something has in a
  /// predecessor block.
  Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);

  const Value *DoPHITranslation(const BasicBlock *CurBB,
                                const BasicBlock *PredBB) const{
    return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
  }
  
  /// MaximumAlignment - This is the greatest alignment value supported by
  /// load, store, and alloca instructions, and global values.
  static const unsigned MaximumAlignment = 1u << 29;
  
  /// mutateType - Mutate the type of this Value to be of the specified type.
  /// Note that this is an extremely dangerous operation which can create
  /// completely invalid IR very easily.  It is strongly recommended that you
  /// recreate IR objects with the right types instead of mutating them in
  /// place.
  void mutateType(Type *Ty) {
    VTy = Ty;
  }
  
protected:
  unsigned short getSubclassDataFromValue() const { return SubclassData; }
  void setValueSubclassData(unsigned short D) { SubclassData = D; }
};

inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
  V.print(OS);
  return OS;
}
  
void Use::set(Value *V) {
  if (Val) removeFromList();
  Val = V;
  if (V) V->addUse(*this);
}


// isa - Provide some specializations of isa so that we don't have to include
// the subtype header files to test to see if the value is a subclass...
//
template <> struct isa_impl<Constant, Value> {
  static inline bool doit(const Value &Val) {
    return Val.getValueID() >= Value::ConstantFirstVal &&
      Val.getValueID() <= Value::ConstantLastVal;
  }
};

template <> struct isa_impl<Argument, Value> {
  static inline bool doit (const Value &Val) {
    return Val.getValueID() == Value::ArgumentVal;
  }
};

template <> struct isa_impl<InlineAsm, Value> { 
  static inline bool doit(const Value &Val) {
    return Val.getValueID() == Value::InlineAsmVal;
  }
};

template <> struct isa_impl<Instruction, Value> { 
  static inline bool doit(const Value &Val) {
    return Val.getValueID() >= Value::InstructionVal;
  }
};

template <> struct isa_impl<BasicBlock, Value> { 
  static inline bool doit(const Value &Val) {
    return Val.getValueID() == Value::BasicBlockVal;
  }
};

template <> struct isa_impl<Function, Value> { 
  static inline bool doit(const Value &Val) {
    return Val.getValueID() == Value::FunctionVal;
  }
};

template <> struct isa_impl<GlobalVariable, Value> { 
  static inline bool doit(const Value &Val) {
    return Val.getValueID() == Value::GlobalVariableVal;
  }
};

template <> struct isa_impl<GlobalAlias, Value> { 
  static inline bool doit(const Value &Val) {
    return Val.getValueID() == Value::GlobalAliasVal;
  }
};

template <> struct isa_impl<GlobalValue, Value> { 
  static inline bool doit(const Value &Val) {
    return isa<GlobalVariable>(Val) || isa<Function>(Val) ||
      isa<GlobalAlias>(Val);
  }
};

template <> struct isa_impl<MDNode, Value> { 
  static inline bool doit(const Value &Val) {
    return Val.getValueID() == Value::MDNodeVal;
  }
};
  
// Value* is only 4-byte aligned.
template<>
class PointerLikeTypeTraits<Value*> {
  typedef Value* PT;
public:
  static inline void *getAsVoidPointer(PT P) { return P; }
  static inline PT getFromVoidPointer(void *P) {
    return static_cast<PT>(P);
  }
  enum { NumLowBitsAvailable = 2 };
};

// Create wrappers for C Binding types (see CBindingWrapping.h).
DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)

/* Specialized opaque value conversions.
 */ 
inline Value **unwrap(LLVMValueRef *Vals) {
  return reinterpret_cast<Value**>(Vals);
}

template<typename T>
inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
#ifdef DEBUG
  for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
    cast<T>(*I);
#endif
  (void)Length;
  return reinterpret_cast<T**>(Vals);
}

inline LLVMValueRef *wrap(const Value **Vals) {
  return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
}

} // End llvm namespace

#endif